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AbstractÐThe schemes for compositional distributed representations include those allowing on-the-fly construction of fixed

dimensionality codevectors to encode structures of various complexity. Similarity of such codevectors takes into account both

structural and semantic similarity of represented structures. In this paper, we provide a comparative description of sparse binary

distributed representation developed in the framework of the associative-projective neural network architecture and the more well-

known holographic reduced representations of Plate and binary spatter codes of Kanerva. The key procedure in associative-projective

neural networks is context-dependent thinning which binds codevectors and maintains their sparseness. The codevectors are stored in

structured memory array which can be realized as distributed auto-associative memory. Examples of distributed representation of

structured data are given. Fast estimation of the similarity of analogical episodes by the overlap of their codevectors is used in the

modeling of analogical reasoning both for retrieval of analogs from memory and for analogical mapping.

Index TermsÐSparse coding, binary coding, binding, representation of structure, hierarchical representation, nested representation,

long-term memory, analogy, compositional distributed representations, connectionist symbol processing, analogical retrieval,

analogical mapping.
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1 INTRODUCTION

THE problem of representation is of great importance in
Artificial Intelligence (AI). In localist connectionist

models, each item is represented by a single unit, node, or
neuron (at least in long-term memory). Such representa-
tions are criticized in respect to their limited information
capacity and insufficient semantic sensitivity.

For example, in order to represent nested compositional

structures, it is necessary to represent their constituents,

various compositions of those constituents, combinations of

those compositions, etc. For a significant number of

complex recursive structures, the number of possible

combinations and localist elements required to represent

them becomes prohibitive because of exponential growth.
At the same time, a local representational element (or

symbol) does not carry immediate information about its

constituents and acts just as a meaningless pointer. For

example, in order to estimate the similarity of hierarchical

structures encoded with localist representations, it is

generally necessary to find and match their constituents

down to the lowest hierarchical level using pointer (or

connection) following.
In fully distributed representations, each item is encoded

by a pattern of activity over a pool of units. The number of

different nonorthogonal patterns exponentially exceeds the

dimensionality of the coding pool (see, e.g., [42]). It allows

for a high information capacity of distributed representa-

tions. An estimation of item similarity can be realized by the

dot product of the vectors corresponding to their activity
patterns.

Distributed representations are sometimes perceived as
unsuitable for hierarchical (recursive, nested) structure
representation. However, in fact, a number of schemes
have been proposed for distributed representation of
structured data, including BoltzCONS of Touretzky [55],
reduced descriptions of Hinton [20], tensor products of
Smolensky [51], RAAMs of Pollack [43], LRAAMs of
Sperduti [52] (see also [41] for a review). Of special interest
to us are the schemes where the codes representing new
structures of various complexity are constructed on-the-fly
(without special learning) and have the same dimension-
ality. Associative-Projective Neural Networks (APNNs)
[29], Holographic Reduced Representations (HRRs) [40],
and Binary Spatter Codes (BSCs) [26] are among such
schemes.

The ability to estimate easily the similarity of complex
structured representations is essential for the solution of
many AI problems [29]. One of these problems is the
modeling of human analogy-making. This requires taking
into account the structure and semantics of analogs. Due to
the common supposition that distributed representations
poorly deal with structure, it is natural that most influential
computational models of analogical reasoning (ARCS-
ACME [53], [22], MAC/FAC-SME [9], [7], Copycat [21])
are essentially based on symbolic or localist representations.

However, the quest to enhance the semantic basis of
analog representations and to reach a higher degree of
neurological relevancy leads to the attempts for augmenting
the models of analogy with some share of distributed
representations (LISA [24], STAR2 [16], DRAMA [6]).
Operations on exclusively distributed representations use-
ful for analogical processing were demonstrated by Plate
using HRRs [39], [42] and Kanerva using BSCs [27], [28].
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In this paper, an approach to the representation and
manipulation of structures using binary sparse distributed
codes and techniques of APNNs is considered and
compared with the approaches adopted in HRRs and BSCs.
In Section 2, we provide a comparative description of basic
features and operations of APNNs, HRRs, and BSCs.
Various schemes for the distributed representation of
structures are presented in Section 3. Some considerations
concerning the organization and implementation of long-
term memory for structures are given in Section 4. In
Section 5, we apply APNN-style representations for the
retrieval and mapping of toy analogical episodes and
compare the results with those of Plate. Sections 6 and 7
present a discussion and conclusion correspondingly.

2 ON-THE-FLY DISTRIBUTED REPRESENTATIONS OF

STRUCTURE: BASIC FEATURES AND OPERATIONS

In order to represent nested compositional structures
efficiently, the following features of APNN-style represen-
tations are essential:

. Representations should be fully distributed. An item
of any complexity or nesting level, including the
lowest (base) level items, is represented by a
distributed activity pattern over the pool of units.
Thus, the number of representable items is not
limited by the number of available units.

. Dimensionality should be preserved. The dimen-
sionality of the coding units' pool for items of any
complexity or nesting level is the same. This avoids
the problems concerning the growth of the compo-
site items' code dimensionality.

. Representations should be constructed ªon-the-fly.º
The code of a composite item of any complexity or
nesting level is formed from the codes of its
constituents without training. This allows a fast
recursive construction of representations of arbitrary
items.

. Similar items should produce similar representa-
tions. This allows the similarity of items to be
estimated by the dot product of their codevectors.
The degree of similarity varies gradually.

These requirements are met, apart from APNNs, by
HRRs and by BSCs. Therefore, in this section, we consider
the similarities and the differences between these schemes.
For comparison of APNNs with other distributed schemes
for structure representation, see [46].

2.1 The Nature of Distributed Representations

In fully distributed representations, each item (a feature, an
object, a relation, a structure, etc.) is encoded by an activity
pattern over the total pool of units. It is convenient to
represent the pool of N units by an N-dimensional vector
and the activity of each unit by the value of the
corresponding vector element. Let us denote codevectors
by a boldface font and the items by a cursive font.

In HRRs, elements of codevectors are real numbers with
the Gaussian distribution of mean 0 and variance 1=N . For
example, N � 2; 048 [42]. Similarity of the HRR codevectors
is calculated as their dot product.

The BSCs are binary codevectors (or ªcodewordsº in
terms of Kanerva [26]). Each vector element can be 0 or 1
with the probability 0:5. Let us denote the number of 1s in a
codevector by M. The density of a codevector X can be
defined as the probability of 1s in it: p�X� �M=N . There-
fore, the codevectors of BSCs are ªdense:º p�X� � 0:5. For
example, N � 10; 000, M � 5; 000 [27]. The distance be-
tween two codevectors is defined as the Hamming distance.
Calculation of the codevectors' similarity by the dot product
actually counts the number of coinciding 1s.

Code vectors in the APNN scheme are sparse binary
vectors: p�X� � 1:0. It is closer to neurologic data and
useful for associative memory capacity. For example,
p�X� � 0:01, N � 100; 000, and M � 1; 000. The similarity
of two APNN codevectors is estimated by the overlap of
their 1s, usually normalized to the number of 1s in one of
the codevectors.

Usually, the elements of codevectors corresponding to
dissimilar items of the lowest (base) hierarchical level are
generated randomly and independently. Generated code-
vectors are stored. Encoding of the composite structures
will be considered below.

2.2 Superposition

A set of items is represented by the superposition of their
codevectors. In HRRs, superposition is realized by an
elementwise addition. In BSCs, it is realized by bitwise
addition of codevectors (with subsequent thresholding for
binarization). In APNNs, the codevector's superposition is
implemented by bitwise disjunction. Obviously, for all these
types of superposition, the result preserves the dimension-
ality of initial codevectors.

Superposition also preserves the similarity of the result
to each of the superimposed codevectors. For independent
codevectors, D � A�B is similar to A and B (ª+º denotes
superposition). This type of similarity is called ªunstruc-
turedº similarity [41]. The similarity of codevectors to their
superposition decreases as the number of superimposed
codevectors increases. Therefore, superposition similarity
can be also considered as ªadditive.º

Unstructured similarity allows one to determine which
codevectors are superimposed by finding the codevectors
(from the set of component codevectors) that are most
similar to the superposition codevectors.

2.3 Binding

2.3.1 Necessity of Binding and Some Related Problems

Superposition alone is not enough to encode structures.
Under superposition, the components of structures are
mixed together and the information on their combination or
order in substructures is not preserved. Composition by
superposition is the reason that distributed representations
are claimed to lack structure. Two common formulations of
this problem are ªghostsº and ªsuperposition catastropheº
([8], [57], see also [46]).

The simplest illustration could be as follows: Let there
be component items A, B, and C and composite items
AB, AC, and BC, which are encoded by the simultaneous
ªall-or-noneº activation of component item representa-
tions (Fig. 1). If representations of any two of three
composite items (e.g., AB and BC) are activated, the third
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composite item will become active as well, though
unbidden (here, ªghostº AC). In ªsuperposition cata-
stropheº formulation, the same situation is described as
follows: Which two composite items are really present if
representations of component items A, B, and C are
activated? A related problem is that it is impossible to
encode the order or sequence of items by their simulta-
neous activation: The pattern for ABC is indistinguishable
from the patterns for CBA or BCA.

It should be noted that these problems persist both for
localist and distributed representations of the component
items A, B, and C, if the presence of a composite item is
encoded by the simultaneous activation of its component
representations. These problems also manifest themselves
as ªspurious memoriesº ([23], [56]) for superposition
learning rules, e.g., Hebb's learning rule [19] for matrix-
type distributed associative memory (i.e., spurious attrac-
tors in Willshaw or Hopfield networks).

Thus, in order to represent compositional structures, one
should be able to represent ªbindingsº of component items.
In localist models, such bindings are represented by the
introduction or allocation of new units (e.g., the AB unit to
represent the binding of A and B). This increases the
dimensionality of the unit pool when new bindings and
structures are introduced (Fig. 2).

A local node itself does not carry any information
concerning the composite item it represents. Therefore,
between-unit connections are needed to point to the nodes
representing the constituents. Thus, in order to estimate the
similarity (just in terms of common base-level components)
of two structures represented by local nodes, both of them
must be unfolded through the nodes representing their
base-level components (Fig. 3).

If the comparison should take into account the structural
arrangement of components, much more complicated
techniques are needed, as exemplified by the models of
analogy processing, where analogs are structured proposi-
tions (Fig. 4). These techniques include the construction and
settling of special constraint satisfaction networks which
find the best match between the corresponding items of
analogs (ACME [22], DRAMA [6]), symbolic processing of
virtual networks representing those correspondences (SME
[7]), or use of ªmapping connectionsº between ªdynamic
bindingsº ([36], [48]) represented by the temporal coactiva-
tion of units in existing localist network (LISA [24]).

In the distributed representations of structure we
consider here, the binding of codevectors is implemented
by special operations which do not change dimensionality.
This is important for the representation of nested structures,
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Fig. 1. An illustration of ªghostsº or ªsuperposition catastrophe.º (a) Each
component item A, B, and C is represented by the ªall-or-noneº activity
pattern A, B, and C, respectively. (b) Each composite item AB, AC,
and BC is represented by the superposition of activity patterns of the
component items. (c) Superposition of activity patterns of any two of
three composite items produces the representation in which the third
unforeseen composite item (ghost) is encoded as well. (d) If all three
component items are activated, it is impossible to tell which composite
items are actually present (superposition catastrophe).

Fig. 2. Growth of the number of units which represent possible
compositional structures versus the level of compositional hierarchy.

Fig. 3. In order to find the similarity of the base-level components of two
locally represented hierarchical structures (even without the structural
similarity), the nodes representing the whole structure at the top
hierarchical level should be unfolded through the component nodes of
the lower levels (down to the base-level) using connections between
nodes. The solid and dotted arrows show the unfolding of two composite
items. The shaded nodes at the lowest level correspond to common
base-level components.
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where the bindings of lower hierarchical levels are used as
the components of higher-level bindings.

2.3.2 Binding in HRRs and BSCs

Circular convolution is used in HRRs to obtain the
codevector Z that represents the binding of two codevectors
X and Y:

Zi �
XN

j�1

XjYiÿj; �1�

where subscripts are taken modulo-N. This operation can
be also written as Z � X �Y, where ª*º denotes circular
convolution. Binding by circular convolution preserves the
Gaussian distribution of codevector elements.

Unlike the result of superposition, the result Z of
binding obtained by circular convolution is generally
dissimilar to the codevectors X and Y. However, another
kind of similarity is preserved. D � A �B is similar to
D0 � A0 �B0, if A is similar to A0 and B is similar to B0.
This kind of similarity is called ªstructuredº similarity
[41]. Binding by circular convolution preserves structured
similarity in a multiplicative fashion. If A and B are
independent, as well as A0 and B0, then the similarity of
D to D0 is equal to the product of the similarities of A to
A0 and B to B0, e.g., if A � A0, the similarity of D to D0

will be equal to the similarity of B to B0. If A is not
similar to A0, D will have no similarity with D0

irrespective of the similarity between B and B0.
This type of similarity is different from the structured

similarity of superimposed codevectors: D � A�B will
still be similar to E � A�C if B is dissimilar to C.

Gayler [12] proposed to use elementwise multiplication
to bind real-valued codevectors. Binding in BSCs is
implemented by elementwise XOR of codevectors. These
binding operations preserve the similarity in approximately
the same manner as circular convolution.

2.3.3 Binding in APNNs

In APNNs, binding is realized by the Context-Dependent
Thinning (CDT) procedure. The first version of this
procedure was proposed by Kussul under the name
ªnormalizationº (e.g., [30], [33]). Various versions of the
CDT (thinning) procedure and their algorithmic and neural
network implementations are discussed in [46].

Here, we will describe the ªadditiveº version of the
CDT procedure [46]. In this version, a single codevector Z is
input to the procedure. This codevector is the disjunctive
superposition (Section 2.2) of two or several component
codevectors to be bound:

Z � _S
s�1

Xs; �2�

where S is the number of components and Xs is the
(randomly generated) codevector of the sth component.
Then,

hZi � _K
k�1
�Z ^ Z��k�� � Z ^ _K

k�1
Z��k�: �3�

Here, Z��k� is Z with permuted elements, hZi is the thinned
codevector. (In the framework of HRRs, Plate uses angle
brackets h...i to denote ªnormalization,º see Section 2.5).
Each kth permutation must be fixed, unique, and indepen-
dent. Random permutations would be ideal, however,
cyclic shift permutations with a random number of shifts
are convenient to use in implementations. Also, some
permutations may even coincide accidentallyÐthey just
would not add 1s into disjunction of (3).

The CDT procedure reduces the density of the input
codevector Z down to some specified value. Usually, it is
comparable to the density of its component codevectors Xs.
The number K of permuted and disjunctively super-
imposed vectors is chosen so that the number of 1s in hZi
becomes approximately the number that is needed. For
example, let the density of each component codevector be

p�Xs� � 0:01 8s
and let us bind three components �S � 3�. Since the
component codevectors are sparse and independent, they
have a statistically small overlap:

p�Xs ^Xr� � p�Xs� � p�Xr� � 0:01 � 0:01 � 0:0001 �r 6� s�:
�4�

Therefore, the density of the input superposition codevector
is approximately

p�Z� � p�Xs� � S � 0:01 � 3 � 0:03: �5�
Z� and Z are independent because of permutation. There-
fore, the probability of 1s in their conjunction is

p�Z ^ Z�� � p�Z�p�Z�� � 0:03 � 0:03 � 0:0009: �6�
Thus, we need to superimpose by disjunction approxi-
mately K � p�Xs�=p�Z ^ Z��k�� � 11 of Z ^ Z��k� in order
to get

p�hZi� � p�Xs�:
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Fig. 4. An estimation of the total similarity (including structural similarity)
of locally represented hierarchical structures requires computationally
expensive alignment of their components. The arrows show probably
the best match between the component nodes, and the dotted lines
show some of the other possible candidate correspondences. The plain
lines show ªpart-ofº connections between the lower- and the higher-level
nodes.
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Let us consider a toy example of thinning (Fig. 5). Two

component codevectors X1 and X2 each have m � 2 1s in a

total of n � 12 bits. (Remember, that actually M � 1; 000

and N � 100; 000). Z � X1 _X2 has four 1s. Its first

permutation, Z�(1), is obtained as a 4-bit down shift. It

can be seen that Z ^ Z��1� produces a single 1. Z ^ Z��2�,
where Z��2� is a 1-bit down shift of Z, produces no 1s.

However, after Z��3� is obtained as a 2-bit down shift of Z,

m � 2 1s are accumulated in hZi and we stop the thinning

procedure.
The algorithm of the additive CDT procedure [46] is

shown in Fig. 6. A lot of orthogonal ªpatternsº of thinning

(disjunctions of different permutations, such as Z��1� _
Z��2� _ Z��3� in Fig. 5) are possible depending on the seed

in the algorithmic implementation. We will denote different

thinning patterns by different labels shown as the super-

script of the left angle bracket, e.g., 1hZi, 2hZi. 5hZi, uhZi,
where 1, 2, 5, u are the labels denoting different thinning

patterns. Inside each level of compositional hierarchy (see

Section 4.1), the thinning pattern is permanent.

Unlike the binding operations in HRRs and BSCs,
thinning in APNNs preserves both unstructured and
structured similarity of the codes. Thinning preserves a
subset of the 1s of Z (3). Therefore, the thinned codevector is
similar to the codevector of all components superimposed
in the input codevector, thus preserving unstructured
similarity.

The fraction of 1s in the output thinned codevector from
each component codevector is proportional to the density of
the component codevectors. For example, for independent
A, B, C of the same density,

hZi � hA _B _Ci; p�hZi ^A� � p�hZi ^B�
� p�hZi ^C� � p�hZi�=3:

If p�hZi� � p�A� � p�B� � p�C�, approximately 0.33 of 1s
will remain from each of the component codevectors.

However, the subset of 1s preserved in the thinned
codevector from each component depends on the other
components in the input superposition. For the example of
three-component items, the subset of 1s from A preserved
in hA _B _Ci is different from the subset of 1s from A
preserved in hA _B _Di and hA _D _Ei (Fig. 7). There-
fore, thinned code is boundÐrepresentation of 1s from each
component depends on the other components present.

Similar component sets produce similar thinned codes,
preserving structured similarity. However, in contrast to
the mentioned binding schemes, the character of structured
similarity here is not multiplicative in terms of component
codevectors. In those schemes, a single dissimilar compo-
nent makes the binding dissimilar. For this procedure, due
to the initial superposition, a single similar component
makes the resulting thinned codevectors similar.

The character of structured similarity is shown in Fig. 8.
The input vector was the superposition of five independent
component codevectors of the same density. The similarity
of two input vectors was varied by changing the composi-
tion of components. For example, if we choose the first
codevector as Z1 � A _B _C _D _E and the second one
as Z2 � A _B _C _ F _H, their similarity (overlap) will
be approximately 0.6. Depending on the density of the
thinned codevectors, their similarity varies from linear
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Fig. 5. Toy example of the additive CDT procedure. Twelve-bit
codevectors X1 and X2 are first superimposed in Z. Then, Z is
conjuncted with its shift permutations (4-bit shift, 1-bit shift, 2-bit shift
down) until the number of 1s accumulated in the resulting thinned
codevector hZi reaches a predefined value. In our case, the number of
1s in hZi is equal to the number of 1s in each of the components X1 and
X2.

Fig. 6. An example of an algorithmic implementation of the additive
version of the Context-Dependent Thinning procedure. Parameter seed
defines the configuration of shift permutations. This configuration (and
seed) is usually constant for a given level of part-whole hierarchy.
Different (but constant) seeds are usually used for different levels of
part-whole hierarchy.

Fig. 7. How thinning preserves similarity. Big clear circles represent the
1s encoding the component items A, B, C,D, and E. Representations of
three composite items ABD, ABC, and ADE formed by thinning are
shown by the corresponding combinations of three small differently
shaded circles. XYZ denotes the subset of 1s preserved in the thinned
representation of item X when items Y and Z are also present. It can be
seen that ABC, ABD, and ADE are all different subsets of A, and ABC is
more similar to ABD than to ADE.
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(additive similarity of superposition corresponding to the
ªshallowº thinning) to approximately quadratic (similarity
of about 0.55 for 4M versus similarity of about 0.37 for
M=4).

2.4 Unbinding

To retrieve component codevectors from their bindings,
various techniques are used in different representation
schemes.

A special unbinding operation is needed for HRRs and
BSCs because their bindings are not similar to the
codevectors of bound components. To reconstruct Y from
Z � X �Y, X should be known. If X is known, its inverse
can be found. According to Plate (e.g., [40], [41]), the
approximate inverse of X : XT is enough for unbinding and
easy to obtain: XT

i � XNÿi, where subscripts are modulo-N.
Unbinding gives

XT � Z � XT �X �Y � Y� noise: �7�
To reconstruct an accurate version of Y, the noisy

version can be compared with all component codevectors to
find the closest one.

In BSCs, unbinding is implemented by XOR.

In APNNs, the similarity of component codevectors to
their thinned composite codevectors is preserved. There-
fore, in order to retrieve in full the component codevectors
using the thinned codevectors, no intermediate unbinding
operation is necessaryÐit is enough to find the most similar
codevectors in the component memory. Memory organiza-
tion and the decoding of hierarchical APNN structures is
discussed in Section 4.1.

2.5 Normalization

The operation of normalization is used in HRRs to
maintain the overall strength of codevectors and the

statistical distribution of their elements after other
operations have been performed on them. In HRRs, the
normalized codevector X is denoted as hXi and is
calculated as hXi � X= j X j , where j X j is the Euclidean
length of X.

In BSCs, normalization is implemented by thresholding
each element of the superposition codevector. This main-
tains the binary character of the resulting codevector and its
density of 0.5.

In APNNs, the CDT procedure not only binds the
codevectors of components, but also implements normal-
ization by controlling the density of the resulting
codevectors.

3 DISTRIBUTED REPRESENTATION OF RELATIONAL

STRUCTURES

Let us consider how operations and procedures discussed
above can be used to represent relational structures.

3.1 HRRs and BSCs for Relational Structures

HRRs and BSCs both use role-filler bindings to represent
relational structure (e.g., [42], [26]). The relational instance
or proposition ªSpot bit Janeº is represented by HRRs as:

P�bite� � hP structure�bite� �P components�bite�i;
�8�

where

P structure�bite� � bite agt � spot� bite obj � jane;

�9�

P components�bite� � bite� hspot� janei: �10�
P structure�bite� represents the order entities Spot and

Jane possess in their ªbiteº relationship. The codevectors
spot and jane are fillers bound correspondingly to the
codevectors bite agt and bite obj, which represent biting
agent and bitten object, respectively.

P components�bite� represents the entities involved
and relation label bite (the latter could be replaced by
bite agt� bite obj). It preserves the unstructured similar-
ity of P�bite� to its component codevectors (which is not
preserved by bindings in P structure�bite�). It is needed
both to support the surface (superficial) similarity of
representation to its constituents and to be able to
reconstruct by unbinding which filler is bound with which
role. For example, unstructured similarity allows for the
finding of bite agt, bite obj, spot, and jane in P�bite� and
then the corresponding fillers or roles:

bite agtT �P�bite� � spot� noise; �11�
or

janeT �P�bite� � bite obj� noise: �12�
In HRRs, to represent higher-level propositions which

use lower-level propositions as their components, the
lower-level propositions are used as the fillers for some
higher-level roles. For example, the representation of ªSpot
bit Jane, causing Jane to flee from Spotº looks as [42]:
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Fig. 8. Overlap of thinned composite codevectors for various ªdepthº of
thinning. There are five components in the composite item. For all
component codevectors, N � 100; 000 and M � 1; 000. Therefore, the
input composite codevector includes about 5M of 1s. The resulting
codevectors were thinned to have from 4M to M=4 of 1s.
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P � hcause� hP�bite� �P�flee�i � cause antc �P�bite�
� cause cnsq �P�flee�i;

�13�
where P�bite� is as above and P�flee� is formed analo-
gously:

P�flee� � hflee� hspot� janei � flee agt � jane

� flee obj � spoti: �14�

3.2 Representation of Relational Structure in
APNNs

Representation of relational structure in APNNs has some
peculiarities compared to the HRR representations consid-
ered above. Two types of binding may be distinguished in
the APNN representation. The first type is analogous to the
role-filler bindings in HRRs and is used to represent the
correspondence or order of items. The second type is used
to bind together a set of component items comprising a
composite item. This type of binding is not explicitly used
in HRRs.

3.2.1 Binding for Representation of Correspondence

or Order

One version of encoding the correspondence of a filler to a
certain role is analogous to the role-filler bindings in HRRs.
In APNNs, it is realized by the explicit binding of the role
codevector with the filler codevector. If the role is just a
ªpositionº (1st, 2nd, 3rd, ...) of an item in a proposition, this
scheme encodes the order of filler items (see also [45], [32],
[46]). The binding can be implemented by some version of
the CDT or hetero-CDT procedure. (Hetero-thinning is a
special kind of thinning where the codevectors to be
thinned are not superimposed [45], [32], [46]).

Role-filler bindings using the CDT procedure are ex-
emplified by 1hbite agt _ spoti, 1hbite obj _ janei, where
bite agt corresponds to the ª1st place role in bite proposi-
tionº and bite obj corresponds to the ª2nd place role in bite
proposition.º 1h. . .i denotes thinning using the same thin-
ning pattern, as introduced in Section 2.3.3.

Another version of order encoding consists in changing
the physical position of an item codevector depending on its
position (or place or ordinal number) in a sequence or
proposition. In APNNs, it is implemented by a (cyclic) shift
[31] or other invertible permutation of the item codevector.
Similar encoding is considered in [49] and [12].

For our example, it can be represented as

spot� shift agent; jane� shift object:

Here, Z� q is the shift of Z by q bits, shift agent and
shift object are the numbers of one-bit shifts chosen for the
agent and object roles. These shifts (or permutations) should
not coincide with those used for thinning (see Section 2.3.3,
and Figs. 5 and 6). This type of order representation may be
related to symbol-argument-argument (or predicate-argu-
ments) representation (e.g., [17]).

3.2.2 Binding Together a Set of Items

As exemplified in Section 3.1, in the HRR scheme a
proposition is represented by superimposed codevectors
of component subpropositions and their bindings. In its

turn, each subproposition is a superposition of its own
components. It means that in HRRs, propositions of all
composition levels are represented by a superposition of
codevectors which are not bound together.

Unbound representations of propositions, when super-

imposed, can be confused. For example, the propositions

"Spot bit Jane, Fido bit Fredº and ªSpot bit Fred, Fido bit

Janeº will produce indistinguishable codevectors:

P�bite; spot-jane� �P�bite; fido-fred�
� P�bite; spot-fred� �P�bite; fido-jane�: �15�

This can be seen from the proper superposition of their

P structures:

P structure�bite; spot-jane�
� bite agt � spot� bite obj � jane;

P structure�bite; fido-fred�
� bite agt � fido� bite obj � fred;

P structure�bite; spot-fred�
� bite agt � spot� bite obj � fred;

P structure�bite; fido-jane�
� bite agt � fido� bite obj � jane:

�16�

The same is true for P components.
This is a kind of superposition catastrophe mentioned in

Section 2.3.1. (Some relevant issues are also discussed in

[39], [17], [12]). To avoid it, such a representation scheme

requires a role in the higher-level proposition for binding

with each proposition of the lower level. This limits the

flexibility of structure representation. This also increases the

risk of ªspurious memoriesº in a distributed memory with a

superposition learning rule if it is used to store unbound

propositions (see Section 4).
In contrast to HRRs, superpositions of codevectors in

APNNs are typically subjected to binding. In particular, all

codevectors superimposed in a proposition can be bound

together by the CDT procedure. For example, the proposi-

tions of (16) will look as follows:

P apnn-structure�bite; spot-jane�
� 2 h1hbite agt _ spoti _ 1hbite obj _ janeii;

P apnn-structure�bite; fido-fred�
� 2 h1bite agt _ fidoi _ 1hbite obj _ fredii;

P apnn-structure�bite; spot-fred�
� 2 h1hbite agt _ spoti _ 1hbite obj _ fredii;
P apnn-structure�bite; fido-jane�
� 2 h 1hbite agt _ fidoi _ 1hbite obj _ janeii:

�17�

Then, the codevectors of propositions ªSpot bit Jane, Fido

bit Fredº and ªSpot bit Fred, Fido bit Janeº will no longer be

the same:

3hP apnn�bite; spot-jane� _P apnn�bite; fido-fred�i 6�
3hP apnn�bite; spot-fred� _P apnn�bite; fido-jane�i:

�18�
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Let us note that if each proposition of (16) is normalized,

the equality in (15) will not be exact. However, normal-

ization in HRRs has not been considered as a binding

operation.

3.2.3 Examples of Relational Structure Representation

Let us consider the peculiarities of possible APNN

representations of relational structures from Section 3.1.
Using role-filler bindings for order representation,

P structure�bite� of (9) can be represented as in (17):

P apnn-structure�bite; spot-jane�
� 2 h1hbite agt _ spoti _ 1hbite obj _ janeii: �19�

However, this representation need not be augmented with

P components�bite� as in (8). Since the CDT procedure

preserves unstructured similarity, 2h1hbite agt _ spoti _
1hbite obj _ janeii is already similar to its components.

Also, it is possible to decode (19) through its components
1hbite agt _ spoti and 1hbite obj _ janei, and then to

decode the latter through their roles and fillers using

unstructured similarity (see Section 4.1).
In the same manner, representation of P�flee� (14) and P

(13) can be simplified using APNN representations with

role-filler bindings:

P apnn�bite� � 2 h1hbite agt _ spoti
_ 1hbite obj _ janeii; �20�

P apnn�flee� � 2 h1hflee agt _ janei
_ 2hflee obj _ spotii; �21�

P apnn � 4 h3hcause antc _P apnn�bite�i
_ 3hcause cnsq _P apnn�flee�ii: �22�

Using a shift (or an other invertible permutation) of

codevectors to encode the order, representation can be as

follows:

P apnn1-structure�spot-jane�
� spot� agent _ jane� object:

�23�

However, since such a representation is not similar at all to

P apnn1-structure�jane-spot�
� jane� agent _ spot� object;

it should be augmented with the component representation,

in the same manner as for HRRs:

P apnn1-components�bite; spot; jane�
� bite _ spot _ jane:

�24�

So, the proposition bite�spot; jane� will look like:

P apnn1�bite� �1 hP apnn1-structure�spot-jane�
_P apnn1-components�bite; spot; jane�i: �25�

P apnn1�flee� is constructed in the same manner:

P apnn1�flee� � 1 hP apnn1-structure�jane-spot�
_P apnn1-components�flee; jane; spot�i; �26�

and the whole proposition looks like:

P apnn1 � 2 hcause _P apnn1�bite�
_P apnn1�flee� _P apnn1�bite� � cause antc

_P apnn1�flee� � cause cnsqi:
�27�

As another example, let us show a possible APNN-
style representation for labeled directed acyclic graph
���;  �
�;  �
; ���; ���� taken from [10]:

3h� _ �� 1 _ 2h _ 
 � 1i � 2 _ 2h _ 
 � 1

_ 1 h� _ �� 1 _ � � 2i � 2i � 3i:

4 MEMORY

4.1 Memory Organization

Code vectors of items of various composition levels should
be stored in memory. It allows finding the closest match for
a codevector. It also allows finding the components of a
composite item.

In HRRs and in BSCs, fillers of all nesting levels are
considered ªchunksº and should be stored in memory. For
all nesting levels (except may be the lowest one), those
chunks or fillers are superpositions of codevectors and
bindings of the previous level(s).

Code vectors of chunks and subchunks of all composi-
tion or nesting levels are stored in one memory array (large-
scale clean-up memory [42]). They are used in the
reconstruction of components of complex structures. For
example, to decode P (13), first its component codevector
cause (or cause antc and cause cnsq) should be retrieved
using unstructured similarity. Then, to decode, e.g., the
cause antecedent, P should be unbound using cause antcT.
The resulting noisy version of P�bite� can be cleaned up by
accessing the memory and retrieving the closest match. In
turn, the reconstructed P�bite� can be decoded through the
lower level components (as in (11) and (12)).

In APNNs, the memory is organized hierarchically [29],
[33]. Code vectors corresponding to composite items of
different composition levels are stored in different memory
arrays. Accordingly, codevectors of the same composition
level are stored in the same memory array. The memory at
each level should perform retrieval of the closest match(es)
to a probe codevector.

Such an organization of memory allows a simple
traversing of compositional hierarchy using unstructured
similarity. If we construct a probe codevector of some
intermediate hierarchical level, we can find a similar
codevector of the same compositional complexity in the
memory array of the same compositional level. We can find
the components of the probe by probing the memory arrays
of the lower level(s). We can also find more complex
codevectors that contain the probe as their component by
probing the higher level(s) of memory. If all codevectors
were in the same memory array, one could not determine
solely by their unstructured similarity to the probe whether
a superset or a subset codevector is foundÐconsideration of
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the upper or the lower level roles would be required, as in
the role-filler scheme of HRRs.

For the role-filler representation of (20), (21), and (22),spot,
jane, bite agt, bite obj, flee agt, flee obj, cause antc, and
cause cnsq (composition level #0) are stored in memory level
#0 (Table 1). Bindings 1hspot _ bite agti, 1hjane _ bite obji;
1hjane _ flee agti, and 1hspot _ flee obji are stored in
memory level #1. Code vectors P apnn�bite�of (20) (denoted
simply as Bite in Table 1) and P apnn�flee� of (21) (denoted
as Flee) are stored in memory level #2. Code vectors
3hcause antc _ bitei � Antc and 3hcause cnsq _ fleei �
Cnsq are stored in memory level #3. Codevector P �
Probe is stored in memory level #4.

To find a similar codevector in memory, the probe
codevector P should be compared with other available
codevectors of its memory level. For example, P should be
primarily compared with other codevectors of level #4.
(Such codevectors will appear for different analogous
episodes in Section 5.1.3).

Retrieval of the components of a composite item is
done recursively. First, its codevector should be compared
with the codevectors of the immediately lower memory
level (in other versions, with several lower levels). For
example, P should be compared with the codevectors of
level #3 to find its component bindings hcause antc _
P bitei and hcause cnsq _P fleei. In turn, they could be
decoded through the lower level components, etc. When
we reach the codevector hspot _ bite agti of memory
level #1, it should be compared with the codevectors of
memory level #0 to find its component codevectors spot
and bite agt. For decoding, it is not needed to compare a
codevector of memory level #1 with the codevectors of
higher memory levels.

If the task is to decode which filler is bound to a specific
role (without full decoding of a proposition), the role is first
used as a probe to recover its binding (as the closest match)
and, then the binding is decoded to discover the filler. For

example, to discover the filler of the bite agt role, it is used
as a probe to retrieve the 1hspot _ bite agti binding of
memory level #1 and, then the binding is used as a probe of
memory level #0 to discover spot as the closest match. (It is
possible to eliminate bite agt representation from the
probe: 1hspot _ bite agti ^ :bite agt in order to omit
bite agt as the other closest match).

Possible hierarchical levels for the shift-binding repre-
sentation of (23), (24), (25), (26), and (27) are shown in
Table 2. Decoding should include the inverse of shifts (or
other permutations) used to encode the agent-object roles.

4.2 Memory Implementation

As mentioned in the previous sections, memory in
HRRs, BSCs, and APNNs should be able to return the
closest vector(s) to the input (performing error-correcting
retrieval).

Since in HRRs the chunks are superpositions of
codevectors not bound together, the memory where they
are stored should not be a distributed memory with a
superposition learning rule in order to avoid the risk of
superposition catastrophe and ªspurious memoriesº (see
Section 2.3.1 and [46]). Plate [42] considers, as appropriate,
the auto-associative memory schemes of Baum et al. [3]. In
the simplest implementation of ªgrandmother cellº mem-
ory, the memory is a neural network that contains a number
of hidden units. Each unit is devoted to a single stored
codevector. The input and output weights of a hidden unit
are the reference codevector that the unit stores. During
retrieval, the hidden unit closest to the noisy input
codevector becomes active and outputs the cleaned version
of that codevector.

In APNNs, the codevectors of all chunks are processed
by the CDT procedure, which means they are bound and
normalized (see Sections 2.3 and 2.5).

Since the codevectors of chunks are bound, the risk of
spurious memories is reduced and distributed memories
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The Memory Organization for the Role-Filler APNN-Style Representation
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with simple (generic and biologically relevant) superposi-

tion learning rules, such as versions of Hebb's rule [19], are

allowed at each hierarchical level.
Since the codevectors of chunks are normalized, the

chunks of all levels are sparse binary codevectors. It is well-

known that matrix-style distributed memories offer a high

capacity (in terms of the number of stored codevectors) and

a good error-correcting ability for sparse codevectors (e.g.,

[59], [37], [34], [1], [11], [54]). Though the maximal capacity

is reached at M � logN , we used the larger M for statistical

stability. Even for N1=3 < M < N1=2, the number of stored

codevectors that can be reconstructed from their noisy

versions can significantly exceed N (e.g., [44], [45]).
Besides, computational implementation of storage and

retrieval operations (vector outer-product or vector-matrix

multiplication) becomes very simple and fast for binary

codevectors because it does not require at all floating point

operations and even multiplication. Further acceleration is

possible for sparse codevectors (e.g., [38], [33]). This is all

true for the operations of finding codevector overlap,

superposition, and binding, which basically reduce to bit

operations on codevectors.
These considerations are also true for Kanerva's Sparse

Distributed Memory, which is also a candidate for long-

term memory implementation [25], [50], [42].
Thus, each of the memory arrays mentioned in Section 4.1

could be an auto-associative memory of the type discussed

in this section. The issues concerning pros and cons of their

possible implementation in the same physical memory

should be further investigated. However, at the current

stage of modeling, when not too many items are used,

functioning of a memory level can be simulated by storing

codevectors of that level in a list and performing an

exhaustive comparison for the closest match. In particular,

we use such a technique in the experiments of the following

sections.

5 MODELING OF ANALOGICAL REASONING

Analogical thinking is one of the most commonly encoun-
tered cognitive processes associated with the manipulation
of structured information. That is why a lot of work is
devoted to its study and modeling. (For an introduction,
see, e.g., [14], [15], [53], [24] and references therein).

Analogs are matched not only by ªsurfaceº or
ªsuperficial similarityº (see, e.g., [13], [9]) based on
common elements (attributes, objects, relations, proposi-
tions) or a broader ªsemantic similarityº (see, e.g., [53],
[6]) of those elements. Of no less importance is
structural similarity which is determined by how the
elements of analogs are arranged with respect to each
other. This is based on the notion of ªstructural
consistencyº [14], [7] or ªisomorphismº [53], [24]. These
psychological constraints on structural similarity require
one-to-one correspondence (at most one element in one
analog corresponds to one element in the other) and
parallel connectivity (corresponding relations must have
corresponding arguments).

The first two stages in analogical processing are access
and mapping. Access (retrieval, recall, recognition) is the
process of finding, in memory, the most appropriate source
(base) analog(s) given a target (probe, cue) situation.
Mapping is the process of finding correspondences between
the elements of two analogs.

5.1 Analogical Retrieval

Though there are different views on the relative role of
surface and structural similarity in analogical retrieval, the
models of access, which take into account only surface
similarity, are considered inadequate.

5.1.1 An Example of the Retrieval Task

To illustrate analogical access by estimating the similarity of
distributed representations, the episodes adapted by Plate
[42] from [53] will be used.

The following characters or entities are involved: dogs
(Fido, Spot, Rover), people (Jane, John, Fred), a cat (Felix),
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The Memory Organization for the Shift-Binding APNN-Style Representation

of the Nested Proposition ªSpot Bit Jane, Causing Jane to Flee from Spotº for (23), (24), (25), (26), and (27)

The codevector of each level of composition is stored in a memory array corresponding to that level. Code vectors of composite items
(level #1, level #2) are thinned to 4M.
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and a mouse (Mort). Relations are bite, flee, and cause. The
ªprobeº episode P, which is compared to the others, is the
one used previously as an example for structure represen-
tation: ªSpot bit Jane, causing Jane to flee from Spot.º Other
episodes have the same relations as the probe but different
types of similarityÐmainly according to Gentner's classifi-
cation ([13], see also, e.g., [9]).

A literal similarity (LS) episode has both structural and
superficial similarity to the probe: ªFido bit John, causing
John to flee from Fido.º A surface features (SF) episode has
superficial but not structural similarity: ªJohn fled from
Fido, causing Fido to bite John.º A cross-mapped analogy
(CM) episode has both structural and superficial similarity,
but the types of corresponding entities are switched: ªFred
bit Rover, causing Rover to flee from Fred.º An analogy
(AN) episode has structural but not superficial similarity:
ªMort bit Felix, causing Felix to flee from Mort.º A first
order relations only (FOR) episode has neither structural
nor superficial similarity, other than shared predicates:
ªMort fled from Felix, causing Felix to bite Mort.º

Human experimental data generally support the notion
that surface similarity is more important for analogical
retrieval than structural similarity (experimental results are
reported, e.g., in [9], [58], [47]). In terms of analogical
similarity types, it means that analogs of similarity type LS,
CM, and SF are easier to retrieve than those of similarity
type AN and FOR. Among the group of situations with
surface similarity, LS is more easily accessible than CM and
SF. The difference between CM and SF is not clear.

Analyzing data from various authors, Plate [42]
provides the following pattern for retrievability of analogs
from long-term memory:

LS > CM � SF > AN � FOR: �28�

5.1.2 Estimating Analogical Similarity with HRRs

The scheme for episode encoding was considered in
Section 3.1. To build HRRs according to that scheme, it is
necessary to encode the entities and relations using base-
level codevectors. By base-level codevectors, we mean here
independent codevectors of the lowest composition level
(level #0). As mentioned in Section 2.1, in HRRs, the
codevectors of independent items are N dimensional real-
valued vectors with the elements chosen randomly and

independently using the Gaussian distribution with 0 mean
and variance 1=N . After generation, they are fixed. For the
experiments reported in [42], Plate used codevectors of
N � 2; 048.

All relations and roles were considered to be dissimilar
and were represented by the base-level codevectors, e.g.,
bite, bite agt, bite obj, etc. The codevectors of entities (or
tokens of some type) were formed as the superposition of
base-level codevectors of two features: that of type (human,
dog, cat, mouse) and that of identifier or name (id john,
id fido, etc.). For example, the entities John and Mort were
represented, respectively, as john � hhuman� id johni
and mort � hmouse� id morti.

The similarity scores obtained by Plate [42] are shown
in the first column of Table 3. These results show that the
similarity of HRRs encoding the episodes is influenced
both by their superficial and structural similarity. HRRs
are similar if they include similar relations or entities
(episodes AN, FOR). The similarity is higher if they
include both similar relations and entities (episodes CM,
SF). The similarity is still higher if similar entities fill
similar roles in similar relations (episode LS). These
results correspond to the experimental data expressed by
(28): LS > CM � SF > AN � FOR.

5.1.3 Estimating Analogical Similarity with APNNs

We have conducted experiments in analogical similarity
estimation using APNN representations. Random binary
vectors with N � 100; 000 and M � 1; 000 were used as the
base-level codevectors. Entities were presented as the
superpositions of base-level codevectors corresponding to
the same features as in HRRs of Section 5.1.2 (see also base-
level and level #0 of Table 1). Both schemes of Section 3.2.3:
the role-filler scheme of (20), (21), and (22), and the shift-
binding scheme of (23), (24), (25), (26), and (27) were used to
construct the representations of episodes.

For the role-filler scheme of (20), (21), and (22), the
propositions of level #1 and higher levels (as in Table 1)
were thinned down to 2M. This depth of thinning was
chosen empirically to obtain the similarity scores between
the codevector of the probe and that of each episode
presented in the second column of Table 3. Other depths
of thinning could change the score pattern; however,
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Similarity Scores Between the Code Vectors Representing the Probe and the Episodes

HRR scores are given in the first column. The scores for two schemes of APNN-style representation (role-filler, (20), (21), and (22), and shift-binding,
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discussion of this influence is beyond the scope of the
present paper.

For the shift-binding scheme of (23), (24), (25), (26), and
(27), the propositions of level #1 and level #2 (as in Table 2)
were thinned to 4M. The similarity scores for this depth of
thinning are given in the third column of Table 3. Note that
thinning is rather shallow at level #1: from approximately
5M to 4M, but at level #2 it is rather deep: from
approximately 15M to 4M. (15M instead of 4M � 4�M �
17M is obtained because of the ªabsorptionº of coincident 1s
in codevectors during superposition).

The order of similarity scores for both types of APNN
representations considered is the same as for HRRs. It is
also consistent with the pattern of experimental results
observed for people ([9], [58], [47]) and modeling results
reported for MAC/FAC [9] and ARCS [53] (where the data
different from those in this paper were used).

5.2 Mapping of Analogies

The second step in analogy processing after the retrieval of
an analogous episode is usually mapping or the interpreta-
tion of the analogy. When both analogs are known, the task
is to find the corresponding elements of the analogs.

As mentioned in Section 1 and in Section 2.3.1, most of
the mapping models (e.g., [7], [22], [21], [24], [6], [16]) use at
the final stage a localist mapping network (real or virtual) or
its symbolic analog. However, in HRRs and BSCs, another
technique is used to find corresponding elements of analogs
([39], [42], [27], [28]). This technique is based on operations
that work directly on the distributed representations of
analogs.

For example, in order to find the entity in various episodes
corresponding to Jane in probe, the following procedure is
used [42]: First, noisy roles of Jane are extracted from the
probe by unbinding: jane-roles � hP � janeTi � noise. Then,
noisy fillers of these roles are extracted from the considered
episode E, again using unbinding: hE � jane-rolesTi. Finally,
the similarity of those fillers with the episode entities is
calculated by a dot product. For the LS episode, the entities
are John and Fido, therefore the dot products hE �
jane-rolesTi � john and hE � jane-rolesTi � fido are calcu-
lated. The entity corresponding to Jane should produce the
largest dot product.

In [42], this procedure produced correct results for the LS
and the AN episodes. For the SF, CM, and FOR episodes,
the results were incorrect or ambiguous because, in those

episodes, the similarity of role-filler bindings are incon-
sistent with the similarity of entities. More sophisticated
versions of the mapping procedure are needed in order to
resolve this ambiguity, e.g., ªintermediate clean-upº [42].

5.2.1 Mapping by Similarity Estimation in APNNs

In order to map the elements of two analogs, first their
elements of all levels of hierarchy (or chunks) should be
encoded using the APNN representations. Here, let us use
the role-filler representation scheme of (20), (21), and (22)
(see also Table 1).

As proposed in Section 4.1, six hierarchical levels (base-
level plus level #0 ± level #4) can be distinguished in the
episodes represented by the chosen scheme. The simplest
version of mapping we discuss here is to try putting into
correspondence the elements of episodes at all hierarchical
levels by direct comparison of the codevectors of those
elements.

Let us consider the similarity matrices calculated for the
elements of the probe episode and one of the other episodes
(Tables 4, 5, and 6). The matrix elements are the overlaps of
codevectors of various chunks. It can be seen that for the LS
and the AN episodes (Tables 4 and 5), the matrix elements
of the main diagonal are the largest. It means that the
corresponding elements of these episodes and the probe
correctly map to each other. Actually, only the similarity
between the codevectors inside each level should be taken
into account, as indicated by the boxes in the tables. Finally,
the entities of level #1 that are the components of the
corresponding bindings of level #2 should be also marked
as corresponding (irrespective of their similarity).

For the CM, the SF (Table 6), and the FOR episodes,
the ªcorrectº correspondence with the probe cannot be
established by the similarity of chunks. For these
episodes, the similarity of the agent/object roles for
bite/flee relations either comes into contradiction with
the similarity of those for the probe (the SF and the FOR
episodes) or into contradiction with the similarity of their
fillers (the CM episode). These results of finding
correspondences agree with the results of Plate [42]
obtained without ªintermediate clean-up.º It should be
noted that such types of analogs are difficult to map even
for people. To establish ªcorrectº correspondences in the
considered cases, more elaborated APNN representations
or more ªformalº techniques for finding correspondences
should be used (see also discussion below).
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The Similarity Matrix for the Elements of the Probe and the LS Episode

Notations are the same as in Table 1.
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6 DISCUSSION

Estimation of the similarity of structures is a key
procedure in models of cognition and in other systems
operating with structured information. Realization of this
procedure is determined by the employed scheme for
structure representation.

In the past, mainly symbolic or localist connectionist
representations were used for structure encoding. Those
representations suffer from the scaling problem. Each
combination of items requires the allocation of new memory
for its representation as a local unit or a symbol string.

An even more pronounced problem is that localist and
symbolic representations are semantically brittle or inflex-
ible. For example, whenever a new information item is
represented, it is necessary to decide if new units should be
allocated to represent it and its constituents or whether
similar existing representations can be exploited. Since
localist representations are indivisible, it is difficult to
represent a gradual degree of similarity or difference
between them. A related problem for localist and symbolic
representations is the estimation of structure similarity,
which requires computationally very expensive procedures.

The problems of structure representation and processing
with nondistributed representations are exemplified by the
models of analogical reasoning. It should be admitted that
in recent models of analogical mapping (LISA [24],
STAR2 [16], and especially DRAMA [6]), attempts are made
to use the semantic flexibility of distributed representations.
However, at some stage of implementation, these models
return to the versions of localist networks that are
conceptually similar to the structure handling techniques

of earlier prominent models (SME [7], ACME [53],
Copycat [21]) based on nondistributed representations.

The computationally expensive stage of structure match-
ing leads to the necessity of introducing a two-stage process
for the retrieval of analogs from memory. Since a lot of
potentially analogous situations are stored in memory, it
becomes prohibitive to use an expensive process in
comparing the probe with each of them. Therefore, a
common strategy is to use a computationally cheap process
(which does not take structure into account) for the
selection of the candidates, and then to use a complex
computation for estimation of the similarity between the
probe and the candidates (taking into account all aspects of
similarity), as in MAC/FAC [9] and ARCS [53].

In APNNs, HRRs, and BSCs, it has been possible to
create an on-the-fly scheme for distributed structure
representation, where both the set of components and their
arrangements influence the similarity of codevectors.
Therefore, similar structures produce similar codevectors.
The similarity of codevectors is measured just by the
overlap of their 1s (APNNs and BSCs) or dot product
(HRRs). Thus, it is not necessary to determine the
correspondence between the elements of two structures in
order to estimate their overall similarity.

A single-stage process of estimating similarity of
structures by the overlap of their APNN-style codevectors
was tested on a simple analogical retrieval task. For both
schemes of structure representation that were applied, the
order of scores for the episodes with different types of
similarity corresponded to the order of HRR scores for the
same task [42] and to the retrieval pattern observed in
people. A connection between the codevector similarity and
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TABLE 6
The Similarity Matrix for the Elements of the Probe and the SF Episode

Notations are the same as in Table 1.

TABLE 5
The Similarity Matrix for the Elements of the Probe and the AN Episode.

Notations are the same as in Table 1.
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the probability of human analogical access can be seen as
follows: Increased similarity between representations of the
episode and the probe increases the probability of the
episode recall from long-term memory. If long-term
memory is implemented as an associative memory and
probe codevectors are somewhat distorted versions of
stored ones, this could account for such a behavior and
also for some empirical phenomena concerning analogical
access that were summarized in Table 1 of [24]. In
particular, it concerns the phenomena of competitive access
and easier access of close analogs. Easier access to more
abstract schemas can also be explained by the property of
the CDT procedure to produce more similar codevectors at
lower thinning depth. The phenomenon that highly familiar
analogs are more likely to be retrieved even if they are less
similar to the probe than alternatives can be explained by
their larger memory traces (produced, e.g., by the Hebbian
learning rule) that facilitate retrieval.

The range of possible schemes for structure representa-
tions in APNNs is extended by the employed binding
procedure and various schemes of order representation. For
example, both a role-filler scheme and a predicate-argu-
ments scheme can be used for representation of relational
structure.

Each chunk (a composite item, a substructure, a
structure) is represented in the APNN scheme by a thinned
codevector in which the component codevectors of the
lower hierarchical level are bound together. This allows one
to build the codevector of a higher-level item simply by
superimposing and binding together (by thinning) the
component codevectors. Therefore, it is not necessary to
exclusively use the role-filler scheme where the roles of the
higher level should be determined in order to make
bindings with the chunks of the previous hierarchical level.
It also decreases the risk of ªspurious memoriesº when an
outer-product superposition learning rule is used to store
the codevectors of chunks.

In APNNs, the compositional (part-whole) hierarchy of
representations receives primary attention. The chunk or
proposition of each complexity level is stored and pro-
cessed in a separate memory array. To retrieve the
components of a composite codevector, the similarity with
the codevectors of the lower hierarchical level is used. Also,
this hierarchy simplifies the mapping of the elements of
analogs. The correspondence should be primarily searched
between the elements of the same hierarchical level.

The simplest mapping technique is to put into correspon-
dence the elements of two analogs of the same hierarchical
level which have the largest overlap of codevectors. For the
encoding of entities and propositions chosen in this paper to
represent animal stories, this technique worked successfully
for the episodes with literal and analogical similarity. For the
interpretation of more formal analogies, other representa-
tions could be tried; for example, another feature structure of
the base-level components or different representation
scheme for propositional structure. However, the present
results can already account for the phenomena from Table 1
of [24] that semantic similarity has a greater impact on access
than on mapping (and the reverse for isomorphism). The
CM and SF episodes are semantically more similar to the
probe than the AN episode and produced higher similarity

scores to the probe thus suggesting an easier access.
However, during mapping, the analogical elements at all
hierarchical levels of the isomorphic AN episode were
correctly mapped to those of the probe, whereas this was not
observed for the nonisomorphic CM and SF episodes.

A more structure-sensitive technique for finding corre-
spondences between the elements of analogs is to decode
the chunks (starting from the top level) through their
subchunks of the lower level, to find the correspondences
between the roles, and to put into correspondence their
fillersÐirrespective of their similarity.

Another possible technique of mapping is the substitu-
tion of identical codevectors for the corresponding elements
of analogs and reencoding the analogs. This allows for use
of the information about established correspondences in
order to find other correspondences. Also, it can be used to
verify the consistency of mapping: If the elements of all
levels are mapped correctly and the structure of proposi-
tions is identical, then identical codes will result for the
whole structures.

Such techniques will be considered in greater detail
elsewhere. They include essentially sequential steps that
provide flexibility to the mapping processÐthough they
may alternate with parallel stages, e.g., finding the most
similar codevectors. The process of mapping can be
substantially sequential because it probably works only on
a single pair of analogs simultaneously. In contrast, the
process of analogical access should allow essentially
parallel implementation because it requires fast retrieval
from a potentially very huge base of analogical episodes.

In this paper, as in [42], only the simplest flat feature
structures (of two features) were used for entities and for
relational agents/objects (of a single feature). Such descrip-
tions were generated artificially. Actually, the items of the
lowest level may have a complex structure formed in the
interaction with environment. For example, the features of
type are categories that themselves possess a complex
hierarchical structure [35]. Therefore, the transition to more
realistic problems will require dealing with the problems
concerning the representation of meaning and symbol
grounding ([24], [29], [42], see also [5], [2], [18], [4]). Related
potential problems of how similar items from diverse
conceptual and linguistic structures might be uniformly
allocated to the proper levels of part-whole hierarchy and
how the items that seem cross levels might be handled also
need further investigation.

Further work should reveal how potentially attractive,
from the scaling point of view, schemes for distributed
structure representation, processing algorithms exploiting
them, and implementations of long-term memory will
actually behave themselves for very large numbers of
structured items. The APNN scheme seems more neurolo-
gically relevant compared to other schemes since it uses
distributed sparse binary codes. Besides, manipulations
with such codes are very simpleÐand memory for their
storage becomes cheaper.

7 CONCLUSION

The representation of structures with sparse binary
codevectors in the framework of hierarchical architecture
of Associative-Projective Neural Networks permits the
estimation of their aggregate similarity by the overlap of
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corresponding codevectors. Such a representation is not
neurologically implausible and permits simple and fast
implementation.

The main procedure for codevector construction is that
of Context-Dependent Thinning. This procedure binds the
codevectors of items together and maintains a low density
of codevectors of various complexity. This allows distrib-
uted auto-associative memories with a superposition learn-
ing rule to be considered as a storage medium for the
codevectors of substructures of various hierarchical levels.

This ªthinningº procedure, as well as some others, is also
used to represent the order of arguments in a relation. This
offers a potential for the encoding of various types of data
structures, including role-filler and predicate-arguments
schemes for representation of relational structures.

The similarity of codevectors representing analogous
episodes was applied to the modeling of analogical retrieval
from memory. The similarity of codevectors can be also
used for analogical mapping, however, ªdifficultº cases
may require more complex techniques, including similarity-
based expansion of higher-level codevectors through their
component codevectors.

The concepts and techniques described in this paper
demonstrate the potential of distributed representations for
the problem of analogy as well as for other structure-
sensitive problems of AI that were assumed to be solvable
only with symbolic or localist representations.
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