
Future Generation Computer Systems 100 (2019) 70–85

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Constructing distributed time-critical applications using cognitive
enabled services
Chris Simpkin a,∗, Ian Taylor a, Graham A. Bent b, Geeth de Mel b, Swati Rallapalli c,
Liang Ma c, Mudhakar Srivatsa c

a School of Computer Science and Information, Cardiff University, UK
b IBM Research, UK
c IBM Research, USA

h i g h l i g h t s

• An Architecture for decentralized construction and control of time critical applications.
• Cognitively enabling existing services using a Vector Symbolic Architecture (VSA).
• Complex service workflow orchestration at the network edge with no central point of control.
• Semantic encoding of services, workflows, and the time-critical constraints for QoS and QoE.
• Empirical proof that VSA encoding methods are scalable to complex workflows.

a r t i c l e i n f o

Article history:
Received 14 May 2018
Received in revised form 15 March 2019
Accepted 3 April 2019
Available online 16 May 2019

Keywords:
Decentralized workflows
Quality of service
Quality of experience
Vector symbolic architectures
Distributed fitness functions
Time-critical applications
Dynamic wireless networks

a b s t r a c t

Time-critical analytics applications are increasingly making use of distributed service interfaces (e.g.,
micro-services) that support the rapid construction of new applications by dynamically linking
the services into different workflow configurations. Traditional service-based applications, in fixed
networks, are typically constructed and managed centrally and assume stable service endpoints
and adequate network connectivity. Constructing and maintaining such applications in dynamic
heterogeneous wireless networked environments, where limited bandwidth and transient connectivity
are commonplace, presents significant challenges and makes centralized application construction and
management impossible. In this paper we present an architecture which is capable of providing
an adaptable and resilient method for on-demand decentralized construction and management of
complex time-critical applications in such environments. The approach uses a Vector Symbolic
Architecture (VSA) to compactly represent an application as a single semantic vector that encodes the
service interfaces, workflow, and the time-critical constraints required. By extending existing services
interfaces, with a simple cognitive layer that can interpret and exchange the vectors, we show how
the required services can be dynamically discovered and interconnected in a completely decentralized
manner. We demonstrate the viability of this approach by using a VSA to encode various time-critical
data analytics workflows. We show that these vectors can be used to dynamically construct and run
applications using services that are distributed across an emulated Mobile Ad-Hoc Wireless Network
(MANET). Scalability is demonstrated via an empirical evaluation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Time-critical analytics applications are increasingly making
use of distributed service interfaces (e.g., micro-services) that
support the rapid construction of new applications by dynami-
cally linking the services into different workflow configurations.
In traditional Service Oriented Architectures (SOA), operating
over fixed networks, the underlying TCP/IP backbone guarantees

∗ Corresponding author.
E-mail address: simpkinc@cardiff.ac.uk (C. Simpkin).

sufficiently stable service endpoints and connectivity to facilitate
the construction and management of multi-service applications
using centralized management schemes. Using such schemes
also supports the dominant approach to service discovery and
matching, which is based on the use of centralized service reg-
istries to provide a catalogue of services, using formal ontologies
to facilitate service definition and service matching. Such ap-
proaches, while often very effective, incur overhead in terms of
the knowledge engineering effort required to create them [1]. For
time-critical applications, centralized control also allows multiple
workflow tasks to be load-balanced, scaled, and optimized across

https://doi.org/10.1016/j.future.2019.04.010
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.04.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.04.010&domain=pdf
mailto:simpkinc@cardiff.ac.uk
https://doi.org/10.1016/j.future.2019.04.010

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 71

multiple heterogeneous compute resources so that their Quality
of Service (QoS) and Quality of Experience (QoE) requirements
can be fulfilled.

In decentralized environments, such as Mobile Ad Hoc Wire-
less Networks (MANETs) [2–4], constructing and running ap-
plications that support group-oriented collaborative applications
(e.g., multi-user chats) or distributed analytics [5,6], introduces
a much more diverse set of requirements. In such environments
end point stability and connectivity remain limited and transient
and it becomes impractical, if not impossible, to support cen-
tralized service registries and to manage workflows executing
at the edge. A similar requirement is emerging for the Internet
of Things (IOT) where although more compute resource and po-
tentially useful services are available at the edge of networks,
both on traditional mobile devices and emerging IoT devices,
these cannot be utilized because they cannot easily be connected
together without some centralized, usually cloud based, control.
Time-critical applications operating in such environments intro-
duce further complexity requiring a capability for applications to
rapidly reconfigure themselves in the event of change, so that
their QoS/QoE requirements can be satisfied. There is therefore
a need for new methods that can enable application construction
and workflow orchestration without the need for a central point
of control.

Micro-services are a variant of the SOA architectural style
that structures an application as a collection of loosely coupled
services that can be linked in different workflow configurations.
They overcome the complexity of ontology-based service compo-
sition by having much simpler interfaces (usually RESTful inter-
faces) which enables these services to be developed by multiple
parties without rigid standardization of service description tem-
plates. However, the lack of a formal template means that a
mechanism is required that will allow semantic matching/dis-
covery of the appropriate micro-services required for a given
application. This mechanism needs to be compact, in order to
minimize bandwidth requirements, and flexible, in order to min-
imize the knowledge engineering overhead required to generate
the service descriptions. In this paper we describe a method by
which these objectives can be achieved using the capabilities of
Vector Symbolic Architecture (VSA) representations.

Vector Symbolic Architectures (VSAs) [7–10] are a family of
bio-inspired methods for representing and manipulating concepts
and their meanings in a high-dimensional vector space. They are
a form of distributed representation that enables large volumes
of data to be compressed into a fixed size feature vector in a
way that captures associations and similarities as well as enabling
semantic relationships between data to be built up. Such vector
representations were originally proposed by Hinton [11] who
identified that they have recursive binding properties that allow
for higher level semantic vector representations to be formulated
from, and in the same format as, their lower level semantic
vector components. As such they are said to be semantically self-
describing. Eliasmith coined the phrase semantic pointer[12] for
such a feature vector since it acts as both a semantic description
of the concept, which can be manipulated directly, as well as
a means of retrieving or accessing the sub-feature vectors from
which it was built, i.e., it is a ‘pointer’ to its ‘sub-features’. Vector
unbinding provides a means of retrieving the sub-feature vectors
from which it was built.

VSAs are also capable of supporting a large range of cogni-
tive tasks such as; (a) Semantic composition and matching; (b)
Representing meaning and order; (c) Analogical mapping; (d) and
Logical reasoning.

They are highly resilient to noise and they have neurologically
plausible analogues which may be exploited in future distributed
cognitive architectures. Consequentially they have been used in

natural language processing [13–15] and cognitive modeling [12,
16].

Our hypothesis is that a Vector Symbolic Architecture can
be used to define a rich and yet compact encoding that will
enable the representation of: service descriptions; decentralized
service and workflow discovery; distributed workflow execution.
This will enable the ability to perform semantic matchmaking
and reasoning on service descriptions and service compositions
(i.e., workflows).

In this paper we extend the approach taken in [17] and show
how binary VSAs can be used to achieve the following:

• Scaling through recursive binding (chunking): To address
scalability, we extend VSAs using a hierarchical vector bind-
ing scheme that is capable of representing multiple lev-
els of semantic abstraction (workflow and sub-workflows/
branches) into a single vector. We demonstrate empirically,
that this scheme can scale to tens of thousands of vectors
while maintaining semantic matching, which is adequate for
representing most workflows.

• Encoding workflows: We discuss and describe how VSA
vectors in the form of role-filler pairs can be used to success-
fully encode both functional and QoS/QoE components of
service descriptions. In addition we show how such service
descriptions can be encoded via chunking to encode very
large sequences of services.

• Representing workflow primitives: We extend the encod-
ing scheme to support directed acyclic graph (DAG) work-
flows having one-to-many, many-to-many, and many-to-
one connections.

• Distributed discovery and orchestration: We show how
our VSA encoding scheme can be used for distributed dis-
covery and orchestration of complex workflows. Workflow
vectors are multicast to the network and participating ser-
vices, extended with a simple cognitive layer that can in-
terpret and exchange the vectors, compute their own com-
patibility and offer themselves up for participation in the
workflow. We show how a delayed response mechanism,
based on the degree of semantic match, can be used for
selection of the best available micro-service for a particu-
lar workflow step based on both functional and QoS/QoE
requirements while minimizing the bandwidth required for
negotiation and selection of such.

The rest of the paper is structured as follows: Section 2 de-
scribes related work on QoS and QoE, time-critical systems and
workflows; Section 3 presents an introduction to VSA mathe-
matical operations and VSA structures; Section 4 describes and
discuses how VSA can be used to build semantic representa-
tions of services and their QoS; Section 5 outlines how VSA
can encode complex workflows and explains how decentralized
workflow execution is performed; Section 6 describes an archi-
tecture for adding a cognitive service layer to existing services
and Section 7 discusses the implementation details of the ar-
chitecture; Section 8 describes the test-cases used to evaluate
of our VSA workflow architecture; Section 9 describes the out-
come of the test-case evaluation; Section 10 details an empirical
experiment showing that the binding method supports seman-
tic comparison of high-level workflow vectors containing many
thousands of sub-feature vectors; Finally, Section 11 concludes
with a short summary and a discussion of the future directions
of this research.

72 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

2. Related work

2.1. Service matchmaking and optimization

With the proliferation of Web service applications, the need
for methods to allow consumers to differentiate among providers
of Web services was needed. The approaches adopted generally
have involved identifying metrics relating to a service provider’s
claimed Quality of Service (QoS), and from a consumer’s point
of view, their subjective Quality of Experience (QoE) [18]. Gen-
eral QoS metrics such as Number of Processors, Memory size,
Time-to-Execute, and Reliability (up-time) help consumers make
informed decisions. For eCommerce environments, QoS metrics,
such as Cost of Service, Compensation Rate, and Penalty Rate are
considered paramount because they directly affect a consumer’s
bottom line [18,19].

QoE metrics such as Service-Ranking are more difficult to
quantify and collect since they are metrics measured from the
consumers’ perspective and are often subjective. In transient
edge environments, the lack of a queryable central repository
for collecting such metrics makes these ‘traditional’ QoE metrics
difficult to conceptualize and so we focus mainly on supporting
QoS metrics in this paper. However, we discuss the idea that
repeated successful participation in a distributed workflow by a
component service may be a useful alternate analog of QoE in
edge environments.

The majority of existing time-critical systems store such QoS
and QoE attributes in centralized repositories that require a sta-
ble endpoint and typically offer matchmaking and optimization
algorithms which are also managed centrally. As an example,
the ATLAS experiment at CERN uses the TAG Service Catalog
to collect QoS and QoE metrics from the various searches and
data retrieval services sites [20]. A formal ontology is used to
define the ATLAS QoS and QoE metrics and a multi-objective
optimization algorithm is used with those metrics to resolve any
conflicting requirements and to enable distributed service load
balancing to be achieved [21]. In [19], an algorithm for normaliz-
ing multiple QoS, QoE metrics into a single value is described. The
individual metrics along with the normalized QoS and QoE score
are published in a central registry. Both [19] and [21] rely on a
such centralized view for the QoS and QoE calculations, however
time critical services operating in a MANET type environment
must determine their utility based solely on local information.
This requires new methods for computing similar normalized QoS
and QoE metrics from local knowledge.

2.2. Time-critical systems

Time-critical systems generally rely on a global view and
central management. For example, ARCADIA [22] offers centrally
managed multi-infrastructure deployment. MODAClouds [23] en-
ables the development of time-critical cloud applications but does
not support software defined networking. However, SWITCH –
the Software Workbench for Interactive, Time-Critical and Highly
self-adaptive applications – provides a full stack solution to sup-
port the entire lifecycle of time-critical applications, and associ-
ated QoS and QoE constraints. SWITCH provides a Web program-
ming workbench that can be used to orchestrate an application
as a set of components and connections that specify QoS and
QoE constraints, along with planning and runtime monitoring en-
gines that can deploy cloud applications. It also enables runtime
application reconfigurability in order to adapt to changing condi-
tions. SWITCH is designed for cloud environments and provides a
centralized coordinator for the deployment, but has a decentral-
ized architecture for monitoring, with one monitoring component
being deployed per application. SWITCH offers an interchange

format (i.e., TOSCA) that is similar to our VSA model in that it
provides a single format for storing application dependencies, and
QoS and QoE attributes for passing around between the various
parts of the system; however, it differs from VSA because it is
a centralized model with reliance on a TCP-based infrastructures
and it does not support semantic matching capabilities.

2.3. Workflows

Workflows provide a robust means for describing applica-
tions consisting of control and data dependencies along with the
logical reasoning necessary for distributed execution. For fixed
networks, there have been a wide variety of workflow systems
developed [24–33]. A scientific workflow is a set of interrelated
computational and data-handling tasks designed to achieve a
specific goal. It is often used to automate processes which are
frequently executed, or to formalize and standardize processes.
On the other hand, on-demand distributed analytics workflows
for general collaborative environments need spontaneous discov-
ery of multiple distributed services without central control [6].
Applying the current state-of-the-art workflow research to such
dynamic environments is impractical, if not impossible, due to the
difficulty in maintaining a stable endpoint for a service manager
in the face of variable network connectivity.

The authors of the decentralized workflow system – Newt –
have observed similar technical challenges [34]; Newt addresses
such issues for dynamic heterogeneous wireless networks. Newt
is capable of processing distributed complex causal processing
and interactions—in [34], the authors demonstrate this by an
orchestration of William Shakespeare’s play, Hamlet, constructed
as a decentralized workflow, in which the individual actors are
services that are distributed across a wireless network and con-
verse by messages communicated between one actor and another
as the play progresses. Our work differs because Newt does
not provide discovery or semantic matchmaking capabilities, and
cannot support QoS and QoE to support the coordination of time-
critical cooperative workflows. In Section 8.1, we use the Hamlet
play to compare and contrast our approach.

3. Vector symbolic architecture, basic operations

VSAs use hyper-dimensional vector spaces in which the vec-
tors can be real-valued, such as in Plate’s Holographic Reduced
Representations (HRR) [7], typically having N dimensions (512 ≤

N < 2048), or they can be large binary vectors, such as Pentti
Kanerva’s Binary Spatter Codes (BSC) [9], typically having N ≥

10,000. For the work here, we have chosen to use Kanerva’s BSC
but we note that most of the equations and operations discussed
should also be compatible with HRRs [16].

Typically, when using BSC, a basic set of symbols (e.g., an
alphabet) are each assigned a fixed, randomly generated hyper-
dimensional binary vector. Due to the high dimensionality of the
vectors the basic symbol vectors are uncorrelated to each other
with a very high probability. Hence, they are said to be atomic
vector symbols [9]. Vector superposition is then used to build
new vectors that represent higher level concepts (e.g., words)
and these vectors in turn can be used to recursively build still
higher level concepts (e.g., sentences, paragraphs, chapters...).
These higher level concept vectors can be compared for similarity
using a suitable distance measure such as Normalized Hamming
Distance (HD).

HD is defined as the number of bit positions in which two
vectors differ, divided by the dimension N of the vector. When
setting bits randomly, the probability of any particular bit being
set to a 1 or 0 is 0.5; hence, when generating very large random
vectors, the result will be, approximately, an equal, 50/50, split of

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 73

1s and 0s distributed in a random pattern across the vector. Thus,
when comparing any two such randomly generated vectors, the
expected HD will be HD ≈ 0.5. Indeed, for 10 kb binary vectors,
the probability of two randomly generated vectors having a HD
closer than 0.47 (i.e., differing in only 4700 bit positions instead
of approximately 5000) is less than 1 in 109 [9, page 143]. For
the same reason; atomic vectors can be generated as needed, on
the fly, without fear that the newly generated random vector will
be mathematically similar to any existing vector in the vector
space. Further, by implication, when using HD on BSC to test for
similarity, a threshold of 0.47 or lower implies a match has been
detected with a probability of error ≤ 10−9. A threshold of 0.476
or lower implies a match with a probability of error of ≤ 10−6.
Thus, in our experiments, we used 0.47 as the threshold.

For BSCs, superposition is archived using bitwise majority vot-
ing, a form of vector addition [9]. Simply put, for any particular
column of bits in the sum, the majority wins; ties are broken
randomly. Mathematically, when summing n vectors V , for any
bit position i, set the corresponding output bit Xi as follows,

X[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if (
n∑

j=1

Vj[i])/n > 0.5

0, if (
n∑

j=1

Vj[i])/n < 0.5

random, if (
n∑

j=1

Vj[i])/n = 0.5

(1)

The resulting vector is of equal size to its sub-feature vectors and
represents the lossy superposition of these components such that
each vector element in the result participates in the representa-
tion of many entities, and each entity is represented collectively
by many elements of the resultant vector [16].

If two high level concept vectors contain a number of similar
sub-features, such vectors are said to be semantically similar,
for example, we can create compound objects analogous to data
structures as follows:

Person1v = Johnv + Charlesv + 55yrsv + T2Diabeticv
Person2v = Lucyv + Charlesv + 55yrsv + T2Diabeticv
Person3v = Gregv + Charlesv + 34yrsv + T2Diabeticv

where + is defined as the bitwise majority vote operator.
HD can be used to compare such vectors without unpacking
or decoding the sub-features. Using HD to compare Person1v

1

with Person2v will give a match since they have 3 common
sub-features. Also, Person1v and Person2v are more similar to
each other than they are to Person3v . An issue arises, however,
when using superposition to build compound vectors in this way
because such compound vectors behave as an unordered bag of
features. Thus, if we have,

Person4v = Charlesv + Smithv + 55yrsv + T2Diabeticv
Then, Person4v would be equally similar to Person1v as is Person2v

despite the obvious difference in the record.
In order to resolve such issues, VSAs employ a binding operator

that allows vector values such as Charlesv and 55yearsv to be
associated with a particular field name, or role, within the data
structure; here we are using field name in the conventional sense
used for data structures—i.e., it is the name of a subfield within
a data structure. Role is an alternate description of the same
and is more easily understood as a conventional variable name.

1 Throughout this text, a symbol having suffix v (Xv) depicts a vector that
represents a value; a symbol having suffix r (Yr) represents a known atomic,
unique, role vector.

For example, the variable deposit_amount might play the role of
dollars being deposited in a banking transaction program.

When an atomic role vector is bound to a vector value this
results in a role-filler pair which is analogous to variable assign-
ment in conventional programming. For example, the statement
deposit_amount = 300 is said to bind the value 300 to the variable
deposit_amount . In a similar way, feature values such as Charlesv
can be bound to a role vector and detected or extracted from the
role-filler pair vector using an inverse binding operator. Bitwise
XOR is used for both binding and unbinding with BSC because
it is its own inverse—i.e., BSC is commutative and distributive
over superposition as well as being invertible [9, page 147]. This
means that both roles and fillers can be retrieved from a role-
filler pair without any loss. For example, if Z = X · A then
X · Z = X · (X · A) = X · X · A = A since X · X = 0 (i.e., the zero
vector) where ‘·’ represents the bitwise XOR operator. Similarly,
A · Z = X .

Due to the distributive property the same method can be used
to test for sub-feature vectors embedded in a compound vector
as follows:

Z = X · A + Y · B (2)

X · Z = X · (X · A + Y · B) = X · X · A + X · Y · B (3)

X · Z = A + X · Y · B (4)

Examination of Eq. (4) reveals that vector A has been exposed,
thus, if we perform HD(X ·Z,A) we will get a match. The second
term X · Y · B is considered noise because X · Y · B is not in our
known vocabulary of features or symbols.

When a role and value are bound together this is equivalent
to performing a mapping or permutation of a vector’s value ele-
ments within the hyper-dimensional space so that the new vector
produced is uncorrelated to both the role and filler vectors. For
example, if V = R · A and W = R · B then R, A and B
will have no similarity to V or W . However, comparing V
with W will produce the same match value as comparing A with
B. In other words, if A is closely similar to B then V will be
closely similar to W because binding preserves distance within
the hyper-dimensional space [9, page 147].

We note that binding with atomic role vectors can be used
as a method of hiding and separating values within a compound
vector whilst maintaining the comparability between compound
vectors. This is an important property and can be used to en-
code position and temporal information about sub-feature vec-
tors within a compound vector. It also explains why we can state
that X · Y · B from Eq. (4) above will not match to any known
symbol, however, note that we can get back to B from X ·Y ·B by
simply performing the appropriate XOR—i.e., B = ((X ·Y ·B)·X)·Y .

We can now rephrase our person record in order to differenti-
ate sub-features within the record, for example, we can formulate
Person1v as:

Person1v = FNr · Johnv + SNr · Charlesv + Ager · 55yearsv
+ Healthr · T2Diabeticv

This clearly resolves the incorrect matching between Person1v

and Person2v with Person4v. To test Person1v for the surname
Charlesv we perform,

HD(SN r · Person1v, Charlesv) (5)

For 10 kb vectors, if the result of Eq. (5) is less than 0.47
then the probability of Charlesv being detected in error is less
than 1 in 109 [9, page 143]. If our person record is distributed
over a network we could transmit or multicast the request vector
Z = SN r ·Charlesv +Ager ·55yearsv to the network. Any listening
distributed micro-service, or node in a Parallel Distributed Pro-
cessing network, having person records containing the surname

74 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

Charlesv and age 55yearsv can check for a match and respond or
become activated.

Since binding and superposition are such simple operations,
we note that a key advantage of this approach is that complex
representations of services can be built using very simple knowl-
edge engineering approaches as described in Section 4. Further,
simultaneous comparisons of complex objects are reduced to a
single Hamming Distance calculation which greatly simplifies ser-
vice discovery/match making as compared to traditional ontology
based approaches.

4. Building semantic vector representations of services and
QoS

Having shown that we can use VSAs to represent data struc-
tures, we now consider how to represent service descriptions and
their corresponding QoS as symbolic vectors. Reviewing that X r
represents an atomic role vector and Y v a value vector and that
X r · Y v is a role-filler pair that binds the category X r to the
filler value Y v and enables later matching and retrieval of values
by specific categories, our current scheme employs the following
format:

Zx = Servr · Servv + Resourcer · ResPv + QoSr · QoSv (6)

where
• Zx is the resultant composite service vector;
• Servr · Servv is the vector representation of the functional

description of the service;
• Resourcer · ResPv is a vector embedded into a request that

points to any needed external resources. This is not part of
a service’s self-description but allows a matching service to
locate any external resources specified by a requester; and

• QoSr · QoSv is a vector representing either the requester’s
QoS requirements or the current QoS value for a specific
service.

4.0.1. Building the description vector
Servv is itself comprised of symbolic vectors that semantically

describe the essential elements of a service, in terms of role
and filler pairs that are needed to find a match. To illustrate
how this is achieved we use an example of relatively simple
service description comprising service name, inputs, outputs, and
a functional description of the service, for example:

Servv = Inputsr ·Inpv+Namer ·Namev+Descr ·Descv+Outputsr ·Outv

(7)

Where
• Inputsr · Inpv describes the required inputs;
• Namer · Namev a vector encoding of the service name;
• Descr · Descv a vector encoding of the service description2;

and
• Outputsr · Outv describes the required outputs.

Again the filler component of these vectors can be comprised
of other symbolic vectors. In considering Inpv, Outv we want
to encode these values so that we get flexible matching. For
example, if our service, Zx, has three float inputs and one bitmap
input we might encode this as:

Inpv = Oner ·Floatr +Twor ·Floatr +Threer ·Floatr +Oner ·BitMapr

(8)

2 Currently, we can build vector representations using JSON or XML
description of services.

Oner , Twor , Threer are atomic role vectors representing numbers.
This simple scheme seems adequate for representing input and
output descriptions because micro-services typically do not have
a large number of inputs and outputs. More complex input and
output descriptions can be encoded via embedding further role-
filler pairs. The above vector is a bag representing the inputs that
enables flexible matching. If the input part of a request vector is
encoded as:

InpReqv = Oner · Floatr + Onerv · BitMapr

then the input description for service Z would constitute a match
and provided that the other sub-features matched sufficiently,
including its vector encoded QoSv, then the service could become
activated. Note that a different service having exactly one float
and bitmap input would better match the input specification.

4.0.2. Building the quality of service vector
For QoS, we employ a slightly different encoding scheme.

For example, a QoS metric often has a requirement to meet a
certain a minimum or maximum value for the metric in question.
An example of a static QoS metric might be that the service
must possess a minimum of four CPU cores. A simple way to
encode minimum or maximums, so that they are semantically
comparable, is in the form of a bag of acceptable values. In the
number of cores example, to specify four or more cores we can
encode:

CpuCoresr · (Fourr + Fiver + Sixr + · · · + MaxCoresr)

Therefore, an individual service that encodes its CpuCores QoS
as CpuCoresr · Fourr or CpuCoresr · Eightr would be a match.
For time-critical distributed applications, available compute power
might be a better QoS and could be a normalized value combining
number of CPUs and GPUs, memory, clock-speed along with the
current load. In order to facilitate semantic comparisons of such
a metric, a service calculating its value would then quantize it
to the nearest higher or lower value depending on if the ex-
pected comparison is a max or min requirement. Dynamic QoS
metrics such as battery life percentage or available runtime can
also be encoded in this way. For example, aggregate bandwidth,
obtained by each service actively monitoring its local bandwidth
with pings, might be quantized to (1 Kb, 10 Kb, 100 Kb, 1 Mb,
10 Mb, 100 Mb, 1 Gb)/s. Such values are then converted to an
enumeration thereby allowing us to encode ranges that represent
different underlying values with the same role vectors. Thus, a
minimum bandwidth QoS requirement of, say, 100 Mb/s (100 Mb
is in 6th position in the above list) would be encoded as follows:

Bandwidthr · (Sixr + Sevenr)

The above describes our current method for encoding service
descriptions and QoS as BSC vectors. VSA superposition allows us
to combine any set of individual functional and QoS parameters
into a bag of features for simultaneous comparison and matching
enabling a far more flexible approach than the ontology-style
approach. Both [19] and [21] describe methods that can be used
to combine multiple QoS metrics into a single normalized value
that reflects the weighting given to each individual metric. We
are currently investigating how best to encode this type of metric
using our VSA representation.

5. Describing workflows using vector symbolic architecture

As discussed in Section 3, VSAs employ two operations—
i.e., binding and superposition. Binding is used to build role-filler
pairs which allow sub-feature vectors to remain separate and
identifiable (although hidden) when bundled into a compound

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 75

Fig. 1. Vector chunk tree, chunking proceeds from the bottom up.

vector via superposition. For BSCs, binding is a lossless operation,
while superposition is lossy. Kleyko [10, Paper B, page 80] supplies
a mathematical analysis of the capacity of a single compound
vector such that it can be reliably unbound, i.e., its sub-feature
vectors can be reliably detected within the compound vector.
This analysis shows that for 10 kb binary vectors the upper limit
of superposition is 89 sub-vectors. To encode large workflows
with more complex service descriptions we require a method for
combining more vectors into a single vector whilst maintaining
the semantic matching properties.

Chunking is a recursive binding method that combines groups
of vectors into a single compound vector. The resultant vectors
are then used as the basis for further chunking operations, thus,
recursively producing a hierarchical tree structure as shown in
Fig. 1. Chunking proceeds from the bottom up so that each node
in the tree is a compound vector encapsulating the child nodes
from the level below. Various methods of recursive chunking
have been described [7,9,10,16]. However, such methods suffer
from limitations when employed for multilevel recursion: some
lose their semantic matching ability even if only a single term
differs, others cannot maintain separation of sub-features for
higher level compound vectors when lower level chunks contain
the same vectors [9, page 148] [7, pages 61, 72, 74–para2] [10,
Encoding Sequences, page 14]. We addressed these issues and de-
scribe a novel recursive encoding scheme that provides semantic
matching at each level by combining two different methods of
permuting vectors.

In our scheme, the terminal nodes are worker services, the
higher level nodes are concepts used to apply grouping to parts
of the workflow. The chunking process occurs from the bot-
tom up so that the bottom level nodes, {A1,A2,A3, . . .} are
combined via a functional partitioning scheme into a concept
node, e.g., B1. These higher level nodes – referred to as clean-
up memory [7,9,10] – are still services but they simply provide
a proxy to the worker services to be unbounded and executed;
thus, they are typically co-located with the first service of the
sub-sequence they represent, e.g., B1 can reside on the same
compute node as the A1 service and hence, when B1 becomes
activated, there is no need for a network transmission in order for
B1 to activate its first worker service, A1. In a centralized system,
Clean-up memory is typically implemented as an auto-associative
memory. For our distributed workflow system, clean-up memory
is implemented by the services themselves, which are distributed
throughout the network, matching and resolving to their own
vector representations.

Recchia and Kanerva point out that for large random vectors,
any mapping that permutes the elements can be used as a binding
operator, including cyclic-shift [15]. The encoding scheme shown
in Eq. (9) employs both XOR and cyclic-shift binding to enable
recursive bindings capable of encoding many thousands of sub-
feature vectors even when there are repetitions and similarities

between sub-features:

Zx =

cx∑
i=1

Z i
i ·

i−1∏
j=0

p0
j + StopVec ·

i∏
j=0

p0
j (9)

Omitting StopVec for readability, this expands to,

Zx = p0
0 · Z1

1 + p0
0 · p0

1 · Z2
2 + p0

0 · p0
1 · p0

2 · Z3
3 + · · · (10)

Where
• · is defined as the XOR operator;
• + is defined as the Bitwise_Majority_Vote/Add operator;
• The exponentiation operator is redefined to mean cyclic-

shift—i.e., positive exponents mean C shift_right , negative ex-
ponents mean C shift_left . Note that cyclic shift is key to
the recursive binding scheme since it distributes over +

(i.e., bitwise majority addition) and · (i.e., XOR) hence it
automatically promotes its contents into a new part of the
hyper-dimensional space; thus, keeping levels in the chunk
hierarchy separate;

• Zx is the next highest semantic chunk item containing a
superposition of x sub-feature vectors. Zx chunks can be
combined using Eq. (9) into higher level chunks. For exam-
ple, Zx might be the superposition of B1 = {A1,A2,A3, . . .}
or C = {B1,B2,B3, . . .};

• {Z1, Z2, Z3, . . . , Zn} are the sub-feature vectors being com-
bined for the individual nodes of Fig. 1. Each Zn itself can
be a compound vector representing a sub-workflow or a
complex vector description for an individual service step,
built using the methods described in Section 4;

• p0, p1, p2, . . . are a set of known atomic role vectors used
to define the current position or step in the workflow.

• cx is the chunk size of vector Zx, i.e., the number of sub-
feature vectors being combined; and

• StopVec is a role vector owned by each Zx that enables it
to detected when all of the steps in its (sub)workflow have
been executed.

5.1. Ordered unbinding of high-level concept vectors

Eq. (9) is used recursively to build a workflow request, con-
ceptually creating a hierarchical chunk tree as shown in Fig. 1.
The resulting output is a set of VSA vectors representing the non-
terminal nodes, {C,B1,B2,B3, . . .}, each of which is a single
VSA vector, Zx that is itself a compound vector representing the
ordered sequence of its own children.

C = p0
0 · B1

1 + p0
0 · p0

1 · B2
2 + p0

0 · p0
1 · p0

2 · B3
3 + · · ·B4

4

+ p0
0 · p0

1 · p0
2 · p0

3 · p0
4 · C5

StopVec

B1 = p0
0 · A1

1 + p0
0 · p0

1 · A2
2 + p0

0 · p0
1 · p0

2 · A3
3 + · · ·A4

4

+ p0
0 · p0

1 · p0
2 · p0

3 · p0
4 · B15

StopVec

B2 = p0
0 · A1

5 + p0
0 · p0

1 · A2
6 + p0

0 · p0
1 · p0

2 · A3
7 + · · ·A4

8

+ p0
0 · p0

1 · p0
2 · p0

3 · p0
4 · B25

StopVec

B3 = · · · etc.

The reason multiple p vectors are XOR chained together to define
a single position within the workflow is due to the distributive
property of XOR which operates on every term for each unbind-
ing. Thus, the use of the chained p vectors when constructing the
workflow vector allows for easier iterative unbinding at execution
time using Eq. (13), discussed below. Note that the distributive
affect of XOR can also be seen in how the T vector becomes
permuted during unbinding, see Eq. (12) and Eq. (14).

76 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

The generalized version of the concept vectors, {C,B1,
B2, . . .}, is shown in Eq. (10). Note that, in this form every sub-
step Zn is permuted by at least one p vector which effectively
hides each Zn (the p vector permutation ensures that each com-
bined roll-filler pair is orthogonal to the ’self-description’ vectors
built by each VSA service listening for work on the network). The
workflow is discovered and orchestrated on the distributed ser-
vices by, essentially, repeatedly unbinding the workflow vector,
using Eq. (11) or Eq. (13), before retransmitting it to the network.

Referring to Fig. 1, control first passes down the chunk tree,
i.e., from C → B1 → A1 using Eq. (11), before traversing
horizontally, A1 → A2 → A3 → A4 → B1_StopVec) via
Eq. (13). At this point B1 sees its StopVec and employs Eq. (13)
to activate B2 which then activates its sub-workflow via Eq. (11)
and so forth.

Starting a (sub)workflow :

Z ′

1 = (p0
0.(T + Zx))

−1
(11)

Z ′

1 = p−1
0 .T−1

+ Z0
1 + p−1

1 .Z1
2 + p−1

1 .p−1
2 .Z2

3 + · · · (12)

Traversing horizontally :

Z ′

n+1 = (p−n
n . Z′

n)
−1 (13)

Z ′

2 = (p−1
1 .Z ′

1)
−1

= p−1
1 .p−2

0 .T−2
+ p−1

1 .Z−1
1 + Z0

2 + p−2
2 .Z1

3+

(14)

When starting a (sub)workflow using Eq. (11) notice that Z1
has been exposed, as shown in Eq. (12). That is, Z ′

1 is effectively
a noisy copy of the currently required workflow step, Z1, while
at the same time it is also a ‘masked’ description of the full
(sub)workflow request. Thus, listening services can only match
to Z ′

1 if they are semantically similar to Z1. Note that, the act
of matching gives a service no other information; for example, it
cannot deduce by matching alone whether the match occurred
at step 1 or step 30 of the workflow. Hence, the introduction of
the T vector in Eq. (11) which is used to enable calculation of a
node’s position within the workflow.

The T vector is a known atomic role vector. It is added to a high
level node’s, clean, (sub)workflow vector, Zx, before the node uses
Eq. (13) to expose its first workflow step for transmission to the
network. We note that, Eq. (11) is just a special version of Eq. (13).
Notice in Eqs. (12) and (14), how the T vector becomes permuted
in a predictable way. Once the currently active service has com-
pleted its own workflow step it uses the current permutation
of the T vector to calculate its position n within the received
request vector. It can then activate the next workflow step in
the request by repeating the unbind operation on the request
vector, generalized in Eq. (13). Thus, the workflow proceeds in a
completely decentralized manner whereby each node is activated
when its preceding node, or parent, unbinds the currently active
chunk vector, creating the next request vector, which it then
multicasts to the network for matching and processing.

Alternative mechanisms for determining the position of the
service are possible but these require each service to recursively
unbind all vectors that it receives to determine if it is part of
the requested workflow. This significantly increases the work that
each service has to perform which is undesirable. However, such
a mechanisms may offer some advantages as discussed in the
following section.

5.2. Pre-provisoning and learning to get ready

From Eq. (13) we see that each workflow step is exposed
by iterative application of p vector permutations. Non-matching
services can use this method to peek a vector enabling antici-
patory behavior such as the pre-provisioning of a large data-set

or changing a device’s physical position (e.g., drones). Obviously,
services can peek multiple steps into the future and could learn
how early to start pre-provisioning. This ability to anticipate
could be used to perform more complex, on-line, utility op-
timization learning. For example, a drone monitoring multiple
workflows may be able to understand that it will be needed in
10 min to perform a low priority task and in 15 min for a high
priority task. Under these circumstances it may choose not to
accept the low priority task.

5.3. Alternate to QoE for distributed transient environments

As can be seen in Eqs. (12) and (14), when a particular work-
flow step is exposed for discovery and execution by unbinding,
it is ‘surrounded by’ (i.e., it is in superposition with) the rest of
the workflow steps which, as can be seen, are permuted in a
specific way depending on the position of currently exposed/ac-
tive service in the workflow. We can think of this as the current
permutation of the workflow vector and it constitutes a context
for the workflow step currently in focus. We are investigating the
use of these contexts as an analog of QoE. The idea is that when a
services successfully participates in a workflow it will remember
the permutation state of the workflow vector via which it was ac-
tivated. If a particular service successfully participates in the same
workflow repeatedly; these workflow context memories can be
used to increase the particular service’s utility with respect to the
specific workflow. We suggest that this might be an interesting
analog of traditional QoE measures which we believe would be
almost impossible to measure and collect in distributed transient
environments. The idea is that a service that often helps complete
a particular workflow should be seen as a more valuable partner
by the other service steps, hence an analog of QoE.

6. Decentralized architecture for time-critical applications

This section describes an architecture that enables linear or
Directed Acyclic Graph (DAG) workflows, comprising multiple
interconnected services, to be configured with no central point
of control. As discussed in Sections 4 and 5, a workflow can be
constructed as a composite symbolic vector that is itself built
from the symbolic vectors that describe the component services
in terms of capability and utility, and from symbolic vectors
that describe the links between the component services. In Sec-
tion 8 we describe how more complex workflows are repre-
sented. The decentralized architecture requires mechanisms for
the construction and transmission of these vectors and for ser-
vices to be ’cognitively enabled, so that they can participate in any
required workflow. Our architectural approach to this challenge
is achieved by adding to existing component services a cognitive
layer, using the symbolic vector representation, that enables ser-
vices to be self-describing and to self-organize into the requested
distributed workflow.

At a high level, the architecture supports the automatic gen-
eration of an application vector (i.e., services and workflow) from
an existing service/workflow description (e.g., JSON or XML). To
construct the distributed application, an initiator service unbinds
and transmits the application vector from anywhere in the net-
work (e.g., using broadcast or multicast). The cognitive layer for
each of the distributed service generates and maintains its own
description vector based on the local service description and its
current QoS (i.e., services are dynamically self-describing). The
services then listen for the transmitted application vectors and
reactively respond by performing logical vector operations on
the received vectors. If the service vector semantically matches
a received vector, it is a potential match but there may be other
similar services that also match. To ensure that the best service is

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 77

Fig. 2. Overview of the components for time-critical framework.

selected and to minimize the number of services that respond, the
architecture makes use of a delayed response timer mechanism.
This ensures that services with the highest utility respond first,
suppressing the responses of alternative services with a lower
utility. To avoid problems such as race conditions where more
than one candidate service responds a local arbitration mecha-
nism is used to select the service with highest utility. If a service is
selected, it may perform some local function and when completed
it unbinds the received vector and re-transmits. This will result in
other services reactively responding to the new unbound vector.
In this way control is passed around the network of distributed
services.

To achieve these vector comparison and exchange objectives,
the cognitive service layer comprises the following components:

1. Message Listener and buffer for received symbolic vector
messages;

2. Symbolic Vector Memory to store vectors required for
various logical operations;

3. Comparator to compute semantic similarity between sym-
bolic vectors;

4. VSA Reasoner to perform logical operations on the sym-
bolic vectors;

5. Delay Response Timer to control if and when new sym-
bolic vectors are to be transmitted; and

6. Message Transmitter to transmit new symbolic vectors.

These components are described in the next subsections and
the relationship of the components are given in Fig. 2.

6.1. Message Listener and buffer

A cognitive enabled service has a capability to listen to the
transmission of vectors from other services (e.g., in a multicast
group) and store these messages into a temporary buffer. The
decision to store a message in the buffer may require the received
message to be compared with one or more vectors in the VSA
memory using the Comparator component. An example of this
would be the typical case of a service that only responds to
semantic vectors that semantically match the specific service
description vector.

6.2. Symbolic Vector Memory

The Symbolic Vector Memory is used to store vectors that
are to be used for any operation required by the cognitive layer
of the specific service. This would always include the service
description vector and would typically include specific vectors
used to support vector binding and unbinding operations or to
support ‘clean-up memory’ that we describe in Section 5.1. In
other examples the memory is used to store application vec-
tors which when received on previous occasions resulted in the
service being selected. These vectors essentially represent the
context in which the service was historically invoked and these
can be used to increase the utility (i.e., QoE) of the service if the
same workflow is requested at a later time.

6.3. Comparator

To semantically compare vectors, we use a Hamming distance
measure and declare a match if the Hamming distance is within
particular ranges. The comparator uses the computed Hamming
distance to determine an appropriate time delay based on the
degree of the semantic match. The semantic match time delay,
t sm, is a quantized value in steps of ∆t (usually 10 levels) where
a perfect match produces no delay and a marginal match near the
Hamming threshold produces the maximum delay say 10 × ∆t .

6.4. VSA reasoner

The VSA Reasoner performs various operations on received
symbolic vectors that exceed the Hamming threshold. These op-
erations depend on the type of vector that is received. For ex-
ample, in the case of receiving an unbound workflow vector that
matches the service name vector, the VSA reasoner may simply
unbind the received vector and pass it to the message transmit
buffer. In other cases, the response to the match may be to
transmit a clean version of the noisy vector that was received
(clean-up memory). Additionally, the reasoner can be tasked to
‘peek’ a received workflow vector and to determine if and when
the current service may be called in order to pre-provision the
service. This task can also include listening to the progress of a
particular workflow as flow control is passed among the compo-
nent services to ensure that the current service has reached its
maximum utility if and when it is invoked. The VSA Reasoner also
includes an important sub component called the Vector Encoder
which is used to compile symbolic vectors that semantically de-
scribe the supported service and its current utility. These vectors
can themselves be constructed from other symbolic vectors using
the hierarchical chunking scheme described in Eq. (9).

6.5. Delay response timer

There may be multiple services that could respond to the same
workflow request. The purpose of the Delay Response Timer is to
ensure that only services with the best symbolic match and hence

78 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

the highest utility to perform the task will multicast a response
message thereby saving bandwidth, as described in 7.2. The use
of a time delay to select resources with the highest utility has
previously been used successfully to control the connectivity and
growth of a dynamic distributed database architecture known
as the Gaian Database [35,36]. How this mechanism operates
can be understood from a simple example of a service that is
attempting to offer itself as a candidate to be included in a
requested workflow. To do this, it needs to determine that it
semantically matches the requested service and then be the first
matching service to react by transmitting a Response vector. On
reception of the workflow vector the service uses the Comparator
to determine its degree of match and the corresponding time de-
lay t sm. The service must also have a particular utility to perform
the task which may be based on a number of factors such as
available power, the compute platform that it is operating on,
connectivity to other resources required for the task, and so on.
The service uses its utility to compute a second time delay tut
which ranges from zero where there is the highest utility rising
to ∆t where the utility is low but still adequate to compute the
task. If the utility is not sufficient then tut is essentially infinity
and the Delay Response Timer will not allow response vector to
be multicast. The Delay Response Timer now computes a total
delay of td = t sm + tut and stores this with the message in the
Message Transmit Buffer.

6.6. Message transmit buffer

The Message Transmit Buffer is tasked to transmit any mes-
sages stored in the message buffer after the corresponding time
delay period has elapsed. The proviso is that no other service
has transmitted the same message during the time delay period.
Therefore, during the time delay period, the Message Transmit
Buffer is compared with the Message Listener Buffer and if there
is a match then the corresponding message is removed from the
transmit buffer.

7. Implementation example

The architecture discussed in the previous section has been
implemented in our VSA platform in Python2. The VSA platform
has a modular architecture with several components that are
capable of being reused as plugins to other systems. The platform
is used to evaluate and demonstrate how symbolic vectors can be
automatically constructed from typical scientific workflow repre-
sentations and how these vectors can then be used to construct,
in a decentralized manner, the required workflow in an emulated
wireless network environment into which the cognitively enabled
services are randomly deployed.

• The Workflow Importer component imports a Pegasus
workflow description (DAX) file [37]. This is an, XML format,
multi-nested dictionary description of a workflow which
details each service node and its input output resources.
The Workflow Importer reads the DAX file into a python
dictionary. It then parses the dictionary and extracts the job
entries to create a list of vectors that represent each service
node in the DAX, the NodeVectors list. Similarly, it traverses
the child section of the DAX producing the EdgeVectors list,
a paired list of vectors representing the parent (output) and
child (input) connections of the workflow. The Workflow
Importer passes NodeVectors and EdgeVectors to the VSA
Creator.

• The VSA Creator is used to bind the lists of vectors into
a single vector, a reduced representation, of the workflow
using chunking. Chunking is performed bottom up so that

higher level vectors are produced as needed. These are re-
cursively rebound until the vector list is reduced to a single
vector value. The NodeVectors list and the EdgeVectors list
are combined separately producing two high level vectors,
the RecruitNodes vector and the ConnectNodes vector. The
VSA Creator then binds these two vectors together with
the Start vector into a single vector representing the entire
workflow, the WorkFlow vector. This WorkFlow vector and
all its associated sub-vectors are encapsulated in a chunk
tree object as per Fig. 1 which is then passed to the VSA
executor.

• The VSA Executor flattens the workflow by distributing
copies of all non-terminal chunk vectors into the terminal
(bottom level/worker) nodes. Non-terminal nodes are dis-
tributed to the first child of a parent node to decode the
first vector in a higher level vector. For robustness, the VSA
Executor can be made to distribute more than one copy of
the cleanup objects into other terminal node objects.

• The Cognitive Layer consists of the following sub-
components

– The VSA Reasoner is responsible for unbinding VSA
vectors and depending on the sub-features of what it
has received, it acts accordingly.

– The Comparator is a Hamming distance function that
performs the comparison of vectors to perform the
matching.

– Delay Response Time Engine is responsible for calcu-
lating the fitness function and initiates a delay timer,
based on the resulting utility.

• Messaging System which provides the communications in-
terface for transmitting and listening for vector communi-
cations to and from other nodes, along with internal buffers
for synchronization with the other system components.

• The Logging Component collects metrics as the workflow
runs to feed into external processors. Logging currently col-
lects a trace of the nodes and edges that are being processed
by the workflow.

• The Visualization Component takes the log output and
generates a DAG layout graph using Graphviz [38].

7.1. Control operations

The control of the initiation and subsequent passing of flow
control between the different cognitive layers follows a sequence
that is the same for all cognitive layers. The Initiator performs
a subset of the tasks of the cognitive layers to launch and ac-
knowledge the completion of a workflow task by performing the
following steps: (1) Compile the workflow vector Zx with a stop
vector Sx as the last vector element; (2) Transmit Zx; (3) Enter
collecting mode and listen for response vectors Rx; (4) If more
than one response, then arbitrate and transmit a continue vector,
RxCONT , to one of the responders ; (5) Listen for stop vector Sx;
and (6) On receipt of Sx, unbind and transmit to initiate the next
workflow step at the same semantic level and then terminate its
operation.

The current implementation of the Cognitive Service Layer
can operate in one of two modes. In the first or dynamic mode,
the workflow is required to instantiate and run the associated
services as the workflow unbinding progresses. This mode is
applicable to linear workflows. In the second or static mode the
vector unbinding is used to gather and connect the services into
a workflow configuration that is then initiated to perform the
required task. This is applicable to more complex workflows with
branching and merging requirements. In Sections 8.1 and 8.2

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 79

examples of both linear and complex workflow use-cases are
given.

7.2. Service selection by local arbitration

A major advantage of the VSA approach is the ability to dis-
cover and select services using semantic matching and we have
shown that this can extend beyond simple matches to include
measures of real time utility. Service selection therefore involves
selecting the correct service with the highest utility or, if the ser-
vice is not available, suggesting the nearest semantically match-
ing service. For time critical applications that need to be resilient
to changes in network connectivity robustness can be achieved by
distributing multiple copies of services throughout the commu-
nications network. Further, within the constraints of our target
environment – i.e., field operations in very transient, low band-
width MANETs – it is critical that we do not use unnecessary
bandwidth in order to obtain an optimal solution if a sub-optimal
solution meets the requirement. Using our delay-response mech-
anism largely addresses this by reducing the number of services
that respond, however network latency sometimes results in sit-
uations where multiple services, with a similar semantic match,
respond. A method of preventing race conditions in these circum-
stances is required. We have termed this process local arbitration.
It is described in Section 7.4, steps 4–8, Note that, while the
currently active service behaves as the final arbiter for services
that do send a match response, the process of local arbitration
is actually a distributed process. Matching services can and do
exclude themselves, as described in Section 7.4, steps 6 and 7,
without ever transmitting their match response.

In our implementation this is achieved as follows. Using ter-
minology from Eqs. (11) and (13), if the currently active service
is Z ′

n, then before transmitting the next service request, it enters
match collecting mode in order to arbitrate matches from all
nodes that reply within a tunable window of time. After the
interval expires the highest ranking responder is selected and
a continue message is broadcast by Z ′

n identifying the winner.
Since all communications is multicast, all services see all mes-
sages, and consequently the winning service continues and losing
services discontinue. To reduce communication overhead further
matching services delay their response by an interval inversely
proportional to their match value as described in Section 6.5.
Thus, better matches respond quicker. If a service sees a higher
match value before it has responded then it terminates without
sending a reply. Response and Continue vectors are encoded using
the currently active workflow vector as a tag-id as follows

Responsev = Responser · Z′

n + MyIDr · IDv + Matchr · Matchv

(15)

Continuev = Response1v (16)

7.3. Pre-provisioning

Although the current architecture does not support the type
of pre-provisioning described in Section 5.2 it would be possible
to add an extra step into the control operations between step
1 and 2 where on the receipt of any vector the layer unbinds
multiple times to determine if the local service name is part of the
requested workflow. If it is the case, then it can determine where
in the workflow it is going to be called and start to pre-provision.
When at some later time it receives the matching unbound vector
its utility will be higher and it will respond faster, making it more
likely that it will be the winning service.

7.4. Dynamic workflow control

In this subsection, we provide a step-by-step account of how a
workflow is instantiated as a result of the unbinding progresses.
The steps are as follows:

1. Compile local service vector Z s and utility vector Zu

2. Listen and receive Z ′

N

3. Compare service component of Z ′

N (i.e., Z ′

N · Servr) with
local service vector to compute the semantic match and
if there is a match compute time delay tsm based on the
Hamming distance. If no match return to listening for new
vectors.

4. Compare utility component of Z ′

N (i.e., Z ′

N ·Utilr) with local
utility vector and if a match compute time delay tut based
on the Hamming distance. If no match return to listening
for new vectors.

5. Compute response vector RN

6. Listen for RN equivalent vectors from other fitter services
for period td = tsm+ tut . If non heard, then transmit RN .

7. Listen for continue vectors RNCONT . If a continue vector
for an alternate service is heard, then return to listening
for new vectors.

8. If no continuation message is received after time-out pe-
riod, then return to listening for new vectors.

9. On receipt of a continue vector perform the local service
task. We note that this may be a null task or a task to run
a sub workflow as a new initiator or simply to perform an
action.

10. On completion of the local service task unbind the received
vector again to get Z ′

N+1 and transmit.

11. Listen for responses RN+1

12. Arbitrate the responses and issue continue vector RN+1

13. Return to listening for new vectors.

7.5. Static workflow control

In the static workflow mode steps 1–12 from the dynamic
mode are performed but rather than terminate at step 13 the
cognitive layer computes new semantic vectors that are a com-
bination of the current service name Z s and its position in the
unbound vector to essentially create a temporary service name
as a parent node or child node—the details of this are given in
Section 8.2. These vectors are stored in the memory and the
service listens for these vectors. On receipt of a parent or child
vector the steps 1–3 and 5–12 are repeated. Step 4 is not required
since the name is unique and only this service can respond. In
the case of receiving a child vector the layer also accesses the IP
address in the associated message and unicasts a ‘hello’ message
to the associated service to create a connection. The cognitive
layer than either listens for new requests, since its service can
simultaneously be part of multiple workflows, or it waits until the
service has completed the current workflow and then resumes
listening for new vectors with its original service name.

8. Test cases

In order to demonstrate the applicability and scalability of
our encoding scheme, we provide two use cases where we have
applied the VSA system to both linear and complex workflows.
We also provide an experimental evaluation for the correctness
and scalability of the proposed approach.

80 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

Fig. 3. Hamlet as a serial workflow.

Fig. 4. Montage workflow.

8.1. Dynamic mode linear workflow

To compare with alternative approaches such as those de-
scribed in [34], we have semantically encoded the entire text of
Shakespeare’s play Hamlet into this type of hierarchical semantic
vector representation. In this example the component services
at the lowest level are the 4620 unique words of the play; the
semantic level above are the individual stanzas spoken by each
character (not shown in the diagram); the level above this are
individual scenes of the play (e.g., A1S1, A1S2); next are the five
acts, A1–A5 and then finally a single 10 kb vector semantically
represents the whole play (Hamlet). A vector alphabet, a unique
vector per alphabet character, was used to build compound vec-
tors for each word-service in the play. The idea is that each
letter making up a word represents some feature of a service
description, i.e., analogous to the different input/output/name/de-
scriptions parts of a real world service. Thus, variable lengths
of words and similarity of spellings represent a mix of different
services of different complexity and functional compatibility. At
the next higher level sentences represent a more complex sub-
workflow, and so on. It is important to recognize that the higher

level vectors do semantically represent the recursive binding
from all the levels below. We use this fact to allow alternative,
semantically similar, service compositions to be invoked if the
best matching composition is not available. Fig. 3 shows the
word service where being invoked as an alternate to there which
was unavailable. Note also, that when where completes it au-
tomatically re-synchronizes to the original worflow because it
simply unbinds the next step from the original workflow vector
it received.

To simulate QoS matching we employed two random variables
representing current load and battery life. From a requesters point
the idea was that current load should be minimized and battery life
should be maximized so that we could try out our min/max idea
for encoding QoS as described in Section 4.0.2. Acceptable ranges
of values were randomly chosen when encoding service request
vectors and each services simulated its own QoS in the same
manner. Thus matching on functional as well as QoS criterion
was tested. Multiple copies of the individual component vectors
at each level are distributed in a communications network as
services and by multicasting the top level vector the whole play is
performed in a distributed manner with 29,770 component word
services being invoked in the correct order.

8.2. Static mode complex workflow

The workflow described in Section 8.1 is a simple linear se-
quence of services. In this section we describe how the vector
representation can be extended to more complex workflows such
as those created by the Pegasus workflow generator. Fig. 4 shows
a typical Pegasus workflow (the Montage Workflow) having mul-
tiple connections between nodes with branching and merging of
connections.

In order to represent such DAGs we modify our linear scheme
by employing a three phase process comprising the following:

1. A recruitment phase, where the required services are dis-
covered, selected and uniquely rename themselves;

2. A connection phase, where the selected services connect
themselves together using the newly generated names; and

3. An atomic start command indicates to the connected ser-
vices that the workflow is fully composed and can be
started.

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 81

<job name="mProjectPP" ... id="ID00000"> ... </job>
<job name="mProjectPP" ... id="ID00001"> ... </job>

:
<job name="mDiffFit" ... id="ID00004"> ...</job>
<job name="mDiffFit" ... id="ID00005"> ...</job>

:
<child ref="ID00004">
<parent ref="ID00000"/>
<parent ref="ID00001"/>

</child>
<child ref="ID00005">
<parent ref="ID00000"/>
<parent ref="ID00001"/>

</child>

Listing 1: DAX snippet

The example workflow in Fig. 4 can be represented as a symbolic
vector as follows:

WP = p00
· (RecruitNodes)1 + p00

· p10
· (ConnectNodes)2

+ p00
· p10

· p20
· Start3

where:
RecruitNodes
= p00

· Z1
1 + p00

· p10
· Z2

1 + · · · 00
· p10

· p20
· p30

· Z4
1

+ p00
· p10

· p20 . . . · p40
· Z5

2 . . . + p00
· p10

· p20 . . . · p90
· Z10

2

+ p00
· p10

· p20 . . . · p100
· Z11

3 + p00
· p10

· p20 . . . · p110
· Z12

4

+ p00
· p10

· p20 . . . · p120
· Z13

5 + p00
· p10

· p20 . . . · p150
· Z16

5

+ p00
· p10

· p20 . . . · p160
· Z17

6 + p00
· p10

· p20 . . . · p170
· Z18

7

+ p00
· p10

· p20 . . . · p180
· Z19

8 + p00
· p10

· p20 . . . · p190
· Z20

9

ConnectNodes
=

(
p00

· P1
1
+ p00

· p0
1.C

2
1
)

+
(
p00

· p10
· p20

· P2
3
+ p00

· p10
· p20

· p30
· C4

2
)
· · ·

Each Zn in RecruitNodes is the compound vector representation of
each service. In our implementation, the vectors are constructed
automatically from the Pegasus DAX file as per Listing 1. The
RecruitNodes vector is built from the <job> entries found in the
DAX—we refer the reader to Fig. 4 and Listing 1, where there are
4 mProjectPPs(Z1s), 6 mDiffFitt(Z2s) and so on.

The ConnectNodes vector, built from the <child> entry section
of the DAX, defines the producer/consumer relationship between
nodes. A node can act as both a parent (producer) and child
(consumer) within the workflow, see Fig. 4. Using Listing 1 as
an example, the parent, P, and child, C, ends of each edge are
constructed as follows:

P1 = Z0
1 ·

(
NodeID0

r · Parentr
)

C1 = Z0
2 ·

(
NodeID4

r · Childr
)

P2 = Z0
1 ·

(
NodeID1

r · Parentr
)

C2 = Z0
2 ·

(
NodeID4

r · Childr
)

where
• NodeIDn

r is an atomic role vector used to encode a node’s
integer id as defined in the DAX. For this purpose we encode
an integer i as a single atomic role vector cyclic shifted by i,
for example, NodeID4

r = (int)4.
• Parentr and Childr are fixed atomic role vectors used to

bind the resultant vector into the parent or child category.
• Z1 represents mProjectPP and Z2 represents mDiffFitt, as

described above.
By binding these three elements together we construct a unique
encoding for the parent and child ends of every edge in the DAG.

Using Eq. (9) we then represent the edges as an ordered list of
parent→child ends, see ConnectNodes above.

8.2.1. Execution of the workflow
The resulting workflow WP is a superposition representing

the linear sequence of steps needed to: (a) discover the required
services, (b) connect the selected services together, and (c) sig-
nal to the selected services that the workflow is composed and
work should begin. Therefore, the execution of the workflow
proceeds in a similar manner to that described in Section 5.1 but
with some additional workflow specific processing carried out by
each selected node. The top level vector, WP is prepared as per
Eq. (11):

WP1 = (p0
0 · (T + WP))−1

= p−1
0 · T−1

+ RecruitNodes + noise

When multicast, this activates the RecruitNodes service which,
operating as a cleanup service, carries out the same operation to
initiate the recruitment phase:

Recruit ′

Nodes = (p0
0 · (T + RecruitNodes))−1

R′

1 = p−1
0 · T−1

+ Z0
1 + p−1

1 · Z1
1 + p−1

1 · p−1
2 · Z2

1 + · · ·

Z1 is a request for an mProjectPP service which will be matched
by all listening mProjectPPs. Acting as the local arbitrator, the
RecruitNodes service multicasts its preferred match from the
replies received. The newly discovered and activated service uses
the current permutation of the T vector to calculate its position
(NodeIDn

r) in the RecruitNodes phase from which it can calculate
its unique parent and child vector names to be used during the
ConnectNodes phase. Thus, the first mProjectPP, having position p0
and being a Z1, calculates its parent and child names as

P0 = Z0
1 ·

(
NodeID0

r · Parentr
)

C0 = Z0
1 ·

(
NodeID0

r · Childr
)

It then enters Listening for Connections Mode while, as the new
local arbitrator, it also multicasts the next recruitment request by
performing an unbind using, Eq. (13), on its received vector R′

1,

R′

2 = (p−1
1 · Z ′

1)
−1

= p−1
1 ·p−2

0 ·T−2
+p−1

1 ·Z−1
1 + Z0

1 +p−2
2 .Z1

1+· · · .

The will cause another mProjectPP to be selected and this de-
centralized process repeats until the last service to be recruited,
the Z9, mjPeg, service unbinds and transmits the next vector, the
RecruitNodes StopVec.

The RecruitNodes cleanup service detects its stop vector, caus-
ing it to perform an unbind, using Eq. (13), and multicast of WP ′

thereby activating the ConnectNodes phase:

WP2 = (p−1
1 · WP1)

−1
= p−1

1 · p−2
0 · T−2

+ ConnectNodes + noise

At this point all recruited services are listening for connection
request on their unique parent and child vectors. The activated
ConnectNodes service, acting as a cleanup service, uses Eq. (11)
to initiate and activate the first parent node of the ConnectNodes
phase:

Connect ′

Nodes = (p0
0 · (T + Connect ′

Nodes))
−1

P′

1 = p−1
0 · T−1

+ P0
1 + p−1

1 · C1
1 + p−1

1 · p−1
2 · P2

2 + · · ·

When a service matches its parent vector it performs the
next unbind or multicast to activate its associated child ser-
vice, automatically informing the child service of the location
of its resources/output/ip-address. When a service receives a
multicast matching its child vector it can lookup the sender and
parent’s IP-address and send a unicast hello message to the par-
ent, thus establishing the required connection before activating

82 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

Fig. 5. A comparison of five different DAX workflows as input and the VSA reconstructed workflows from post processing the semantic vector workflow. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the next parent by performing a further unbind or multicast of
the ConnectNodes vector. This process repeats until the final child
request is processed causing the ConnectNodes service to detect
its StopVec which, in turn, causes it to unbind and multicast the
StartVec indicating to all nodes that the workflow has been fully
constructed and processing can be started.

9. Evaluation

Our evaluation of the scalability of the VSA approach for
linear workflows has already been presented using the Hamlet
example in Section 8.1. The evaluation was performed using the
CORE/EMANE network emulator to simulate a MANET network
and used a MANET multicast routing protocol to communicate
vectors between the nodes containing the services. Multicasting
the top level Hamlet vector results in the whole play being
enacted by worker services that generate each word in the play.
The VSA workflow implementation of Hamlet has a number of
advantages over the Newt [34] implementation. Specifically the
Newt implementation requires that the IP address of participating
services be known and encoded into the workflow, whereas, our
VSA approach can discover the service (word/sentence) needed
on the fly using semantic matching. In Newt, if the service spec-
ified by IP address becomes unavailable; i.e., we intentionally
move it out of wireless range in CORE, then the workflow halts
and is broken. In VSA Hamlet, the same action results in the
automatic discovery of multiple exact, and near-match candidate
word/sentence/services and the best match is then chosen. When
multiple functionally equal matches were discovered the Local
Arbitration function ensured that the service having best simu-
lated utility was chosen and logged as such. The best ‘near’ match
was chosen when we contrived to make exact matches unavail-
able in CORE. Additionally, the advantage of passing around the
workflow as a vector superposition was highlighted because the
stand-in service automatically resynchronized the workflow after

‘speaking’ its substitute word by simply performing an unbind and
transmit of the workflow vector it received. Newt has none of
these capabilities.

Our evaluation of the more complex workflows was aimed
at the following: to demonstrate that complex workflows could
be automatically encoded into a symbolic vector representation
and then recursively decoded to assemble the required work in
a decentralized setting; to show that the workflow constructed
was also resilient to changes in the communications network;
and to demonstrate that services with the highest utility could be
identified and selected using the semantic matching mechanism.

For the evaluation, we used five different DAX workflows
generated using the Pegasus workflow generator [37]:

1. Montage (NASA/IPAC) stitches multiple input images to-
gether to create custom mosaics of the sky.

2. CyberShake (Southern Calfornia Earthquake Center) char-
acterizes earthquake hazards in a region.

3. Epigenomics (USC Epigenome Center and Pegasus) auto-
mates various operations in genome sequence processing.

4. Inspiral Analysis (LIGO) generates and analyzes gravita-
tional waveforms from data collected during the coalescing
binary systems.

5. SIPHT (Harvard) automates the search for untranslated
RNAs (sRNAs) for bacterial replicons in the NCBI database.

We again ran a series of experiments using the CORE/EMANE
network emulator to simulate a MANET network. Pegasus DAX
workflows were processed using the VSA creator to build the
semantic vector workflow encodings and also to generate the
service description vectors that semantically describe each of
the component services. Multiple copies of the component ser-
vices were randomly distributed on the network nodes. Each

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 83

Fig. 6. Semantic similarity 20 k vectors, chunk size 50. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

service was enabled with our VSA cognitive layer containing
the appropriate semantic vector for that service. The workflow
request vector was launched from some node in the network and
the workflow was constructed in a decentralized manner, with
control being passed between services as the workflow vector
was recursively unbound. During the execution of the process we
extracted a range of metrics that provided a detailed log of the
run and the order of execution. Using this log we created a graph
of the set of nodes and edges that were selected and we used
Graphviz to show the result. Fig. 5 shows the results for the five
different Pegasus workflows we evaluated. The colored images
represent the Pegasus generated workflows and blue workflows
show the VSA generated reconstruction of the workflows. Aside
from the cosmetic difference, this demonstrates that all work-
flows were composed and correctly connected accurately in all
cases.

To demonstrate the resilience of the approach, we modified
the network connectivity to demonstrate that different instances
of the correct services were selected and that this still produced
the same required workflow. We also demonstrated that if the
same services had different QoS utility measures that the services
with the higher utility were selected in preference to those of
lower utility.

10. Hierarchical VSA scaling preserving semantic similarity

In order to demonstrate that our encoding scheme can scale
whilst preserving a measure of semantic similarity, we performed
a further empirical evaluation. Using sets of randomly generated
vectors we carried out a number of experiments. Two sets, set1
and set2, of 10 kb random vectors where generated and both
sets where chunked using Eq. (9). The resulting top level vectors
were then compared by measuring Hamming distance similar-
ity. The comparison was repeated after randomly choosing an
increasing percentage of vectors from set2 and copying them into
the same position in set1. The Hamming distance similarity was
then recalculated as the sets become increasingly more similar.
The expected result was that no similarity would be detected
when each set had none or very few common vectors and that
Hamming distance similarity would increasingly improve as the
sets become similar.

Figs. 6 and 7 show the results using a set size of 20k for
chunk sizes of 50 and 10. Each line shows the average similarity –
i.e., (1−HD) – of chunks at each level in the chunk hierarchy. For

Fig. 7. Semantic similarity 20 k vectors, chunk size 10. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

example, in Fig. 7, there is only 1 vector at the top level (green), 8
chunks at each point of red and 400 chunks at each point on the
blue line. Comparing Figs. 6 and 7 we see that ability to detect a
semantic match decreases for smaller chunk size.

When the chunk size is 50 we are able to detect a match with
as little as 20% similarity for the single top level vector, whereas
at a chunk size of 10 we can only detect a match when similarity
is approximately 30%. This is to be expected since a smaller chunk
size implies more majority-vote operations which means more
noise is introduced. In addition, an even numbered chunk size
causes the addition of additional noise in the form of random
splitting of ties during the majority-vote operation. Thus, using
the largest chunk size consistent with the dimensionality of the
vectors being used will facility better semantic matching at higher
conceptual levels.

11. Conclusions and future work

In this paper, we addressed the complex problem of how
to represent and enact decentralized time-critical applications.
Specifically we investigated how data analytics tasks, formulated
as complex workflows, could operate in dynamic wireless net-
works, without any central point of control. To this end, we
described an architecture that exposes a cognitive layer by using
a Vector Symbolic Architecture (VSA) to extend services with
semantic service descriptions and time-critical constraints re-
quired to specify the QoS/QoE. We demonstrated the viability of
this approach by showing an empirical evaluation that such VSA
encoding methods work and are scalable. We then described the
architecture of our approach and the components it provides to
enable decentralized fitness functions for on demand resource
discovery and allocation.

We demonstrated that our approach can encode workflows
containing multiple coordinated sub-workflows in a way that
allows the workflow logic to be unbound on-the-fly and executed
in a completely decentralized way. We showed that time-critical
QoS and QoE metrics for each workflow, sub-workflow or even
service can be encoded into a single vector that provides an
extremely compact (10 kb) common workflow format exchange
for a MANET, which can be passed around using standard group
transport protocols (e.g., multicast). We also showed that seman-
tic comparisons can be made at each level of the architecture

84 C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85

to support scoped searching and that the scheme is extensible—
i.e., new parameter or constraint can be plugged in and encoded
to address practically any real-world scenario.

In the future, we will investigate different schemes for discov-
ery and matchmaking, which are capable of supporting different
modes of use. For example, we are currently looking at using
the look ahead peeking capability of VSAs in combination with
proactive announcements that will be capable of pushing utility
metrics calculations to the client that need to consume them.
A key element of future work is to investigate alternative ways
to encode semantics and to measure the semantic similarity of
services and their QoS and QoE. We are investigating methods
that capture the previous contexts, including QoS metrics, in
which a particular workflow has operated in, as well as other
methods that avoid rigid ontology style approaches. For time-
critical applications in MANET environments we are investigating
alternatives to local arbitration that will allow the fittest ser-
vice to rapidly emerge from a group of compatible competing
individual services. Using symbolic vectors to semantically repre-
sent services and workflows enables suggested alternative service
compositions to be automatically generated when component
services of an existing workflow are missing or cannot be ac-
cessed. We are investigating if viable alternative compositions can
be generated and automatically validated using this approach.

Acknowledgments

This research was sponsored by the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government, the
U.K. Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation hereon.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.future.2019.04.010.

References

[1] Q.Z. Sheng, X. Qiao, A.V. Vasilakos, C. Szabo, S. Bourne, X. Xu, Web services
composition: A decade’s overview, Inform. Sci. 280 (2014) 218–238.

[2] S. Corson, J. Macker, Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations, RFC 2501 (Informa-
tional), Internet Engineering Task Force, 1999, [Online]. Available: http:
//www.ietf.org/rfc/rfc2501.txt.

[3] S. Basagni, M. Conti, S. Giordano, I. Stojmenović, in: S. Basagni, et al. (Eds.),
Mobile Ad Hoc Networking, IEEE, 2004.

[4] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, J. Jetcheva, A performance
comparison of multi-hop wireless ad hoc network routing protocols, in:
MobiCom ’98: Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, ACM, New York, NY,
USA, 1998, pp. 85–97.

[5] T. Pham, G. Cirincione, A. Swami, G. Pearson, C. Williams, Distributed
analytics and information science, in: Information Fusion (Fusion), 2015
18th International Conference on, IEEE, 2015, pp. 245–252.

[6] D. Verma, G. Bent, I. Taylor, Towards a distributed federated brain archi-
tecture using cognitive IoT devices, in: 9th International Conference on
Advanced Cognitive Technologies and Applications, COGNITIVE 17, 2017.

[7] T.A. Plate, Distributed Representations and Nested Compositional Structure,
University of Toronto, Department of Computer Science, 1994.

[8] R.W. Gayler, Vector symbolic architectures answer Jackendoff’s challenges
for cognitive neuroscience, 2004, arXiv preprint arXiv:cs/0412059.

[9] P. Kanerva, Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors, Cogn.
Comput. 1 (2) (2009) 139–159, [Online]. Available: http://dblp.uni-trier.de/
db/journals/cogcom/cogcom1.html#Kanerva09.

[10] D. Kleyko, Pattern Recognition with Vector Symbolic Architectures (Ph.D.
disseration), Luleå tekniska universitet, 2016.

[11] G.E. Hinton, Mapping part-whole hierarchies into connectionist networks,
Artificial Intelligence 46 (1–2) (1990) 47–75.

[12] C. Eliasmith, T.C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, D.
Rasmussen, A large-scale model of the functioning brain, Science 338
(6111) (2012) 1202–1205,.

[13] M.N. Jones, D.J.K. Mewhort, Representing word meaning and order infor-
mation in a composite holographic lexicon, Psychol. Rev. 114 (1) (2007)
1–37.

[14] G.E. Cox, G. Kachergis, G. Recchia, M.N. Jones, Toward a scalable holo-
graphic word-form representation, Behav. Res. Methods 43 (3) (2011)
602–615.

[15] G. Recchia, M. Sahlgren, P. Kanerva, M.N. Jones, Encoding sequential
information in semantic space models: comparing holographic reduced
representation and random permutation, Comput. Intell. Neurosci. 2015
(2015) 58.

[16] T.A. Plate, Holographic Reduced Representation: Distributed Representation
for Cognitive Structures, CSLI Publications, Stanford, CA, USA, 2003.

[17] C. Simpkin, I. Taylor, G.A. Bent, G. de Mel, R.K. Ganti, A Scalable Vector
Symbolic Architecture Approach for Decentralized Workflows.

[18] A. Van Moorsel, Metrics for the internet age: Quality of experience and
quality of business, in: Fifth International Workshop on Performability
Modeling of Computer and Communication Systems, Arbeitsberichte des
Instituts für Informatik, Universität Erlangen-Nürnberg, Germany, 34, (13)
Citeseer, 2001, pp. 26–31.

[19] Y. Liu, A.H. Ngu, L.Z. Zeng, Qos computation and policing in dynamic web
service selection, in: Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & Posters, ACM, 2004, pp.
66–73.

[20] E. Vinek, F.T.A. Viegas, et al., ATLAS Collaboration, Composing distributed
services for selection and retrieval of event data in the atlas experiment,
J. Phys.: Conf. Ser. 331 (4) (2011) 042027.

[21] E. Vinek, P.P. Beran, E. Schikuta, A dynamic multi-objective optimization
framework for selecting distributed deployments in a heterogeneous
environment, Procedia Comput. Sci. 4 (2011) 166–175.

[22] J. Sterle, M. Rugelj, U. Sedlar, L. Korvsivc, A. Kos, P. Zidar, M. Volk, S.
Toral, A novel approach to building a heterogeneous emergency response
communication system, Int. J. Distributed Sens. Netw. 2015 (2015).

[23] E.D. Nitto, M.A.A. d. Silva, D. Ardagna, G. Casale, C.D. Craciun, N. Ferry, V.
Muntes, A. Solberg, Supporting the development and operation of multi-
cloud applications: the MODAClouds approach, in: 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
2013, pp. 417–423.

[24] M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of scientific workflows
in the askalon grid environment., SIGMOD Rec. 34 (3) (2005) 56–62.

[25] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,
J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, M. Wieczorek, ASKALON: A
development and grid computing environment for scientific workflows, in:
Workflows for e-Science, Springer, New York, 2007, pp. 143–166.

[26] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock, Kepler:
An extensible system for design and execution of scientific workflows,
in: 16th International Conference on Scientific and Statistical Database
Management, SSDBM, IEEE Computer Society, New York, 2004, pp.
423–424.

[27] P. Kacsuk, P-grade portal family for grid infrastructures, Concurr. Comput.
: Pract. Exper. 23 (2011) 235–245, [Online]. Available: http://dx.doi.org/10.
1002/cpe.1654.

[28] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, D. Katz, Pegasus: a
framework for mapping complex scientific workflows onto distributed
systems, Sci. Program. J. 13 (3) (2005) 219–237.

[29] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M.R. Pocock, A. Wipat, P. Li, Taverna: A tool for the composition
and enactment of bioinformatics workflows, Bioinformatics 20 (17) (2004)
3045–3054.

[30] A. Harrison, I. Taylor, I. Wang, M. Shields, WS-RF workflow in Triana, Int.
J. High Perform. Comput. Appl. 22 (3) (2008) 268–283,.

[31] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, Y. Simmhan, The trident
scientific workflow workbench, in: Proceedings of the 2008 Fourth IEEE
International Conference on eScience, IEEE Computer Society, Washington,
DC, USA, 2008, pp. 317–318, [Online]. Available: http://dl.acm.org/citation.
cfm?id=1488725.1488936.

[32] T. Glatard, J. Montagnat, D. Lingrand, X. Pennec, Flexible and efficient work-
flow deployment of data-intensive applications on grids with MOTEUR, Int.
J. High Perform. Comput. Appl. 22 (2008) 347–360, [Online]. Available:
http://dl.acm.org/citation.cfm?id=1400050.1400057.

https://doi.org/10.1016/j.future.2019.04.010
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb1
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb1
http://www.ietf.org/rfc/rfc2501.txt
http://www.ietf.org/rfc/rfc2501.txt
http://www.ietf.org/rfc/rfc2501.txt
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb3
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb4
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb5
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb7
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb7
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb7
http://arxiv.org/abs/cs/0412059
http://dblp.uni-trier.de/db/journals/cogcom/cogcom1.html#Kanerva09
http://dblp.uni-trier.de/db/journals/cogcom/cogcom1.html#Kanerva09
http://dblp.uni-trier.de/db/journals/cogcom/cogcom1.html#Kanerva09
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb10
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb11
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb13
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb14
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb15
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb16
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb16
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb16
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb18
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb19
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb20
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb21
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb22
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb23
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb24
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb25
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb26
http://dx.doi.org/10.1002/cpe.1654
http://dx.doi.org/10.1002/cpe.1654
http://dx.doi.org/10.1002/cpe.1654
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb28
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb29
http://dl.acm.org/citation.cfm?id=1488725.1488936
http://dl.acm.org/citation.cfm?id=1488725.1488936
http://dl.acm.org/citation.cfm?id=1488725.1488936
http://dl.acm.org/citation.cfm?id=1400050.1400057

C. Simpkin, I. Taylor, G.A. Bent et al. / Future Generation Computer Systems 100 (2019) 70–85 85

[33] B. Balis, Increasing scientific workflow programming productivity with
hyperflow, in: Proceedings of the 9th Workshop on Workflows in Support
of Large-Scale Science, WORKS ’14, IEEE Press, Piscataway, NJ, USA, 2014,
pp. 59–69, [Online]. Available: http://dx.doi.org/10.1109/WORKS.2014.10.

[34] J.P. Macker, I. Taylor, Orchestration and analysis of decentralized workflows
within heterogeneous networking infrastructures, Future Gener. Comput.
Syst. (2017).

[35] G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, V. Mitsou, A dynamic
distributed federated database, in: Proc. 2nd Ann. Conf. International
Technology Alliance, 2008.

[36] G. Bent, P. Dantressangle, P. Stone, D. Vyvyan, A. Mowshowitz, Experimen-
tal evaluation of the performance and scalability of a dynamic distributed
federated database, in: Proc. 3rd Ann. Conf. International Technology
Alliance, 2009.

[37] Workflow Generator Pegasus, https://confluence.pegasus.isi.edu/display/
pegasus/WorkflowGenerator.

[38] Graphviz — Graph Visualization Software, http://www.graphviz.org/Home.
php.

Chris Simpkin has worked as a design engineer on
high speed control systems including design of ana-
logue control loops, dedicated digital computer control
systems. Chris worked for IBM for 10 years in various
areas including stress testing of IBM’s flagship S/390 G5
Parallel main frames, IBM CICS and IBM Message Queu-
ing products. In 1998 Chris qualified as an Optometrist
and spent 10 years managing an Optometry business.
Chris is currently doing a PhD at Cardiff University, UK,
focusing in the use of machine learning algorithms for
distributed data analytics applications.

Ian Taylor is a Professor at the University of Notre
Dame and a Reader at Cardiff University. He has a
degree in Computing Science, a Ph.D. studying neural
networks applied to musical pitch and he designed/im-
plemented the data acquisition system and Triana
workflow system for the GEO600 gravitational wave
project. He now specializes in Blockchain, open data
access, Web dashboards/APIs and workflows. Ian has
published over 180 papers (h-index 41), 3 books and
has won the Naval Research Lab best paper award in
2010, 2011 and 2015. Ian acts as general chair for the

WORKS Workflow workshop yearly at Supercomputing.

Graham Bent was formally an IBM Senior Technical
Staff Member and Master Inventor. He retired from
IBM in January 2016. He now works for IBM Research
as a contractor. Over the past 10 years Graham has
been undertaking research on large scale distributed
databases; new encryption techniques for distributed
secure computing using fully homomorphic encryption.
He is currently involved in a new International Tech-
nology Alliance program on Distributed Analytics and
Information Science (DAIS ITA). His current research is
in the development of intelligent agents for distributed

analytics using brain inspired neuromorphic computation.

Geeth de Mel is a Research Staff Member with IBM
Research and based at Hartree Centre, UK. His research
interests are in applying artificial intelligence – espe-
cially in Semantic Web technologies – techniques for
decision support systems in the presence of (or lack
of) dynamicity, trust, and provenance. He graduated
from the University of Aberdeen, Scotland and did his
postdoctoral work at the US Army Research Laboratory
till he joined IBM Research TJ Watson Research Center,
Yorktown, USA in June 2013. His current research focus
is on data semantics to better support information

correlations and corroboration, and techniques to reformulate questions based
on pragmatics.

Swati Rallapalli is a research staff member at the
IBM T.J. Watson Research Center. Her work is focused
on distributed video analytics (using CNNs/RNNs) on
mobile systems and user analytics. In particular, her re-
search focuses on inferring user activities from multiple
mobile sensors under stringent resource constraints.
She also serves as a principal investigator on the Qual-
ity Aware Semantic Video Analytics under US Army
Research Lab funded Network Science Collaborative
Technology Alliance. She received her PhD from Univ
of Texas, Austin in 2014.

Liang Ma is a Research Staff Member with the De-
partment of Cognitive Distributed Systems, IBM T. J.
Watson Research Center, NY, USA. He was a recipient of
the International Conference on Distributed Computing
System Best Paper Award, the IBM Patent Award 2013,
the Best Student Paper Award of ITA in Network &
Information Sciences 2013, the ACM Internet Measure-
ment Conference Best Paper Award Nomination, the
INFOCOM 2014 Student Travel Grant, and the winner
of Outstanding Graduate Student 2008 and Excellent
Student Awards four times from 2003 to 2006. He

received his PhD from the Imperial College, London in 2014.

Mudhakar Srivatsa is a distinguished research staff
member at the IBM T.J. Watson Research Center. He
served as the Industry Technical Area Leader (2011–16)
for Secure Hybrid Networks on the US/UK Government
funded Network and Information Sciences International
Technology Alliance. His work spans cognitive analy-
sis of spatiotemporal data gathered from IoT sensors
for distributed activity detection and robustness un-
der adversarial settings such as quantitative time and
graphical side channels. He is an IBM master inventor,
authored over 100 research papers, 28 granted US

patents, and received three IBM outstanding technical achievement awards.

http://dx.doi.org/10.1109/WORKS.2014.10
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb34
http://refhub.elsevier.com/S0167-739X(18)31176-2/sb34
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php
http://www.graphviz.org/Home.php

	Constructing distributed time-critical applications using cognitive enabled services
	Introduction
	Related work
	Service matchmaking and optimization
	Time-critical systems
	Workflows

	Vector symbolic architecture, basic operations
	Building semantic vector representations of services and QoS
	Building the description vector
	Building the quality of service vector

	Describing workflows using vector symbolic architecture
	Ordered unbinding of high-level concept vectors
	Pre-provisoning and learning to get ready
	Alternate to QoE for distributed transient environments

	Decentralized architecture for time-critical applications
	Message Listener and buffer
	Symbolic Vector Memory
	Comparator
	VSA reasoner
	Delay response timer
	Message transmit buffer

	Implementation example
	Control operations
	Service selection by local arbitration
	Pre-provisioning
	Dynamic workflow control
	Static workflow control

	Test cases
	Dynamic mode linear workflow
	Static mode complex workflow
	Execution of the workflow

	Evaluation
	Hierarchical VSA scaling preserving semantic similarity
	Conclusions and future work
	Acknowledgments
	Declaration of competing interest
	References

