
LETTER Communicated by Pentti Kanerva

Binding and Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning

Dmitri A. Rachkovskij
V. M. Glushkov Cybernetics Center, Pr. Acad. Glushkova 40, Kiev 22, 252022, Ukraine

Ernst M. Kussul
Centro de Instrumentos, Universidad Nacional Autonoma de Mexico, 04510 Mexico
D.F., Mexico

Distributed representations were often criticized as inappropriate for en-
coding of data with a complex structure. However Plate’s holographic
reduced representations and Kanerva’s binary spatter codes are recent
schemes that allow on-the-fly encoding of nested compositional struc-
tures by real-valued or dense binary vectors of fixed dimensionality.

In this article we consider procedures of the context-dependent thin-
ning developed for representation of complex hierarchical items in the
architecture of associative-projective neural networks. These procedures
provide binding of items represented by sparse binary codevectors (with
low probability of 1s). Such an encoding is biologically plausible and
allows a high storage capacity of distributed associative memory where
the codevectors may be stored.

In contrast to known binding procedures, context-dependent thinning
preserves the same low density (or sparseness) of the bound codevec-
tor for a varied number of component codevectors. Besides, a bound
codevector is similar not only to another one with similar component
codevectors (as in other schemes) but also to the component codevec-
tors themselves. This allows the similarity of structures to be estimated
by the overlap of their codevectors, without retrieval of the component
codevectors. This also allows easy retrieval of the component codevec-
tors.

Examples of algorithmic and neural network implementations of the
thinning procedures are considered. We also present representation ex-
amples for various types of nested structured data (propositions using
role filler and predicate arguments schemes, trees, and directed acyclic
graphs) using sparse codevectors of fixed dimension. Such representa-
tions may provide a fruitful alternative to the symbolic representations of
traditional artificial intelligence as well as to the localist and microfeature-
based connectionist representations.

Neural Computation 13, 411–452 (2001) c© 2001 Massachusetts Institute of Technology

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

412 Dmitri A. Rachkovskij and Ernst M. Kussul

1 Introduction

The problem of representing nested compositional structures is important
for connectionist systems, because hierarchical structures are required for
an adequate description of real-world objects and situations.

In fully local representations, an item (entity, object) of any complexity
level is represented by a single unit (node, neuron) (or a set of units with no
common units with other items). Such representations are similar to sym-
bolic ones and share their drawbacks, among them the limitation of the
number of representable items by the number of available units in the pool
and therefore the impossibility of representing the combinatorial variety of
real-world objects. Besides, a unit corresponding to a complex item repre-
sents only its name and pointers to its components (constituents). Therefore,
in order to determine the similarity of complex items, they should be un-
folded into the base-level (indecomposable) items.

The attractiveness of distributed representations was emphasized by the
paradigm of cell assemblies (Hebb, 1949) that influenced the work of Marr
(1969), Willshaw (1981), Palm (1980), Hinton, McClelland, and Rumelhart
(1986), Kanerva (1988), and many others. In fully distributed representa-
tions, an item of any complexity level is represented by its configuration
pattern over the whole pool of units. For binary units, this pattern is a subset
of units that are in the active state. If the subsets corresponding to various
items intersect, then the number of these subsets is much more than the
number of units in the pool, providing an opportunity to solve the problem
of information capacity of representations. If similar items are represented
by similar subsets of units, the degree of corresponding subsets’ intersection
could be the measure of their similarity.

The potentially high information capacity of distributed representations
provides hope for solving the problem of representing a combinatorially
growing number of recursive compositional items in a reasonable number
of bits. Representing composite items by concatenation of activity patterns
of their component items would increase the dimensionality of the coding
pool. If the component items are encoded by pools of equal dimensionality,
one could try to represent composite items as a superposition of activity
patterns of their components. The resulting coding pattern would have the
same dimensionality.

However, another problem arises here, known as “superposition catas-
trophe” (e.g., von der Malsburg, 1986) as well as “ghosts” and “false” or
“spurious” memory (e.g., Feldman & Ballard, 1982; Hopfield, 1982; Hop-
field, Feinstein, & Palmer, 1983). A simple example looks as follows. Let
there be component items a, b, c and composite items ab, ac, cb. Let us repre-
sent any two of the composite items, for example, ac or cb. For this purpose,
superimpose activity patterns corresponding to the component items a and
c, c and b. The ghost item ab also becomes represented in the result, though it
is not needed. In the “superposition catastrophe” formulation, the problem

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 413

consists in no way of telling which two items (ab, ac, or ab, cb, or ac, cb) make
up the representation of the composite pattern abc, where the patterns of all
three component items are activated.

The supposition of no internal structure in distributed representations
(or assemblies) (Legendy, 1970; von der Malsburg, 1986; Feldman, 1989; see
also Milner, 1996) held back their use for representation of complex data
structures. The problem is to represent in the distributed fashion not only
the information on the set of base-level components making up a complex
hierarchical item, but also the information on the combinations in which
they meet, the grouping of those combinations, and so forth. That is, some
mechanisms were needed for binding together the distributed representa-
tions of certain items at various hierarchical levels.

One of the approaches to binding is based on temporal synchronization
of constituent activation (Milner, 1974; von der Malsburg, 1981, 1985; Shastri
& Ajjanagadde, 1993; Hummel & Holyoak, 1997). Although this mechanism
may be useful inside a single level of composition, its capabilities to repre-
sent and store complex items with multiple levels of nesting are question-
able. Here we will consider binding mechanisms based on the activation
of specific coding unit subsets corresponding to a group (combination) of
items—the mechanisms that are closer to the so-called conjunctive coding
approach (Smolensky, 1990; Hummel & Holyoak, 1997).

The “extra units” considered by Hinton (1981) represent various combi-
nations of active units of two or more distributed patterns. The extra units
can be considered as binding units encoding various combinations of dis-
tributedly encoded items by distinct distributed patterns. Such a represen-
tation of bound items is generally described by tensor products (Smolen-
sky, 1990) and requires an exponential growth of the number of binding
units with the number of bound items. However, for recursive structures
it is desired that the dimensionality of the patterns representing composite
items is the same as the component items’ patterns. Besides, the most im-
portant property of distributed representations—their similarity for similar
structures—should be preserved.

The problem was discussed by Hinton (1990), and a number of mecha-
nisms for construction of his “reduced descriptions” have been proposed.
Hinton (1990), Pollack (1990), and Sperduti (1994) get the reduced descrip-
tion of a composite pattern as a result of multilevel perceptron training
using back-propagation algorithm. However, their patterns are low dimen-
sional. Plate (1991, 1995) binds high-dimensional patterns with gradual
(real-valued) elements on the fly, without increasing the dimensionality,
using the operation of circular convolution. Kanerva (1996) uses bitwise
XOR to bind binary vectors with equal probability of 0s and 1s. Binary
distributed representations are especially attractive, because binary bit-
wise operations are enough to handle them, providing the opportunity
for significant simplification and acceleration of algorithmic implementa-
tions.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

414 Dmitri A. Rachkovskij and Ernst M. Kussul

Sparse binary representations (with small fraction of 1s) are of special in-
terest. The sparseness of codevectors allows a high storage capacity of dis-
tributed associative memories (Willshaw, Buneman, & Longuet-Higgins,
1969; Palm, 1980; Lansner & Ekeberg, 1985; Amari, 1989), which can be
used for their storage, and still further acceleration of software and hard-
ware implementations (e.g., Palm & Bonhoeffer, 1984; Kussul, Rachkovskij,
& Baidyk, 1991a; Palm, 1993). Sparse encoding also has neurophysiologi-
cal correlates (Foldiak & Young, 1995). The procedure for binding of sparse
distributed representations (“normalization procedure”) was proposed by
Kussul as one of the features of the associative-projective neural networks
(Kussul, 1988, 1992; Kussul, Rachkovskij, & Baidyk, 1991a). In this article,
we describe various versions of such a procedure and its possible neural net-
work implementations, and we provide examples of its use for the encoding
of complex structures.

In section 2 we discuss representational problems encountered in the
associative-projective neural networks (APNN) and an approach for their
solution. In section 3 the requirements on the context-dependent thinning
procedure for binding and normalization of binary sparse codes are formu-
lated. In section 4 several versions of the thinning procedure along with their
algorithmic and neural network implementations are described. Some gen-
eralizations and notations are given in section 5. In section 6 retrieval of indi-
vidual constituent codes from the composite item code is considered. In sec-
tion 7 the similarity characteristics of codes obtained by context-dependent
thinning procedures are examined. In section 8 we show examples of en-
coding various structures using context-dependent thinning. Related work
and a general discussion are presented in section 9, and conclusions are
given in section 10.

2 Representation of Composite Items in the APNN: The Problems and
the Answer

2.1 Features of the APNN. The APNN is the name of a neural network
architecture proposed by Kussul in 1983 for AI problems that require effi-
cient manipulation of hierarchical data structures. Fragments of the archi-
tecture implemented in software and hardware were also used for solving
pattern-recognition tasks (Kussul, 1992, 1993). APNN features of interest
here are as follows (Kussul, 1992; Kussul et al., 1991a; Amosov et al., 1991):

• Items of any complexity (an elementary feature, a relation, a complex
structure, etc.) are represented by stochastic distributed activity pat-
terns over the neuron field (pool of units).

• The neurons are binary, and therefore patterns of activity are binary
vectors.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 415

• Items of any complexity are represented over the neural fields of the
same and high dimensionality N.

• The number M of active neurons in the representations of items of
various complexity is approximately (statistically) the same and small
compared to the field dimensionality N. However, M is large enough
to maintain its own statistical stability.

• Items of various complexity level are stored in different distributed
autoassociative neural network memories with the same number N of
neurons.

Thus, items of any complexity are encoded by sparse distributed stochas-
tic patterns of binary neurons in the neural fields of the same dimensionality
N. It is convenient to represent activity patterns in the neural fields as binary
vectors, where 1s correspond to active neurons. We use boldface lowercase
letters for codevectors to distinguish them from the items they represent,
denoted in italics.

The number of 1s in x is denoted |x|. We seek to make |x| ≈ M for x
of various complexity. The similarity of codevectors is determined by the
number of 1s in their intersection or overlap: |x∧y|, where∧ is elementwise
conjunction of x and y. The probability of 1s in x (or density of 1s in x, or
simply the vector density) is p(x) = |x|/N.

Information encoding by stochastic binary vectors with a small num-
ber of 1s allows a high capacity of correlation-type neural network mem-
ory (known as Willshaw memory or Hopfield network) to be reached us-
ing Hebbian learning rule (Wilshaw et al., 1969; Palm, 1980; Lansner &
Ekeberg, 1985; Frolov & Muraviev, 1987, 1988; Frolov, 1989; Amari, 1989;
Tsodyks, 1989). The codevectors we are talking about may be exemplified
by vectors with M = 100, . . . , 1000, N = 10,000, . . . , 100,000. Although the
maximal storage capacity is reached at M = log N (Willshaw et al., 1969;
Palm, 1980), we use M ≈ √N to get a network with a moderate number
N of neurons and N2 connections at sufficient statistical stability of M (e.g.,
the standard deviation of M less than 3%). Under this choice of the code-
vector density p = M/N ≈ 1/

√
N, the information capacity holds high

enough and the number of stored items can exceed the number of neurons
in the network (Rachkovskij, 1990a, 1990b; Baidyk, Kussul, & Rachkovskij,
1990).

Let us consider the problems arising in the APNN and other neural net-
work architectures with distributed representations when composite items
are constructed.

2.2 Density of Composite Codevectors. The number H of component
items (constituents) comprising a composite item grows exponentially with
the nesting level, that is, with going to higher levels of the part-whole hier-

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

416 Dmitri A. Rachkovskij and Ernst M. Kussul

archy. If S items of a level l constitute an item of the adjacent higher level
(l+ 1), then for level (l+ L) the number H becomes

H = SL. (2.1)

The presence of several items comprising a composite item is encoded by
the concurrent activation of their patterns, that is, by superposition of their
codevectors. For binary vectors, we will use superposition by bitwise dis-
junction. Let us denote composite items by concatenation of symbols de-
noting their component items, for example, abc. Corresponding composite
codevectors (ai ∨ bi ∨ ci, i = 1, . . . ,N) will be denoted as a∨ b∨ c or simply
abc.

Construction of composite items will be accompanied by fast growth
of density p′ and respective number M′ of 1s in their codevectors. For H
different superimposed codevectors of low density p:

p′H = 1− (1− p)H ≈ 1− e−pH, (2.2)

M′H ≈ p′HN. (2.3)

Equations 2.2 and 2.3 take into account the absorption of coincident 1s that
prevents the exponential growth of their number versus the composition
level L. However, it is important that p′ À p (see Figure 1) and M′ À M.
Since the dimensionality N of codevectors representing items of various
complexity is the same, the size of corresponding distributed autoassocia-
tive neural networks, where the codevectors are stored and recalled, is also
the same. Therefore at M′ À M ≈ √N (at the higher levels of hierarchy),
their storage capacity in terms of the number of recallable codevectors will
decrease dramatically. To maintain high storage capacity at each level, M′
should not substantially exceed M. However, due to the requirement of
statistical stability, the number of 1s in the code cannot be reduced signifi-
cantly. Besides, the operation of distributed autoassociative neural network
memory usually implies the same number of 1s in codevectors. Thus, it is
necessary to keep the number of 1s in the codevectors of complex items
approximately equal to M. (However, some variation of M between distinct
hierarchical levels may be tolerable and even desirable.)

These provide one of the reasons that composite items should be rep-
resented not by all 1s of their component codevectors but only by their
fraction approximately equal to M (i.e., only by some M representatives of
active neurons encoding the components).

2.3 Ghost Patterns and False Memories. The well-known problem of
ghost patterns or superposition catastrophe was mentioned in section 1. It
consists of losing the information on the membership of component code-
vectors in particular composite codevector, when several composite code-
vectors are superimposed in their turn.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 417

Figure 1: Growth of the density p′ of 1s in the composite codevectors of higher
hierarchical levels (see equations 2.1 and 2.2). Here each codevector of the higher
level is formed by bit disjunction of S codevectors of the preceding level. Items at
each level are uncorrelated. The codevectors of base-level items are independent,
with the density of 1s equal to p. The number of hierarchical levels is L. (For
any given number of base-level items, the total number of 1s in the composite
codevectors is obviously limited by the number of 1s in the disjunction of base-
level codevectors.)

This problem is due to the essential property of superposition operation.
The contribution of each member to their superposition does not depend
on the contributions of other members. For superposition by elementwise
disjunction, representation of a in a ∨ b and a ∨ c is the same. The result of
superposition of several base-level component codevectors contains only
the information concerning participating components and no information
about the combinations in which they meet. Therefore, if common items are
constituents of several composite items, then the combination of the latter
generally cannot be inferred from their superposition codevector. For ex-
ample, let a complex composite item consist of base level items a, b, c, d, e, f .
Then how could one determine that it really consists of the composite items
abd, bce, caf , if there may also be other items, such as abc and def ? In the for-
mulation of false or spurious patterns, superposition of composite patterns
abc and def generates false patterns (“ghosts”) abd, bce, caf, and so forth.

The problem of introducing “false assemblies” or “spurious memories”
(unforeseen attractors) into a neural network (e.g., Kussul, 1980; Hopfield et
al., 1983; Vedenov, 1987, 1988) has the same origin as the problem of ghosts.
Training of an associative memory of matrix type is usually performed using
some version of Hebbian learning rule implemented by superimposing in

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

418 Dmitri A. Rachkovskij and Ernst M. Kussul

Figure 2: Hatched circles represent patterns of active units encoding items;
formed connections are plotted by arrowed lines. (A) Formation of a false as-
sembly. When three assemblies (abd; bce; acf) are consecutively formed in a
neural network by connecting all active units of patterns encoding their items,
the fourth assembly abc (griddy hatch) is formed as well, though its pattern
was not explicitly presented to the network. (B) Preventing of a false assembly.
If each of three assemblies is formed by connecting only subsets of active units
encoding the component items, then the connectivity of the false assembly is
weak. xyz denotes the subset of units encoding item x when it is combined with
items y and z. The pairwise intersections of the small circles represent the false
assembly.

the weight matrix the outer products of memorized codevectors. For binary
connections, for example,

W′ij =Wij ∨ xixj, (2.4)

where xi and xj are the states of the ith and the jth neurons when the pattern x
to be memorized is presented (i.e., the values of the corresponding bits of x),
Wij and W′ij are the connection weights between the ith and the jth neurons
before and after training, respectively, and ∨ stands for disjunction.

When this learning rule is sequentially used to memorize several com-
posite codevectors with partially coinciding components, false assemblies
(attractors) may appear—that is, memorized composite codevectors that
were not presented to the network. For example, when representations of
items abd, bce, caf are memorized, the false assembly abc (unforeseen attrac-
tor) is formed in the network (see Figure 2A). Moreover, various two-item
assemblies (such as ab, ad) are present, which also were not explicitly pre-
sented for storing.

The problem of introducing false assemblies can be avoided if nondis-
tributed associative memory is used, where the patterns are not superim-
posed when stored and each composite codevector is placed into a separate
memory word. However, the problem of false patterns or superposition
catastrophe still persists.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 419

2.4 An Idea of the Thinning Procedure. A systematic use of distributed
representations provides the prerequisite to solve both the problem of code-
vector density growth and the superposition catastrophe. The idea of so-
lution consists of including in the representation of a composite item not
full sets of 1s encoding its component items but only their subsets. If we
choose the fraction of 1s from each component codevector so that the num-
ber of 1s in the codevector of a composite item is equal to M, then the
density of 1s will be preserved in codevectors of various complexity. For
example, if S = 3 items of level l comprise an item of level l + 1, then
approximately M/3 of 1s should be preserved from each codevector of
the lth level. Then the codevector of level l + 1 will have approximately
M of 1s. If two items of level l + 1 comprise an item of level l + 2, then
approximately M/2 of 1s should be preserved from each codevector of
level l + 1. Thus, the low number M of 1s in the codevectors of com-
posite items of various complexity is maintained, and therefore high stor-
age capacity of the distributed autoassociative memories where these low-
density codevectors are stored can be maintained as well (see also sec-
tion 2.1).

Hence the component codevectors are represented in the codevector of
the composite item in a reduced form—by a fraction of their 1s. The idea
that the items of higher hierarchical levels (“floors”) should contain their
components in reduced, compressed, coarse form is well accepted among
those concerned with diverse aspects of artificial intelligence research. Re-
duced representation of component codevectors in the codevector of com-
posite items realized in the APNN may be relevant to “coarsen models” of
Amosov (1967), “reduced descriptions” of Hinton (1990), and “conceptual
chunking” of Halford, Wilson, and Phillips (1998).

Reduced representation of component codevectors in the codevectors
of composite items also allows a solution of the superposition catastro-
phe. If the subset of 1s included in the codevector of a composite item
from each of the component codevectors depends on the composition of
component items, then different subsets of 1s from each component code-
vector will be found in the codevectors of different composite items. For
example, nonidentical subsets of 1s will be incorporated into the code-
vectors of items abc and acd from a. Therefore, the component codevec-
tors will be bound together by the subsets of 1s delegated to the codevec-
tor of the composite item. It hinders the occurrence of false patterns and
assemblies.

For the example from section 1, when both ac and cb are present, we will
get the following overall composite codevector: ac ∨ ca ∨ cb ∨ bc, where xy
stands for the subset of 1s in x that becomes incorporated in the composite
codevector given y as the other component. Therefore, if ac 6= ab, bc 6= ba,
we do not observe the ghost pattern ab ∨ ba in the resultant codevector.

For the example of Figure 2A, where false assemblies emerge, they do
not emerge under reduced representation of items (see Figure 2B). Now

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

420 Dmitri A. Rachkovskij and Ernst M. Kussul

interassembly connections are formed between different subsets of active
neurons that have a relatively small intersection. Therefore, the connectivity
of assembly corresponding to the nonpresented item abc is low.

That the codevector of a composite item contains the subsets of 1s from
the component codevectors preserves the information on the presence of
component items in the composite item. That the composition of each sub-
set of 1s depends on the presence of other component items preserves the
information on the combinations in which the component items occurred.
That the codevector of a composite item has approximately the same num-
ber of 1s as its component codevectors allows the combinations of such
composite codevectors to be used for construction of still more complex
codevectors of higher hierarchical levels.

Thus, an opportunity emerges to build up the codevectors of items of
varied composition level containing the information not only on the pres-
ence of their components, but on the structure of their combinations as well.
It provides the possibility of estimating the similarity of complex structures
without their unfolding but simply as overlap of their codevectors, which
many authors consider a very important property for AI systems (e.g., Kus-
sul, 1992; Hinton, 1990; Plate, 1995, 1997).

Originally the procedure reducing the sets of coding 1s of each item from
the group that makes up a composite item was called normalization (Kussul,
1988, 1992; Kussul & Baidyk, 1990). That name emphasized the property of
maintaining the number of 1s in the codes of composite items equal to that
of component items. However in this article we will call it context-dependent
thinning (CDT) by its action mechanism, which reduces the number of 1s,
taking into account the context of other items from their group.

3 Requirements on the Context-Dependent Thinning Procedures

Let us summarize the requirements on the CDT procedures and on the char-
acteristics of codevectors produced by them. The procedures should pro-
cess sparse binary codevectors. An important case of input is superimposed
component codevectors. The procedures should output the codevector of
the composite item where the component codevectors are bound and the
density of the output codevector is comparable to the density of component
codevectors. Let us call the resulting (output) codevector thinned codevector.
The requirements may be expressed as follows:

• Determinism. Repeated application of the CDT procedures to the same
input should produce the same output.

• Variable number of inputs. The procedure should process one, two, or
several codevectors. One important case of input is a vector in which
several component codevectors are superimposed.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 421

• Sampling of inputs. Each component codevector of the input should be
represented in the output codevector by a fraction of its 1s (or their
reversible permutation).

• Proportional sampling. The number of 1s representing input component
codevectors in the output codevector should be proportional to their
density. If the number of 1s in a and b is the same, then the number
of 1s from a and b in thinned ab should also be (approximately) the
same.

• Uniform low density. The CDT procedures should maintain (approxi-
mately) uniform low density of output codevectors (small number M′
of 1s) under a varied number of input codevectors and their correlation
degree.

• Density control. The CDT procedures should be able to control the num-
ber M′ of 1s in output codevectors within some range around M (the
number of 1s in the component codevectors). For one important special
case, M′ = M.

• Unstructured similarity. An output codevector of the CDT procedures
should be similar to each component codevector at the input (or to its
reversible permutation). Fulfillment of this requirement follows from
fulfillment of the sampling of inputs requirement. The thinned code-
vector for ab is similar to a and b. If the densities of component codevec-
tors are the same, the magnitude of similarity is the same (as follows
from the requirement of proportional sampling).

• Similarity of subsets. The reduced representations of a given component
codevector should be similar to each other to a degree that varies di-
rectly with the similarity of the set of other codevectors with which
it is composed. The representation of a in the thinned abc should be
more similar to its representation in the thinned abd than in thinned
aef.

• Structured similarity. If two sets (collections) of component items are
similar, their thinned codevectors should be similar as well. It follows
from the similarity of subsets requirement. If a and a′ are similar and
b and b′ are similar, then thinned ab should be similar to thinned a′b′
or thinned abc should be similar to thinned abd.

• Binding. Representation of a given item in a thinned codevector should
be different for different sets (collections) of component items. Repre-
sentation of a in thinned abc should be different from the representa-
tion of a in thinned abd. Thus, the representation of a in the thinned
composite codevector contains information on the other components
of a composite item.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

422 Dmitri A. Rachkovskij and Ernst M. Kussul

4 Versions of the Context-Dependent Thinning Procedures

Let us consider some versions of the CDT procedure, their properties and
implementations.

4.1 Direct Conjunctive Thinning of Two or More Codevectors. Direct
conjunctive thinning of binary x and y is implemented as their element-wise
conjunction:

z = x ∧ y, (4.1)

where z is a thinned and bound result.
The requirement of determinism holds for the direct conjunctive thinning

procedure. The requirement of the variable number of inputs is not met,
since only two codevectors are thinned. Overlapping 1s of x and y go to z;
therefore the sampling of inputs requirement holds. Since equal numbers
of 1s from x and y enter into z even if x and y are of different density, the
requirement of proportional sampling is not fulfilled in general.

For stochastically independent vectors x and y, the density of the result-
ing vector z is:

p(z) = p(x)p(y) < min(p(x), p(y)) < 1. (4.2)

Here min() selects the smallest of its arguments. Let us note that for corre-
lated x and y, the density of 1s in z depends on the degree of their correlation.
Thus, p(z) is maintained the same only for independent codevectors of con-
stant density, and the requirement of uniform low density is generally not
met. Since p(z) for sparse vectors is substantially lower than p(x) and p(y),
the requirement of density control is not met, and recursive construction of
bound codevectors is not supported (see also Kanerva, 1998; Sjödin, Kan-
erva, Levin, & Kristoferson, 1998). Similarity and binding requirements may
be considered as partially satisfied for two codevectors (see also Table 1).

Although the operation of direct conjunctive thinning of two codevec-
tors does not meet all requirements on the CDT procedure, we have ap-
plied it for encoding external information, in particular, for binding of dis-
tributed binary codevectors of feature item and its numerical value (Kussul
& Baidyk, 1990; Rachkovskij & Fedoseyeva, 1990; Artykutsa, Baidyk, Kus-
sul, & Rachkovskij, 1991; Kussul et al., 1991a, 1991b). The density p of the
codevectors of features and numerical values was chosen so as to provide
a specified density p′ of the resulting codevector (see Table 2, K = 2).

To thin more than two codevectors, it is natural to generalize equation 4.1:

z = ∧sxs, (4.3)

where s = 1, . . . ,S, S is the number of codevectors to be thinned. Although
this operation allows binding of two or more codevectors, a single vector

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 423

Table 1: Properties of Various Versions of Thinning Procedures.

Properties of Thinning Direct Conjunctive Permutive Additive and
Procedures Thinning Thinning Subtractive CDT

Determinism Yes Yes Yes
Variable number of inputs No-Yes Yes Yes

Sampling of inputs Yes Yes Yes
Proportional sampling No Yes Yes
Uniform low density No No Yes

Density control No No Yes
Unstructured similarity Yes-No Yes Yes

Similarity of subsets Yes-No Yes Yes
Structured similarity Yes-No Yes Yes

Binding Yes-No Yes Yes

Notes: Yes= the property is present. No= the property is not present. No-Yes and Yes-No
= the property is partially present.

cannot be thinned. The density of resulting codevector z depends on the
densities of xs and their number S. Therefore, to meet the requirement of
uniform low density, the densities of xs should be chosen depending on the
number of thinned codevectors. Also, the requirement of density control is
not satisfied.

We applied this version of direct conjunctive thinning to encode posi-
tions of visual features on a two-dimensional retina. Three codevectors were
bound (S = 3): the codevector of a feature, the codevector of its X-coordinate,
and the codevector of its Y-coordinate (unpublished work of 1991–1992 on
recognition of handwritten digits, letters, and words in collaboration with
WACOM Co., Japan). Also, this technique was used to encode words and
word combinations for text processing (Rachkovskij, 1996). In so doing, the
codevectors of letters comprising words were bound (S > 10). The den-
sity of codevectors to be bound by thinning was chosen so as to provide a
specified density of the resulting codevector (see Table 2, K = 3, . . . , 12).

Neural network implementations of direct conjunctive thinning proce-
dures are rather straightforward and will not be considered here.

Table 2: The Density p of K Independent Codevectors Chosen to Provide a
Specified Density p′ of Codevectors Produced by Their Conjunction.

K

p′ 2 3 4 5 6 7 8 9 10 11 12

0.001 0.032 0.100 0.178 0.251 0.316 0.373 0.422 0.464 0.501 0.534 0.562
0.010 0.100 0.215 0.316 0.398 0.464 0.518 0.562 0.599 0.631 0.658 0.681
0.015 0.122 0.247 0.350 0.432 0.497 0.549 0.592 0.627 0.657 0.683 0.705

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

424 Dmitri A. Rachkovskij and Ernst M. Kussul

4.2 Permutive Conjunctive Thinning. The codevectors to be bound by
direct conjunctive thinning are not superimposed. Let us consider the case
where S codevectors are superimposed by disjunction:

z = ∨sxs. (4.4)

Conjunction of a vector with itself produces the same vector: z ∧ z = z. So
let us modify z by permutation of all its elements and make a conjunction
with the initial vector:

z′ = z ∧ z∼. (4.5)

Here, z∼ is the permuted vector. In vector matrix notation, it can be rewritten
as:

z′ = z ∧ Pz, (4.5a)

where P is an N × N permutation matrix (each row and each column of P
has a single 1, and the rest of P is 0; multiplying a vector by a permutation
matrix permutes the elements of the vector).

Proper permutations are those producing the permuted vector that is
independent of the initial vector (e.g. random permutations or shifts). Then
the density of the result is

p(z′) = p(z)p(z∼) = p(z)p(Pz). (4.6)

Let us consider the composition of the resulting vector:

z′ = z ∧ z∼ = (x1 ∨ · · · ∨ xs) ∧ z∼

= (x1 ∨ · · · ∨ xs) ∧ (x∼1 ∨ · · · ∨ x∼s)
= x1 ∧ (x∼1 ∨ · · · ∨ x∼s) ∨ · · · ∨ xs ∧ (x∼1 ∨ · · · ∨ x∼s)
= (x1 ∧ x∼1) ∨ · · · ∨ (x1 ∧ x∼s) ∨ · · · ∨ (xs ∧ x∼1) ∨ · · · ∨ (xs ∧ x∼s). (4.7)

Thus the resulting codevector is the superposition of all possible pairs of
bitwise codevector conjunctions. Each pair includes one component code-
vector and one permuted component codevector.

Because of the initial disjunction of component codevectors, this proce-
dure meets more requirements on the CDT procedures than direct conjunc-
tive thinning. The requirement of variable number of inputs is now fully
satisfied. As follows from equation 4.7, each component codevector xs is
thinned by conjunction with one and the same stochastic independent vec-
tor z∼. Therefore, statistically the same fraction of 1s is left from each com-
ponent xs, and the requirements of sampling of inputs and proportional
sampling hold.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 425

Figure 3: Neural network implementation of permutive conjunctive thinning.
The same N-dimensional binary pattern is activated in the input neural fields fin 1

and fin 2. It is a superposition of several component codevectors. fin 1 is connected
to fout by a bundle of direct projective connections. fin 2 is connected to fout by a
bundle of permutive connections. Conjunction of the superimposed component
codevectors and their permutation is obtained in the output neural field fout,
where the neural threshold θ = 1.5.

For S sparse codevectors of equal density p(x)¿ 1,

p(z) ≈ Sp(x), (4.8)

p(z′) = p(z)p(z∼) ≈ S2p2(x). (4.9)

To satisfy the requirements of density, p(z′) = p(x) should hold for various
S. It means that p(x) should be equal to 1/S2. Therefore, at fixed density p(x),
the density requirements are not satisfied for a variable number S of com-
ponent items. The similarity and binding requirements hold. In particular,
the requirement of similarity of subsets holds because the higher the num-
ber of identical items, the more identical conjunctions are superimposed in
equation 4.7.

A neural network implementation of permutive conjunctive thinning is
shown in Figure 3. In neural network terms, units are called neurons, and
their pools are called neural fields. There are two input fields, fin1 and fin2,
and one output field, fout, consisting of N binary neurons each. fin1 is con-
nected to fout by a bundle of N direct projective (1-to-1) connections. Each

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

426 Dmitri A. Rachkovskij and Ernst M. Kussul

connection of this bundle connects neurons of the same number. fin2 is con-
nected to fout by the bundle of N permutive projective connections. Each
connection of this bundle connects neurons of different numbers. Synapses
of the neurons of the output field have weights of +1. The same pattern
of superimposed component codevectors is activated in both input fields.
Each neuron of the output field summarizes the excitations of its two inputs
(synapses). The output is determined by comparison of the excitation level
with the threshold θ = 1.5. Therefore each output neuron performs conjunc-
tion of its inputs. Thus, the activity pattern of the output field corresponds
to bit conjunction of pattern present in the input fields and its permutation.
Obviously, there are a lot of different configurations of permutive connec-
tions. Permutation by shift is particularly attractive because it is simple and
fast to implement in computer simulations.

4.3 Additive CDT Procedure. Although the density of resulting code-
vectors for permutive cojunctive thinning is closer to the density of each
component codevector than for direct conjunction, it varies with the num-
ber and density of component codevectors.

Let us make a codevector z by the disjunction of S component codevectors
xs, as in equation 4.4. Since the density of component codevectors is low and
their number is small, the “absorption” of common 1s is low; according to
equations 4.8 and 4.9, p(z′) is approximately S2p(x) times p(x). For example,
if p(x) = 0.01 and S = 5, then p(z′) ≈ (1/4)p(x).

Therefore, to make the density of the thinned codevector equal to the
density of its component codevectors, let us superimpose an appropriate
number K of independent vectors with the density p(z′):

〈z〉 = ∨k(z ∧ z∼k) = z ∧ (∨kz∼k). (4.10)

Here 〈z〉 is the thinned output vector and z∼k is a unique (independent
stochastic) permutation of elements of vector z, fixed for each k. In vector-
matrix notation, we can write:

〈z〉 = ∨k(z ∧ Pkz) = z ∧ ∨k(Pkz). (4.10a)

The number K of vectors to be superimposed by disjunction can be deter-
mined as follows. If the density of the superposition of permuted versions
of z is made

p(∨k(Pkz)) = 1/S, (4.11)

then after conjunction with z (see equations 4.10 and 4.10a) we will get the
needed density of 〈z〉:

p(〈z〉) = p(z)/S ≈ Sp(x)/S = p(x). (4.12)

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 427

Table 3: Number K of Permutations of an Input Codevec-
tor That Produces the Proper Density of the Thinned Output
Codevector in the Additive Version of CDT.

Number S of Component Codevectors in the
Input Codevector

Density p of
Component 2 3 4 5 6 7
Codevector

0.001 346.2 135.0 71.8 44.5 30.3 21.9
0.005 69.0 26.8 14.2 8.8 6.0 4.3
0.010 34.3 13.3 7.0 4.4 2.9 2.1

Note: K should be rounded to the nearest integer.

Taking into account the “absorption” of 1s in disjunction of K permuted
vectors z∼, equation 4.11 can be rewritten as

1/S = 1− (1− pS)K. (4.13)

Then

K = ln(1− 1/S)/ ln(1− pS). (4.14)

The dependence K(S) at different p is shown in Table 3.

4.3.1 Meeting the CDT Procedure Requirements. Since the configuration of
each kth permutation is fixed, the procedure of additive CDT is determin-
istic. The input vector z to be thinned is the superposition of component
codevectors. The number of these codevectors may be variable; therefore,
the requirement of variable number of inputs holds.

The output vector is obtained by conjunction of z (or its reversible permu-
tation) with the independent vector∨k(Pkz). Therefore, the 1s of all codevec-
tors superimposed in z are equally represented in 〈z〉, and both the sampling
of inputs and the proportional sampling requirements hold.

Density control of the output codevector for variable number and den-
sity of component codevectors is realized by varying K (see Table 3). There-
fore, the density requirements hold. Since the sampling of inputs and pro-
portional sampling requirements hold, the codevector 〈z〉 is similar to all
component codevectors xs, and the requirement of unstructured similarity
holds. The more similar are the components of one composite item to those
of another, the more similar are their superimposed codevectors z. There-
fore, the more similar are the vectors—disjunctions of K fixed permutations
of z—and the more similar representations of each component codevector
will remain after conjunction (see equation 4.10) with z. Thus, the similar-
ity of subsets requirement holds. Characteristics of this similarity will be
considered in more detail in section 7.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

428 Dmitri A. Rachkovskij and Ernst M. Kussul

Figure 4: (A), (B). Two algorithmic implementations of the additive version of
the CDT procedure. Parameter seed defines a configuration of shift permuta-
tions. For small K, checking that r is unique would be useful.

Since different combinations of component codevectors produce differ-
ent z and therefore different codevectors of K permutations of z, represen-
tations of certain component codevector in the thinned codevector will be
different for different combinations of component items, and the binding re-
quirement holds. The more similar are representations of each component in
the output vector, the more similar are output codevectors (the requirement
of structured similarity holds).

4.3.2 An Algorithmic Implementation. Shift is an easily implementable
permutation. Therefore an algorithmic implementation of this CDT proce-
dure may be as in Figure 4A. Another example of this procedure does not
require preliminary calculation of K (see Figure 4B). In this version, con-
junctions of the initial and permuted vectors are superimposed until the
number of 1s in the output vector becomes equal to M.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 429

Figure 5: Neural network implementation of the additive version of CDT pro-
cedure. There are four neural fields with the same number of neurons: two input
fields fin 1 and fin 2, the output field fout, and the intermediate field fint. The neu-
rons of fin 1 and fout are connected by the bundle of direct projective connections
(1-to-1). fint and fout are also connected in the same manner. The same binary pat-
tern z (corresponding to superimposed component codevectors) is in the input
fields fin 1 and fin 2. The intermediate field fint is connected to the input field fin 2

by K bundles of permutive projective connections. The number K of required
bundles is estimated in Table 3. Only two bundles are shown here: one by solid
lines and one by dotted lines. The threshold of fint neurons is 0.5. Therefore, fint

accumulates (by bit disjunction) various permutations of the pattern z in fin 2.
The threshold of fout is equal to 1.5. Hence, this field performs a conjunction of
the pattern z from fin 1 and the pattern of K permuted and superimposed z from
fint. z, 〈z〉, w correspond to the notation of Figure 4.

4.3.3 A Neural Network Implementation. A neural network implementa-
tion of the first example of the additive CDT procedure (see Figure 4A) is
shown in Figure 5.

To choose K depending on the density of z, the neural network imple-
mentation should incorporate some structures not shown in the figure. They
should determine the density of the initial pattern z and activate (turn on)
K bundles of permutive connections from their total number Kmax. Alterna-
tively, these structures should actuate the bundles of permutive connections

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

430 Dmitri A. Rachkovskij and Ernst M. Kussul

one by one in the fixed order1 until the density of the output vector in fout
becomes M/N. Let us recall that bundles of shift permutive connections are
used in algorithmic implementations.

4.4 Subtractive CDT Procedure. Let us consider another version of the
CDT procedure. Rather than masking z with the straight disjunction of
permuted versions of z, as in additive thinning, let us mask it with the
inverse of that disjunction:

〈z〉 = z ∧ ¬ (∨kz∼k) = z ∧ ¬ ∨k (Pkz). (4.15)

If we choose K to make the number of 1s in 〈z〉 equal to M, then this pro-
cedure will satisfy the requirements of section 3. Therefore, the density of
superimposed permuted versions of z before inversion should be 1 − 1/S
(compare to equation 4.13). Thus, the number K of permuted vectors to be
superimposed in order to obtain the required density (taking into account
“absorption” of 1s) is determined from:

1− 1/S = 1− (1− pS)K. (4.16)

Then, for pS¿ 1

K ≈ ln S/(pS). (4.17)

Algorithmic implementations of this subtractive CDT procedure (Kussul,
1988, 1992; Kussul & Baidyk, 1990) are analogous to those presented for the
additive CDT procedure in section 4.3.2. A neural network implementation
is shown in Figure 6.

Since the value of lnS/S is approximately the same at S = 2, 3, 4, 5 (see
Table 4), one can choose the K for a specified density of component code-
vectors p(x) as:

K ≈ 0.34/p(x). (4.18)

At such K and S, p(〈z〉) ≈ p(x). Therefore, the number K of permutive
connection bundles in Figure 6 can be fixed, and their sequential activation
is not needed. So each neuron of Fout may be considered as connected to an
average of K randomly chosen neurons of Fin 2 by inhibitory connections.
More precise values of K (obtained as exact solution of equation 4.16) for
different values of p are presented in Table 4.

1 As noted by Kanerva (personal communication), all Kmax bundles could be activated
in parallel if the weight of the kth bundle is set to be 2−k and the common threshold of fint
neurons is adjusted dynamically so that fout has the desired density of 1s.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 431

Figure 6: Neural network implementation of the subtractive CDT procedure.
There are three neuron fields of the same number of neurons: two input fields
fin 1 and fin 2, as well as the output field fout. The copy of the input vector z is in
both input fields. The neurons of fin 1 and fout are connected by the bundle of
direct projective connections (1-to-1). The neurons of fin 2 and fout are connected
by K bundles of independent permutive connections. (Only two bundles of
permutive connections are shown here: one by solid lines and one by dotted
lines). Unlike Figure 5, the synapses of permutive connections are inhibitory
(the weight is−1). The threshold of the output field neurons is 0.5. Therefore, the
neurons of z remaining active in fout are those for which none of the permutive
connections coming from z is active. As follows from Table 4, K is approximately
the same for the number S = 2, . . . , 5 of component codevectors of certain
density p.

This version of the CDT procedure was originally proposed under the
name normalization procedure (Kussul, 1988; Kussul & Baidyk, 1990; Amosov
et al., 1991). We have used it in the multilevel APNN for sequence pro-
cessing (Rachkovskij, 1990b; Kussul & Rachkovskij, 1991). We have also
used it for binding of sparse codes in perceptron-like classifiers (Kussul,
Baidyk, Lukovich, & Rachkovskij, 1993) and in one-level APNN applied for
recognition of vowels (Rachkovskij & Fedoseyeva, 1990, 1991), word roots
(Fedoseyeva, 1992), textures (Artykutsa et al., 1991; Kussul et al., 1991b),
shapes (Kussul & Baidyk, 1990), handprinted characters (Lavrenyuk, 1995),
and logical inference (Kasatkin & Kasatkina, 1991).

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

432 Dmitri A. Rachkovskij and Ernst M. Kussul

Table 4: Function ln S/S and Number K of Permutations of
an Input Codevector That Produces the Proper Density of
the Thinned Output Codevector in the Subtractive Version
of CDT.

Number S of Component Codevectors in the
Input Codevector

2 3 4 5 6 7

p ln S/S

0.347 0.366 0.347 0.322 0.299 0.278

0.001 346.2 365.7 345.9 321.1 297.7 277.0
0.005 69.0 72.7 68.6 63.6 58.8 54.6
0.010 34.3 36.1 34.0 31.4 29.0 26.8

Note: K should be rounded to the nearest integer.

5 Procedures of Auto-Thinning, Hetero-Thinning, Self-Exclusive
Thinning, and Notation

In sections 4.2 through 4.4 we considered the versions of thinning proce-
dures where a single vector (superposition of component codevectors) was
the input. The corresponding pattern of activity was present in both fin 1 and
fin 2 (see Figures 3, 5, and 6), and therefore the input vector thinned itself.
Let us call these procedures auto-thinning or auto-CDT and denote them as

label〈u〉. (5.1)

Here u is the codevector to be thinned (usually superposition of com-
ponent codevectors), which is in the input fields in 1 and fin 2 of Figures 3,
5, and 6. label〈. . .〉 denotes a particular configuration of thinning (particular
realization of bundles of permutive connections). Let us note that Plate uses
angle brackets to denote normalization operation in HRRs (Plate, 1995; see
also section 9.1.5).

A lot of orthogonal configurations of permutive connections are possible.
Differently labeled CDT procedures implement different thinning. In the
algorithmic implementations (see Figure 4), different labels will use different
seeds. No label corresponds to some fixed configuration of thinning. Unless
otherwise specified, it is assumed that the number K of bundles is chosen
to maintain the preset density of the thinned vector 〈u〉, usually |〈u〉| ≈ M.
∨k(Pku) can be expressed as Ru thresholded at one-half, where the matrix

R is the disjunction, or it can also be the sum of K permutation matrices Pk.
This, in turn, can be written as a function T(u), so that we get

〈u〉 = u ∧ T(u). (5.2)

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 433

It is possible to thin one codevector by another one if the pattern to be
thinned is activated in fin 1 and the pattern that thins is activated in fin 2. Let
us call such procedure hetero-CDT, hetero-thinning, or thinning u with w.
We denote hetero-thinning as

label〈u〉w. (5.3)

Here w is the pattern that does the thinning. It is activated in fin 2 of Figures 3,
5, and 7. u, the pattern that is thinned, is activated in fin 1. label〈. . .〉 is the
configuration label of thinning. For auto-thinning, we may write 〈u〉 = 〈u〉u.

For the additive hetero-thinning, equation 4.10 can be rewritten as

〈u〉w = u ∧ (∨k(Pkw)) = u ∧ T(w). (5.4)

For the subtractive hetero-thinning, equation 4.15 can be rewritten as

〈u〉w = u ∧ ¬ (∨k(Pkw)) = u ∧ ¬ T(w). (5.5)

Examples. As before, we denote composite codevector u to be thinned by
its component codevectors, for example, u = a ∨ b ∨ c or simply u = abc.

Auto-thinning of composite codevector u:

〈u〉u = 〈a ∨ b ∨ c〉a∨b∨c = 〈a ∨ b ∨ c〉 = 〈abc〉abc = 〈abc〉.

Hetero-thinning of composite codevector u with codevector d:

〈u〉d = 〈a ∨ b ∨ c〉d = 〈abc〉d.

For both additive and subtractive CDT procedures:

〈abc〉 = 〈a〉abc ∨ 〈b〉abc ∨ 〈c〉abc.

We can also write 〈abc〉 = (a ∧ T(abc)) ∨ (b ∧ T(abc)) ∨ (c ∧ T(abc)). An
analogous expression can be written for a composite pattern with other
numbers of components. Let us note that K should be the same for thinning
of the composite pattern as a whole or its individual components.

For the additive CDT procedure, it is also true:

〈abc〉 = 〈a〉abc ∨ 〈b〉abc ∨ 〈c〉abc = 〈a〉a ∨ 〈b〉a ∨ 〈c〉a ∨ 〈a〉b ∨ 〈b〉b
∨ 〈c〉b ∨ 〈a〉c ∨ 〈b〉c ∨ 〈c〉c.

For the subtractive CDT procedure we can write:

〈a〉bcd = 〈〈〈a〉b〉c〉d and

〈abc〉 = 〈〈〈a〉a〉b〉c ∨ 〈〈〈b〉a〉b〉c ∨ 〈〈〈c〉a〉b〉c.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

434 Dmitri A. Rachkovskij and Ernst M. Kussul

Let us also consider a modification of the auto-CDT procedures that will
be used in section 7.2. If we eliminate the thinning of a component codevec-
tor with itself, we obtain “self-exclusive” auto-thinning. Let us denote it as
〈abc〉\abc: 〈abc〉\abc = 〈a〉bc ∨ 〈b〉ac ∨ 〈c〉ab.

6 Retrieval of Component Codevectors

After thinning, the codevectors of component items are present in the thinned
codevector of a composite item in a reduced form. We must be able to re-
trieve complete component codevectors. Since the requirement of the un-
structured similarity holds, the thinned composite codevector is similar to
its component codevectors. So if we have a full set (alphabet) of component
codevectors of the preceding (lower) level of compositional hierarchy, we
can compare them with the thinned codevector. The similarity degree is de-
termined by the overlap of codevectors. The alphabet items corresponding
to the codevectors with maximum overlaps are the sought-after compo-
nents.

The search of the most similar component codevectors can be performed
by a sequential finding of overlaps of the codevector to be decoded with
all codevectors of the component alphabet. An associative memory can
be used to implement this operation in parallel. After retrieving the full-
sized component codevectors of the lower hierarchical level, one can then
retrieve their component codevectors of a still lower hierarchical level in an
analogous way. For this purpose, the alphabet of the latter should be known
as well. If the order of component retrieval is important, some auxiliary
procedures can be used (Kussul, 1988; Amosov et al., 1991; Rachkovskij,
1990b; Kussul & Rachkovskij, 1991).

Example. Let us consider the alphabet of six component items a, b, c, d, e, f .
They are encoded by stochastic fixed vectors of N = 100,000 bits with
M ≈ 1000 bits set to 1. Let us obtain the thinned codevector 〈abc〉. The
number of 1s in 〈abc〉 in our numerical example is |〈abc〉| = 1002. Let us
find the overlap of each component codevector with the thinned codevec-
tor: |a ∧ 〈abc〉| = 341; |b ∧ 〈abc〉| = 350; |c ∧ 〈abc〉| = 334; |d ∧ 〈abc〉| = 12;
|e∧〈abc〉| = 7; |f∧〈abc〉| = 16. So the representation of the component items
a, b, c is substantially higher than the representation of the items d, e, f oc-
curring due to a stochastic overlap of independent binary codevectors. The
numbers obtained are typical for the additive and the subtractive versions
of thinning, as well as for their self-exclusive versions.

7 Similarity Preservation by the Thinning Procedures

In this section, let us consider the similarity of thinned composite code-
vectors as well as the similarity of thinned representations of component

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 435

codevectors in the thinned composite codevectors. These kinds of similar-
ity are considered under different combinations of component items and
different versions of thinning procedures.

Let us use the following CDT procedures:

• Permutive conjunctive thinning, section 4.2 (Paired-M)

• Additive auto-CDT, section 4.3 (CDTadd)

• Additive self-exclusive auto-CDT, section 5 (CDTadd-sl)

• Subtractive auto-CDT, section 4.4 (CDTsub)

• Subtractive self-exclusive auto-CDT, section 5 (CDTsub-sl)

For these experiments, let us first obtain the composite codevectors that
have 5 down to 0 component codevectors in common: abcde, abcdf, abcfG,
abfgh, afghi, fghij. For the component codevectors, N = 100,000 bits with
M ≈ 1000. Then for each thinning procedure, let us thin the composite code-
vectors down to the density of their component codevectors. (For permutive
conjunctive thinning, the density of component codevectors was chosen to
get approximately M of 1s in the result.)

7.1 Similarity of Thinned Codevectors. Let us find an overlap of thinned
codevector 〈abcde〉 with 〈abcde〉, 〈abcdf〉, 〈abcfg〉, 〈abfgh〉, 〈afghi〉, and
〈fghij〉. Here 〈 〉 is used to denote any thinning procedure. A normalized
measure of the overlap of x with various y is determined as |x ∧ y|/|x|.

The experimental results are presented in Figure 7A, where the normal-
ized overlap of thinned composite codevectors is shown versus the normal-
ized overlap of corresponding unthinned composite codevectors. It can be
seen that the overlap of thinned codes for various versions of the CDT pro-
cedure is approximately equal to the square of overlap of unthinned codes.
For example, the similarity (overlap) of abcde and abfgh is approximately
0.4 (two common components of five total), and the overlap of their thinned
codevectors is about 0.16.

7.2 Similarity of Component Codevector Subsets Included in Thinned
Codevectors. Some experiments were conducted in order to investigate the
similarity of subsets requirement. The similarity of subsets of a component
codevector incorporated into various thinned composite vectors was ob-
tained as follows. First, the intersections of various thinned five-component
composite codevectors with their component a were determined: u = a ∧
〈abcde〉, v = a∧ 〈abcdf〉, w = a∧ 〈abcfg〉, x = a∧ 〈abfgh〉, y = a∧ 〈afghi〉.
Then the normalized values of the overlap of intersections were obtained
as |u ∧ v|/|u|, |u ∧w|/|u|, |u ∧ x|/|u|, |u ∧ y|/|u|.

Figure 7B shows how the similarity (overlap) of component codevector
subsets incorporated into two thinned composite codevectors varies versus
the similarity of corresponding unthinned composite codevectors. These

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

436 Dmitri A. Rachkovskij and Ernst M. Kussul

Figure 7: (A) Overlap of thinned composite codevectors. (B) Overlap of com-
ponent subsets in thinned composite codevectors versus the overlap of the cor-
responding unthinned composite codevectors for various versions of thinning
procedures. CDTadd: the additive; CDTsub: the subtractive; CDTadd-sl: the self-
exclusive additive; CDTsub-sl: the self-exclusive subtractive CDT procedure;
Paired-M: permutive conjunctive thinning. The densities of component code-
vectors are chosen to obtain M of 1s in the thinned codevector. For component
codevectors, N = 100,000, M ≈ 1000. The number of component codevectors is
5. The results are averaged over 50 runs with different random codevectors.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 437

dependencies are different for different thinning procedures. For the CD-
Tadd and the CDTadd-sl, they are close to linear, but for the CDTsub and
CDTsub-sl, they are polynomial. Which is preferable depends on the appli-
cation.

7.3 The Influence of the Depth of Thinning. By the depth of thinning,
we understand the density value of a thinned composite codevector. Be-
fore, we considered it equal to the density of component codevectors. Here,
we vary the density of the thinned codevectors. The experimental results
presented in Figure 8 are useful for estimating the resulting similarity of
thinned codevectors in applications.

As in sections 7.1 and 7.2, composite codevectors of five components
were used. Therefore, approximately 5M of 1s (actually, more close to 4.9M
because of random overlaps) were in the input vector before thinning. We
varied the number of 1s in the thinned codevectors from 4M to M/4. Only
the additive and the subtractive CDT procedures were investigated.

The similarity of thinned codevectors is shown in Figure 8A. For a shal-
low thinning, where the resulting density is near the density of input com-
posite codevector, the similarity degree of resulting vectors is close to that
of input codevectors (the curve is close to linear). For a deep thinning,
where the density of thinned codevectors is much less than the density
of input codevectors, the similarity function behaves as a power function,
transforming from linear through quadratic to cubic (for subtractive thin-
ning).

The similarity of component subsets in the thinned codevector is shown
in Figure 8B. For the additive CDT procedure, the similarity function is lin-
ear, and its angle reaches approximately 45 degrees for “deep” thinning.
For the subtractive CDT procedure, the function is similar to the additive
one for the shallow thinning and becomes near-quadratic for the “deep”
thinning.

8 Representation of Structured Expressions

Let us consider representation of various kinds of structured data by binary
sparse codevectors of fixed dimensionality. In the examples below, the items
of the base level for a given expression may, in their turn, represent complex
structured data.

8.1 Transformation of Symbolic Bracketed Expressions into Represen-
tations by Codevectors. Performing the CDT procedure can be viewed as
an analog of introducing brackets into symbolic descriptions. As mentioned
in section 5, the CDT procedures with different thinning configurations are
denoted by different labels at the opening thinning bracket: 1〈 〉, 2〈 〉, 3〈 〉,
4〈 〉, 5〈 〉, and so on.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

438 Dmitri A. Rachkovskij and Ernst M. Kussul

Figure 8: (A) Overlap of thinned composite codevectors. (B) Overlap of compo-
nent subsets in thinned composite codevectors for various “depth” of additive
(CDTadd) and subtractive (CDTsub) CDT procedures. There are five compo-
nents in the composite item. Therefore, the input composite codevector includes
approximately 5M of 1s. The composite codevector is thinned to have from 4M to
M/4 of 1s. Two curves for thinning depth M are consistent with the correspond-
ing curves in Figure 7. For all component codevectors, N = 100,000, M ≈ 1000.
The results are averaged over 50 runs with different random codevectors.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 439

Therefore, in order to represent a complex symbolic structure by a dis-
tributed binary codevector, one should:

1. Map each symbol of the base-level item to the corresponding binary
sparse codevector of fixed dimensionality.

2. Replace conventional brackets in symbolic bracketed representation
by “thinning” ones. Each compositional level has its own label of
thinning brackets, that is, thinning configuration.

3. Superimpose the codevectors inside the thinning brackets of the deep-
est nesting level by elementwise disjunction.

4. Perform the CDT procedure on superimposed codevectors using the
configuration of thinning corresponding to a particular “thinning”
label.

5. Superimpose the resulting thinned vectors inside the thinning brack-
ets of the next nesting level.

6. Perform the CDT procedure on superimposed codevectors using the
appropriate thinning configuration of that nesting level.

7. Repeat the two previous steps until the whole structure is encoded.

8.2 Representation of Ordered Items. For many propositions, the order
of arguments is essential. To represent the order of items encoded by the
codevectors, binding with appropriate roles is usually used.

One approach is to use explicit binding of role codevectors (agent-object,
antecedent-consequent, or just an ordinal number) with the item (filler)
codevector. This binding can be realized by an auto- or hetero-CDT proce-
dure (Rachkovskij, 1990b). Item a, which is number 3, may be represented
as 〈a ∨ n3〉 or 〈a〉n3, where n3 is the codevector of the “third-place” role.

Another approach is to use implicit binding by providing different lo-
cations for different positions of an item in a proposition. To preserve the
fixed dimensionality of codevectors, it was proposed to encode different
positions by the specific shifts of codevectors (Kussul & Baidyk, 1993). (Re-
versible permutations can be also used.) For our example, we have a shifted
by the number n3 of 1-bit shifts corresponding to the third place of an
item.

These and other techniques to represent the order of items have their
pros and cons. Thus, a specific technique should be chosen depending on
the application. We will not consider details here. It is important that such
techniques exist, and we will denote the codevector of item a at the nth place
simply by a n.

Let us note that generally the modification of an item codevector to en-
code its ordinal number should be different for different nesting levels.
It is analogous to having its own thinning configuration at each level of
nesting. Therefore, a and b should be modified in the same manner in

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

440 Dmitri A. Rachkovskij and Ernst M. Kussul

1〈. . . a n . . .〉 and 1〈. . .b n . . .〉, but a should generally be modified differ-
ently in 2〈. . . a n . . .〉.

8.3 Examples.

8.3.1 Role-Filler Structure. Representations of structures or propositions
by the role-filler scheme are widely used (Smolensky, 1990; Pollack, 1990;
Plate, 1991, 1995; Kanerva, 1996; Sperduti, 1994). Let us consider the rela-
tional instance

knows(Sam, loves(John, Mary)). (8.1)

Using Plate’s HRRs, it can be represented as:

L1 = love+ loveagt ∗ john+ loveobj ∗mary, (8.2)

L2 = know+ knowagt ∗ sam+ knowobj ∗ L1, (8.3)

where ∗ stands for binding operation and+ denotes addition. In our repre-
sentation:

L1 = 2〈love ∨ 1〈loveagt ∨ john〉 ∨ 1〈loveobj ∨mary〉〉, (8.4)

L2 = 4〈know ∨ 3〈knowagt ∨ sam〉 ∨ 3〈knowobj ∨ L1〉〉. (8.5)

8.3.2 Predicate-Arguments Structure. Let us consider representation of
relational instances loves(John, Mary) and loves(Tom, Wendy) by the predicate-
arguments (or symbol-argument-argument) structure (Halford et al., 1998):

loves ∗ John ∗Mary+ loves ∗ Tom ∗Wendy. (8.6)

Using our representation, we obtain:

2〈1〈loves 0∨ John 1∨Mary 2〉∨ 1〈loves 0∨Tom 1∨Wendy 2〉〉.(8.7)

Let us note that this example may be represented using the role-filler scheme
of HRRs as

L1 = loves+ lover ∗ Tom+ loved ∗Wendy, (8.8)

L2 = loves+ lover ∗ John+ loved ∗Mary, (8.9)

L = L1+ L2. (8.10)

Under such a representation, the information about who loves whom is lost
in L (Plate, 1995; Halford et al., 1998). In our representation, this information

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 441

is preserved even using the role-filler scheme:

L1 = 2〈loves ∨ 1〈lover ∨ Tom〉 ∨ 1〈loved ∨Wendy〉〉, (8.11)

L2 = 2〈loves ∨ 1〈lover ∨ John〉 ∨ 1〈loved ∨Mary〉〉, (8.12)

L = 〈L1 ∨ L2〉. (8.13)

Here is another example of a relational instance from Halford et al. (1998):

cause(shout-at(John ,Tom),hit(Tom, John)). (8.14)

Using our representation scheme, it may be represented as

2〈cause 0 ∨ 1〈shout-at 0 ∨ John 1 ∨ Tom 2〉 1

∨ 1〈hit 0 ∨ Tom 1 ∨ John 2〉 2〉. (8.15)

8.3.3 Treelike Structure. Here is an example of a bracketed binary tree
adapted from Pollack (1990):

((d (a n))(v (p (d n)))). (8.16)

If we do not take the order into account but use only the information about
the grouping of constituents, our representation may look as simple as:

4〈3〈d ∨ 2〈a ∨ n〉〉 ∨ 3〈v ∨ 2〈p ∨ 1〈d ∨ n〉〉〉〉. (8.17)

8.3.4 Labeled Directed Acyclic Graph. Sperduti and Starita (1997) and
Frasconi, Gori, and Sperduti (1997) provide examples of labeled directed
acyclic graphs. Let us consider

F(a, f (y), f (y, F(a, b))). (8.18)

Using our representation, it may look like

3〈F 0 ∨ a 1 ∨ 2〈f 0 ∨ y 1〉 2

∨2〈f 0 ∨ y 1 ∨ 1〈F 0 ∨ a 1 ∨ b 2〉 2〉 3〉. (8.19)

9 Related Work and Discussion

CDT procedures allow the construction of binary sparse representations of
complex data structures, including nested compositional structures or part-
whole hierarchies. The basic principles of such representations and their
use for data handling were proposed in the context of the APNN paradigm
(Kussul, 1988, 1992; Kussul et al., 1991a).

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

442 Dmitri A. Rachkovskij and Ernst M. Kussul

9.1 Comparison to Other Representation Schemes. Let us compare our
scheme for representation of complex data structures using the CDT pro-
cedure (we will refer to it as APNN-CDT) with other schemes using dis-
tributed representations. The best known schemes are (L)RAAMs (Pollack,
1990; Blair, 1997; Sperduti 1994), tensor product representations (Smolen-
sky, 1990; Halford et al., 1998), holographic reduced representations (HRRs)
(Plate, 1991, 1995), and binary spatter codes (BSCs) (Kanerva, 1994, 1996).
For this comparison, we will use the framework of Plate (1997), who pro-
poses distinguishing these schemes using the following features: the na-
ture of distributed representation, the choice of superposition, the choice of
binding operation, how the binding operation is used to represent predicate
structure, and the use of other operations and techniques.

9.1.1 The Nature of Distributed Representation. Vectors of random real-
valued elements with the gaussian distribution are used in HRRs. Dense
binary random codes with the number of 1s equal to the number of 0s
are used in BSCs. Vectors with real or binary elements (without specified
distributions) are used in other schemes.

In the APNN-CDT scheme, binary vectors with a randomly distributed
small number of 1s are used to encode base-level items.

9.1.2 The Choice of Superposition. The operation of superposition is used
for unstructured representation of an aggregate of codevectors.

In BSCs, superposition is realized as a bitwise thresholded addition of
codevectors. Schemes with nonbinary elements, such as HRRs, use elemen-
twise summation. For tensors, superposition is realized as adding up or
ORing the corresponding elements.

In the APNN-CDT scheme, elementwise OR is used.

9.1.3 The Choice of Binding Operation. Most schemes use special opera-
tions for the binding of codevectors. The binding operations producing the
bound vector that has the same dimension as initial codevectors (or one of
them in (L)RAAMs) are convenient for representation of recursive struc-
tures. The binding operation is performed “on the fly” by circular convolu-
tion (HRRs), elementwise multiplication (Gayler, 1998), or XOR (BSCs). In
(L)RAAMs, binding is realized through the multiplication of input codevec-
tors by the weight matrix of the hidden layer formed by training a multilayer
perceptron using the codevectors to be bound.

The vector obtained by binding can be bound with another codevector
in its turn. In tensor models, binding of several codevectors is performed
by their tensor product. The dimensionality of the resulting tensor grows
with the number of bound codevectors.

In the APNN-CDT scheme, binding is performed by the CDT procedure.
Unlike the other schemes, where the codevectors to be bound are not super-
imposed, they can be superimposed by disjunction in the basic version of

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 443

the CDT procedure. Superposition codevector z (as in equation 4.4) makes
the context codevector. The result of the CDT procedure may be considered
as superimposed bindings of each component codevector with the context
codevector, or it may be considered as superimposed paired bindings of all
component codevectors with each other. (Note that in the “self-exclusive”
CDT version [section 5] the codevector of each component is not bound
to itself. In the hetero-CDT version, one codevector is bound to another
codevector through thinning with the latter.)

According to Plate’s framework, CDT as a binding procedure can be con-
sidered as a special kind of superposition (disjunction) of certain elements
of the tensor product of z by itself (i.e., N2 scalar products zizj). Actually,
〈zi〉 is a disjunction of certain zizj = zi ∧ zj, where zj is the jth element of
permuted z (see equation 4.10). CDT can also be considered as a hashing
procedure: the subspace to where hashing is performed is defined by 1s of
z, and some 1s of z are mapped to that subspace.

Since the resulting bound codevector 〈z〉 is obtained in the CDT proce-
dure by thinning the 1s of z, (where the component codevectors are superim-
posed), 〈z〉 is similar to its component codevectors (unstructured similarity
is preserved). Therefore, to retrieve the components bound in the thinned
codevector, we only need to choose the most similar component codevectors
from their alphabet. This can be done using an associative memory.

None of the mentioned binding operations, except for the CDT, pre-
serves unstructured similarity. Therefore, to extract some component code-
vector from the bound codevector, they demand to know the other com-
ponent codevector(s). Then rebinding of the bound codevector with the
inverses of known component codevector(s) produces a noisy version of
the sought component codevector. This operation is known as decoding
or unbinding. To eliminate noise from the unbound codevector, a clean-up
memory with the full alphabet of component codevectors is also required
in those schemes. If some or all components of the bound codevector are
not known, decoding in those schemes requires exhaustive search (sub-
stitution, binding, and checking) through all combinations of codevectors
from the alphabet. Then the obtained bound codevector most similar to the
bound codevector to be decoded provides the information on its composi-
tion.

As in the other schemes, structured similarity is preserved by the CDT,
that is, bindings of similar patterns are similar to each other. However,
the character of similarity is different. In most of the other schemes, the
similarity of the bound codevectors is equal to the product of similarities of
the component codevectors (e.g., Plate, 1995). For example, the similarity of
a ∗ b and a ∗ b′ is equal to the similarity of b and b’. Therefore if b and b’
are not similar at all, the bound vectors will not be similar.

The codevectors to be bound by the CDT procedure are initially superim-
posed component codevectors, so their initial similarity is the mean of the
components’ similarities. Also, the thinning itself preserves approximately

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

444 Dmitri A. Rachkovskij and Ernst M. Kussul

the square of similarity of the input vectors. So the similarity for dissimilar
b and b’ will be > 0.25 instead of 0 for the other schemes.

9.1.4 How the Binding Operation Is Used to Represent Predicate Structure.
In most of the schemes, predicate structures are represented by role-filler
bindings. Halford et al. (1998) use predicate-argument bindings. The APNN-
CDT scheme allows such representations of predicate structures as role-filler
bindings and predicate-argument bindings and also offers a potential for
other possible representations. Both ordered and unordered arguments can
be represented.

9.1.5 Other Operations and Techniques.

Normalization. After superposition of codevectors, some normalizing trans-
formation is used in various schemes to bring the individual elements or the
total strength of the resulting codevector within certain limits. In BSCs, it is
the threshold operation that converts a nonbinary codevector (the bitwise
sum of component codevectors) to a binary one. In HRRs, it is the scaling
of codevectors to the unit length that facilitates their comparison.

The CDT procedure performs a dual role: it not only binds superim-
posed codevectors of components, but it also normalizes the density of the
resulting codevector. It would be interesting to check to what extent the
normalization operations in other schemes provide the effect of binding as
well.

Clean-up memory. Associative memory is used in various representation
schemes for the storage of component codevectors and their recall (clean-up
after finding their approximate noisy versions using unbinding). After the
CDT procedure, the resulting codevector is similar to its component code-
vectors; however, the latter are represented in the reduced form. Therefore,
it is natural to use associative memories in the APNN-CDT scheme to store
and retrieve the codevectors of component items of various complexity
levels. Since component codevectors of different complexity levels have ap-
proximately the same small number of 1s, an associative memory based
on assembly neural networks with simple Hebbian learning rule allows
efficient storage and retrieval of a large number of codevectors.

Chunking. The problem of chunking remains one of the least developed
issues in existing representation schemes. In the HRRs and BSCs, chunks are
normalized superpositions of stand-alone component codevectors and their
bindings. In its turn, the codevector of a chunk can be used as one of the com-
ponents for binding. Thus, chunking allows structures of arbitrary nesting
or composition level to be built. Each chunk should be stored in a clean-up
memory. When complex structures are decoded by unbinding, noisy ver-
sions of chunk codevectors are obtained. They are used to retrieve pure
versions from the clean-up memory, which can be decoded in their turn.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 445

In those schemes, the codevectors of chunks are not bound. Therefore,
they cannot be superimposed without the risk of structure loss, as is re-
peatedly noted in this article. In the APNN-CDT scheme, any composite
codevector after thinning represents a chunk. Since the component code-
vectors are bound in the chunk codevector, the latter can be operated as
a single whole (an entity) without confusion of components belonging to
different items.

When a compositional structure is constructed using HRRs or BSCs, the
chunk codevector is usually the filler, which becomes bound with some
role codevector. In this case, in distinction to the APNN-CDT scheme, the
components a, b, c of the chunk become bound with the role rather than
with each other:

role∗(a+ b+ c) = role ∗ a+ role ∗ b+ role ∗ c. (9.1)

Again, if the role is not unique, it cannot be determined to which chunk
the binding role ∗ a belongs. Also, the role codevector should be known for
unbinding and subsequent retrieval of the chunk.

Thus, in the representation schemes of HRRs and binary spatter codes,
each of the component codevectors belonging to a chunk binds with (role)
codevectors of other hierarchical levels not belonging to that chunk. There-
fore such bindings may be considered “vertical.” In the APNN-CDT scheme,
a ”horizontal” binding is essential: the codevectors of the chunk components
are bound with each other.

In the schemes of Plate, Kanerva, and Gayler, the vertical binding chain
role upper level ∗ (role lower level ∗ filler) is indistinguishable from
role lower level ∗ (role upper level ∗ filler), because their binding oper-
ations are associative and commutative. For the CDT procedure, in
contrast, 2〈1〈a ∨ b〉 ∨ c〉 6= 2〈a ∨ 1〈b ∨ c〉〉, and also 〈〈a ∨ b〉 ∨ c〉 6=
〈a ∨ 〈b ∨ c〉〉.

Gayler (1998) proposes binding a chunk codevector with its permuted
version. It resembles the version of thinning procedure from section 4.2, but
for real-valued codevectors. Different codevector permutations for differ-
ent nesting levels allow the components of chunks from different levels to
be distinguished in a similar fashion as using different configurations of
thinning connections in the CDT. However since the result of binding in the
scheme of Gayler and in the other considered schemes (with the exception of
APNN-CDT) is not similar to the component codevectors, in those schemes
decoding of the chunk codevector created by binding with a permutation
of itself will generally require exhaustion of all combinations of component
codevectors.

This problem with the vertical binding schemes of Plate, Kanerva, and
Gayler can be rectified by using a binding operation that, prior to a conven-
tional binding operation, permutes its left and right arguments differently
(as discussed in Plate, 1994).

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

446 Dmitri A. Rachkovskij and Ernst M. Kussul

The obvious problem of tensor product representation is the growth of
dimensionality of the resulting pattern obtained by the binding of compo-
nents. If it is not solved, the dimensionality will grow exponentially with the
nesting depth. Halford et al. (1998) consider chunking as the means to reduce
the rank of tensor representation. To realize chunking, they propose using
the operations of convolution, concatenation, superposition, and some spe-
cial function that associates the outer product with the codevector of lower
dimension. However, the first three operations do not rule out confusion
of grouping or ordering of arguments inside chunks (i.e., different compos-
ite items may produce identical chunks). And the special function (and its
inverse) requires concrete definition. Probably it could be done using asso-
ciative memory, for example, of the sigma-pi type proposed by Plate (1998).

In (L)RAAMs the chunks of different nesting levels are encoded in the
same weight matrix of connections between the input layer and the hidden
layer of a multilayer perceptron. It may be one of the reasons for poor
generalization. Probably if additional multilayer perceptrons are introduced
for each nesting level (with the input for each following perceptron provided
by the hidden layer of the preceding one, similarly to Sperduti & Starita,
1997), generalization in those schemes would improve.

In the APNN, chunks (thinned composite codevectors) of different nest-
ing levels are memorized in different autoassociative neural networks. It
allows an easy similarity-based decoding of a chunk through its subchunks
of the previous nesting level and decreases memory load at each nesting
level (see also Rachkovskij, in press).

9.2 Sparse Binary Schemes. Indicating unknown areas where useful
representation schemes for nested compositional structures can be found,
Plate (1997) notes that known schemes poorly handle sparse binary patterns,
because known binding and superposition operations change the density
of sparse patterns.

Of the work known to us, only Sjödin (1998) expresses the idea of “thin-
ning” in an effort to avoid the low associative memory capacity for dense
binary patterns. He defines the thinning operation as preserving the 1s cor-
responding to the maximums of some function defined over the binary
vector. The values of that function can be determined at cyclic shifts of the
codevector by the number of steps equal to the ordering number of 1s in
that codevector. However, it is not clear from such a description what the
properties of the maximums are and therefore what the character of simi-
larity is.

The CDT procedure considered in this article allows the density of code-
vectors to be preserved while binding them. Coupled with the techniques
for encoding the pattern ordering, this procedure allows implementing var-
ious representation schemes of complex structured data. Approximately the
same low density of binary codevectors at different nesting levels permits
the use of identical procedures for construction, recognition, comparison,

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 447

and decoding of patterns at different hierarchical levels of the APNN archi-
tecture (Kussul, 1988, 1992; Kussul et al., 1991a).

The CDT procedure preserves the similarity of encoded descriptions,
allowing the similarity of complex structures to be determined by the over-
lap of their codevectors. Also, in the codevectors of complex structures
formed using the CDT procedure, representation of the component code-
vectors (subset of their 1s) is reduced. Therefore, the APNN-CDT scheme
can be considered another implementation of Hinton’s (1990) reduced de-
scriptions, Amosov’s (1967) item coarsing, or compression of Halford et al.
(1998). Besides, the CDT scheme is biologically relevant since it uses sparse
representations and allows simple neural network implementation.

10 Conclusion

The CDT procedures described in this article perform binding of items rep-
resented as sparse binary codevectors. They allow a variable number of
superimposed patterns to be bound on the fly while preserving the density
of bound codevectors. The result of the CDT is of the same dimensionality
as the component codevectors. Using the auto-CDT procedures as analogs
of brackets in the bracketed symbolic representation of various complex
data structures permits easy transformation of these representations to the
binary codevectors of fixed dimensionality with a small number of 1s.

Unlike other binding procedures, binding by the auto-CDT preserves the
similarity of bound codevector with each of the component codevectors. It
thus becomes possible to determine the similarity of complex items with
each other by the overlap of their codevectors and to retrieve in full size
the codevectors of their components. Such operations are efficiently imple-
mentable by distributed associative memories, which provide high storage
capacity for the codevectors with small number of 1s.

We have already used the APNN-CDT style representations in appli-
cations (earlier work is reviewed in Kussul, 1992, 1993; more recent de-
velopments are described in Lavrenyuk, 1995; Rachkovskij, 1996; Kussul
& Kasatkina, 1999; Rachkovskij, in press). We hope that the CDT proce-
dures will find application in distributed representation and manipulation
of complex compositional data structures, contributing to the progress of
connectionist symbol processing (Touretzky, 1990, 1995; Touretzky & Hin-
ton, 1988; Hinton, 1990; Plate, 2000). Fast (parallel) evaluation of simi-
larity or finding the most similar compositional items allowed by such
representations are extremely useful for solution of a wide range of AI
problems.

Acknowledgments

We are grateful to Pentti Kanerva and Tony Plate for their extensive and help-
ful comments, valuable suggestions, and continuous support. This work

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

448 Dmitri A. Rachkovskij and Ernst M. Kussul

was funded in part by the International Science Foundation, grants U4M000
and U4M200.

References

Amari, S. (1989). Characteristics of sparsely encoded associative memory. Neural
Networks, 2, 445–457.

Amosov, N. M. (1967). Modelling of thinking and the mind. New York: Spartan
Books.

Amosov, N. M., Baidyk, T. N., Goltsev, A. D., Kasatkin, A. M., Kasatkina, L.
M., Kussul, E. M., & Rachkovskij, D. A. (1991). Neurocomputers and intelligent
robots. Kiev: Naukova dumka. (In Russian)

Artykutsa, S. Ya., Baidyk, T. N., Kussul, E. M., & Rachkovskij, D. A. (1991).
Texture recognition using neurocomputer (Preprint 91-8). Kiev, Ukraine: V. M.
Glushkov Institute of Cybernetics. (In Russian)

Baidyk, T. N., Kussul, E. M., & Rachkovskij, D. A. (1990). Numerical-analytical
method for neural network investigation. In Proceedings of the Interna-
tional Symposium on Neural Networks and Neural Computing—NEURONET’90
(pp. 217–222). Prague, Czechoslovakia.

Blair, A. D. (1997). Scaling-up RAAMs (Tech. Rep. No. CS-97-192). Waltham, MA:
Brandeis University, Department of Computer Science.

Fedoseyeva, T. V. (1992). The problem of neural network to recognize word
roots. In Neuron-like networks and neurocomputers (pp. 48–54). Kiev, Ukraine:
V. M. Glushkov Institute of Cybernetics. (In Russian)

Feldman, J. A. (1989). Neural representation of conceptual knowledge. In L.
Nadel, L. A. Cooper, P. Culicover, & R. M. Harnish (Eds.), Neural connections,
mental computation (pp. 68–103). Cambridge, MA: MIT Press.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their proper-
ties. Cognitive Science, 6, 205–254.

Foldiak, P., & Young, M. P. (1995). Sparse coding in the primate cortex. In M.
A. Arbib (Ed.), Handbook of brain theory and neural networks (pp. 895–898).
Cambridge, MA: MIT Press.

Frasconi, P., Gori, M., & Sperduti, A. (1997). A general framework for adaptive pro-
cessing of data structures (Tech. Rep. No. DSI-RT-15/97). Firenze, Italy: Uni-
versita degli Studi di Firenze, Dipartimento di Sistemi e Informatica.

Frolov, A. A. (1989). Information properties of bilayer neuron nets with binary
plastic synapses. Biophysics, 34, 868–876.

Frolov, A. A., & Muraviev, I. P. (1987). Neural models of associative memory.
Moscow: Nauka. (In Russian)

Frolov, A. A., & Muraviev, I. P. (1988). Informational characteristics of neuronal
and synaptic plasticity. Biophysics, 33, 708–715.

Gayler, R. W. (1998). Multiplicative binding, representation operators,
and analogy. In K. Holyoak, D. Gentner, & B. Kokinov (Eds.), Ad-
vances in analogy research: Integration of theory and data from the cog-
nitive, computational, and neural sciences (p. 405). Sofia, Bulgaria: New

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 449

Bulgarian University. (Poster abstract). Full poster available online at:
http://cogprints.soton.ac.uk/abs/comp/199807020.

Halford, G. S., Wilson W. H., & Phillips S. (1998). Processing capacity defined
by relational complexity: Implications for comparative, developmental, and
cognitive psychology. Behavioral and Brain Sciences, 21, 723–802.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hinton, G. E. (1981). Implementing semantic networks in parallel hardware.

In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of associative memory
(pp. 161–187). Hillside, NJ: Erlbaum.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist net-
works. Artificial Intelligence, 46, 47–76.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed repre-
sentations. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group
(Eds.), Parallel distributed processing: Exploration in the microstructure of cogni-
tion 1: Foundations (pp. 77–109). Cambridge, MA: MIT Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of Sciences,
USA, 79, 2554–2558.

Hopfield, J. J., Feinstein, D. I., & Palmer, R. G. (1983). “Unlearning” has a stabi-
lizing effect in collective memories. Nature, 304, 158–159.

Hummel, J. E., & Holyoak K. J. (1997). Distributed representations of structure: A
theory of analogical access and mapping. Psychological Review, 104, 427–466.

Kanerva, P. (1988). Sparse distributed memory. Cambridge, MA: MIT Press.
Kanerva, P. (1994). The spatter code for encoding concepts at many levels. In

M. Marinaro & P.G. Morasso (Eds.), ICANN ’94, Proceedings of International
Conference on Artificial Neural Networks (Sorrento, Italy), (Vol. 1, pp. 226–229).
London: Springer-Verlag.

Kanerva, P. (1996). Binary spatter-coding of ordered K-tuples. In C. von der
Malsburg, W. von Seelen, J. C. Vorbruggen, & B. Sendhoff (Eds.), Proceed-
ings of the International Conference on Artificial Neural Networks—ICANN’96,
Bochum, Germany. Lecture Notes in Computer Science, 1112 (pp. 869–873). Berlin:
Springer-Verlag.

Kanerva, P. (1998). Encoding structure in Boolean space. In L. Niklasson, M.
Boden, and T. Ziemke (Eds.), ICANN 98: Perspectives in Neural Computing
(Proceedings of the 8th International Conference on Artificial Neural Net-
works, Skoevde, Sweden), (Vol. 1, pp. 387–392). London: Springer-Verlag.

Kasatkin, A. M., & Kasatkina, L. M. (1991). A neural network expert system.
In Neuron-like networks and neurocomputers (pp. 18–24). Kiev, Ukraine: V. M.
Glushkov Institute of Cybernetics. (In Russian)

Kussul, E. M. (1980). Tools and techniques for development of neuron-like networks
for robot control. Unpublished Dr. Sci. dissertation. V. M. Glushkov Institute
of Cybernetics. (In Russian)

Kussul, E. M. (1988). Elements of stochastic neuron-like network theory. In Inter-
nal Report “Kareta-UN” (pp. 10–95). Kiev, Ukraine: V. M. Glushkov Institute
of Cybernetics. (In Russian)

Kussul, E. M. (1992) Associative neuron-like structures. Kiev: Naukova Dumka. (In
Russian)

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

450 Dmitri A. Rachkovskij and Ernst M. Kussul

Kussul, E. M. (1993). On some results and prospects of development of
associative-projective neurocomputers. In Neuron-like networks and neurocom-
puters (pp. 4–11). Kiev, Ukraine: V. M. Glushkov Institute of Cybernetics. (In
Russian)

Kussul, E. M., & Baidyk, T. N. (1990). Design of a neural-like network architecture
for recognition of object shapes in images. Soviet Journal of Automation and
Information Sciences, 23. 53–58.

Kussul, E. M., & Baidyk, T. N. (1993). On information encoding in associative-
projective neural networks (Preprint 93-3). Kiev, Ukraine: V. M. Glushkov In-
stitute of Cybernetics. (In Russian)

Kussul, E. M., Baidyk, T. N., Lukovich, V. V., & Rachkovskij, D. A. (1993). Adap-
tive neural network classifier with multifloat input coding. In Proceedings of
NeuroNimes’93, Nimes, France, Oct. 25–29, 1993. EC2-publishing.

Kussul, E. M., & Kasatkina, L. M. (1999). Neural network system for continu-
ous handwritten words recognition. In Proceedings of the International Joint
Conference on Neural Networks. (Washington, D.C.).

Kussul, E. M., & Rachkovskij, D. A. (1991). Multilevel assembly neural architec-
ture and processing of sequences. In A. V. Holden & V. I. Kryukov (Eds.), Neu-
rocomputers and attention: Vol. II. Connectionism and neurocomputers (pp. 577–
590). Manchester: Manchester University Press.

Kussul, E. M., Rachkovskij, D. A., & Baidyk, T. N. (1991a). Associative-projective
neural networks: Architecture, implementation, applications. In Proceedings
of the Fourth International Conference “Neural Networks & Their Applications,”
Nimes, France, Nov. 4–8, 1991 (pp. 463–476).

Kussul, E. M., Rachkovskij, D. A., & Baidyk, T. N. (1991b). On image texture
recognition by associative-projective neurocomputer. In C. H. Dagli, S. Ku-
mara, & Y. C. Shin (Eds.), Proceedings of the ANNIE’91 Conference “Intelligent
Engineering Systems Through Artificial Neural Networks” (pp. 453–458). ASME
Press.

Lansner, A., & Ekeberg, O. (1985). Reliability and speed of recall in an associative
network. IEEE Trans. Pattern Analysis and Machine Intelligence, 7, 490–498.

Lavrenyuk, A. N. (1995). Application of neural networks for recognition of
handwriting in drawings. In Neurocomputing: Issues of theory and practice
(pp. 24–31). Kiev, Ukraine: V. M. Glushkov Institute of Cybernetics. (In Rus-
sian)

Legendy, C. R. (1970). The brain and its information trapping device. In J. Rose
(Ed.), Progress in cybernetics, vol. 1. New York: Gordon and Breach.

Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437–470.
Milner, P. M. (1974). A model for visual shape recognition. Psychological Review,

81, 521–535.
Milner, P. M. (1996). Neural representations: Some old problems revisited. Journal

of Cognitive Neuroscience, 8, 69–77.
Palm, G. (1980). On associative memory. Biological Cybernetics, 36, 19–31.
Palm, G. (1993). The PAN system and the WINA project. In P. Spies (Ed.), Euro-

Arch’93 (pp. 142–156). Berlin: Springer-Verlag.
Palm, G., & Bonhoeffer, T. (1984). Parallel processing for associative and neuronal

networks. Biological Cybernetics, 51, 201–204.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

Binary Sparse Distributed Representations 451

Plate, T. A. (1991). Holographic reduced representations: Convolution algebra
for compositional distributed representations. In J. Mylopoulos & R. Reiter
(Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence (pp. 30–35). San Mateo, CA: Morgan Kaufmann.

Plate, T. A. (1994). Distributed representations and nested compositional structure.
Unpublished PhD dissertation, University of Toronto.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on
Neural Networks, 6, 623–641.

Plate, T. (1997). A common framework for distributed representation schemes
for compositional structure. In F. Maire, R. Hayward, & J. Diederich (Eds.),
Connectionist systems for knowledge representation and deduction (pp. 15–34).
Brisbane: Queensland University of Technology.

Plate, T. (1998). Randomly connected sigma-pi neurons can form associative memories.
Submitted.

Plate, T. (2000). Structured operations with vector representations. Expert sys-
tems. International Journal of Knowledge Engineering and Neural Networks, 17,
29–40.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence,
46, 77–105.

Rachkovskij, D. A. (1990a). On numerical-analytical investigation of neural net-
work characteristics. In Neuron-like networks and neurocomputers (pp. 13–23).
Kiev, Ukraine: V. M. Glushkov Institute of Cybernetics. (In Russian)

Rachkovskij, D. A. (1990b). Development and investigation of multilevel assembly
neural networks. Unpublished Ph.D. dissertation, V. M. Glushkov Institute of
Cybernetics. (In Russian)

Rachkovskij, D. A. (1996). Application of stochastic assembly neural networks
in the problem of interesting text selection. In Neural network systems for in-
formation processing (pp. 52–64). Kiev, Ukraine: V. M. Glushkov Institute of
Cybernetics. (In Russian)

Rachkovskij, D. A. (in press). Representation and processing of structures with
binary sparse distributed codes. IEEE Transactions on Knowledge and Data
Engineering (Special Issue). Draft available at dar@infrm.kiev.ua.

Rachkovskij, D. A., & Fedoseyeva, T. V. (1990). On audio signals recognition
by multilevel neural network. In Proceedings of the International Symposium
on Neural Networks and Neural Computing—NEURONET’90 (pp. 281–283).
Prague, Czechoslovakia.

Rachkovskij, D. A., & Fedoseyeva T. V. (1991). Hardware and software neuro-
computer system for recognition of acoustical signals. In Neuron-like networks
and neurocomputers (pp. 62–68). Kiev, Ukraine: V. M. Glushkov Institute of Cy-
bernetics. (In Russian)

Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic
reasoning: Connectionist representation of rules, variables, and dynamic
bindings using temporal synchrony. Behavioral and Brain Sciences, 16, 417–
494.

Sjödin, G. (1998). The Sparchunk code: A method to build higher-level struc-
tures in a sparsely encoded SDM. In Proceedings of IJCNN’98 (pp. 1410–1415).
Piscataway, NJ: IEEE.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

452 Dmitri A. Rachkovskij and Ernst M. Kussul

Sjödin, G., Kanerva, P., Levin, B., & Kristoferson, J. (1998). Holistic higher-level
structure-forming algorithms. In Proceedings of 1998 Real World Computing
Symposium—RWC’98 (pp. 299–304).

Smolensky, P. (1990). Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial Intelligence, 46, 159–
216.

Sperduti, A. (1994). Labeling RAAM. Connection Science, 6, 429–459.
Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classifica-

tion of structures. IEEE Transactions on Neural Networks, 8, 714–735.
Touretzky, D. S. (1990). BoltzCONS: Dynamic symbol structures in a connec-

tionist network. Artificial Intelligence, 46, 5–46.
Touretzky, D. S. (1995). Connectionist and symbolic representations. In M. A.

Arbib (Ed.), Handbook of brain theory and neural networks (pp. 243–247). Cam-
bridge, MA: MIT Press.

Touretzky, D. S., & Hinton, G. E. (1988). A distributed connectionist production
system. Cognitive Science, 12, 423–466.

Tsodyks, M. V. (1989). Associative memory in neural networks with the Hebbian
learning rule. Modern Physics Letters B, 3, 555–560.

Vedenov, A. A. (1987). “Spurious memory” in model neural networks (Preprint IAE-
4395/1). Moscow: I. V. Kurchatov Institute of Atomic Energy.

Vedenov, A. A. (1988). Modeling of thinking elements. Moscow: Science. (In Rus-
sian)

von der Malsburg, C. (1981). The correlation theory of brain function (Internal Rep.
No. 81-2). Gottingen, Germany: Max-Planck-Institute for Biophysical Chem-
istry, Department of Neurobiology.

von der Malsburg, C. (1985). Nervous structures with dynamical links. Ber. Bun-
senges. Phys. Chem., 89, 703–710.

von der Malsburg, C. (1986) Am I thinking assemblies? In G. Palm & A. Aertsen
(Eds.), Proceedings of the 1984 Trieste Meeting on Brain Theory (pp. 161–176).
Heidelberg: Springer-Verlag.

Willshaw, D. (1981). Holography, associative memory, and inductive general-
ization. In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of associative
memory (pp. 83–104). Hillside, NJ: Erlbaum.

Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-
holographic associative memory. Nature, 222, 960–962.

Received May 6, 1999; accepted April 6, 2000.

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/089976601300014592 by UNIVERSITY OF CALIFORNIA BERKELEY user on 03 September 2021

