
Efficient Hardware Designs for
Hyperdimensional Learning

Neuroscience 299: Module 11
November 10, 2021

Mohamed S. Ibrahim

Berkeley Wireless Research Center

• BS Electrical Engineering: Ain Shams University, Cairo, Egypt: 2010
• MS Electrical Engineering: Ain Shams University, Cairo, Egypt: 2013
• MS Electrical and Computer Engineering, Duke University, Durham, NC: 2017
• PhD Electrical and Computer Engineering, Duke University, Durham, NC: 2018

o Research: Design and optimization of “cyber-physical microfluidic biochips/systems”

• Senior SoC Design Engineer at Intel Corporation, Santa Clara, CA: June 2018—May
2021
• Postdoc at Berkeley Wireless Research Center since June 2021

o Current research: Exploring efficient hardware solutions for HD computing beyond
supervised learning, among others.

About Me

2

• Motivation and Goals
• Background
• Specialized HD Architectures
• Nearly General-Purpose HD Encoding

Architectures
• Introducing Analog Computing and

Non-Volatile Memories

Topics

Digital Hardware

Analog Hardware

3

Motivation and Goals

4[Slides Courtesy of Jan M. Rabaey, UC Berkeley]

Rethinking Computing…

5

The nature of computing is changing
• Programming driven by data and learning, not algorithms
• Truly ubiquitous (smart world, smart humans, …)

While technologies of old are plateauing
• Traditional computer architecture limited by interconnect
• Variability and leakage constraints limit energy scaling
• Limitations of deterministic computing paradigm

From IoT to IoA

6

The Cloud

The Fog

TRUE Swarms

[J. Rabaey, 2017]

Digitization of society – an extremely
rapidly accelerating phenomenon

0

50

100

150

200

250

2012 2016 2020 2024 2028

• Digital data generated worldwide (in
ZettaBytes)

• Huge fraction of this data generated
at the “edge”

[IoA: Term coined by the Institute for the Future 2018]

From IoT to IoA

7

The Cloud

The Fog

TRUE Swarms

[J. Rabaey, 2017]

Digitization of society – an extremely
rapidly accelerating phenomenon

0

50

100

150

200

250

2012 2016 2020 2024 2028

• Digital data generated worldwide (in
ZettaBytes)

• Huge fraction of this data generated
at the “edge”

Share knowledge and insights, not data

Autonomy
Latency
Security

Robustness
Transparency

Privacy
Energy efficiency

[IoA: Term coined by the Institute for the Future 2018]

The Neuroscience Promise

8

An Amazing
Computational Engine

Still marginally understood, let alone “cloned”

2-3 orders more efficient than today’s silicon
equivalent (>1016 FLOPS with ~20 W)

Robustness in presence of component failure and
variations

§ Neural response is highly variable

Amazing performance with mediocre
components

§ E.g., sensory pathways– auditory, olfactory, vision, …

Learning-Based Computational Models

9

Deep Neural Nets
Learning compute and data hungry
Separate from inference
Complex

Bayesian Machine learning
(Believe propagation, reinforcement learning,
graphical models, support-vector machines)

Model building non-trivial
Executed on standard processors (graph analytics)

High-dimensional
computing

(Holographic)
Computing with patterns, one-shot learning

Neuromorphic computing
Bottom-up, Networks of neurons

Brain-Like Principles:

1- Memory and computing are interconnected

2- Resilient computing (Redundancy as a feature)

Memory-centric algorithms: Highly parallel; Approximate computing

Brain-like robust algorithms: Low SNR; High variability

Hyperdimensional vectors (N > 1000) as basic computational symbols
- represent patterns rather then numbers
- can be approximate – that is, can be compared for similarity

Mathematical properties of high-dimensional spaces
in remarkable agreement with behaviors observed in brain

Brain-Like Principles:

1- Memory and computing are interconnected

2- Resilient computing (Redundancy as a feature)

Memory-centric algorithms: Highly parallel; Approximate computing

Brain-like robust algorithms: Low SNR; High variability

Background

12[Slides Courtesy of Mohsen Imani, UC Irvine]

13

HD Operations: Bundling & Binding

14

HD Operations: Permutation

Digital Circuits

15

• Combinational circuit: Output
determined solely by inputs

• Sequential circuits: Output determined
by inputs AND previous outputs

Digital Circuits

16

• Gates are made of CMOS transistors,
which require voltage source (VDD) to
function

• What happens when we increase or
decrease VDD?
o Energy efficiency
o Performance

[Source: David Blaauw, U Michigan, Ann Arbor]

Near-threshold logic Clock

Vout

Vin
Leakage

Specialized HD Architectures

17[Slides Courtesy of Abbas Rahimi, IBM Research; Alisha Menon, UC Berkeley]

Dense Hyperdimensional Encoder for Language Recognition

18

HELLO WORLD …[]

Dense Hyperdimensional Encoder for Language Recognition

19

HELLO WORLD …
A
B
C

Item Memory

𝜌𝜌H*𝜌E*L + 𝜌𝜌E*𝜌L*L + 𝜌𝜌L*𝜌L*O + …

[]

3-gram hyperdimensional encoding

Dense Hyperdimensional Encoder for Language Recognition

20

HELLO WORLD …
A
B
C

Item Memory

𝜌𝜌H*𝜌E*L + 𝜌𝜌E*𝜌L*L + 𝜌𝜌L*𝜌L*O + …

[]

3-gram hyperdimensional encoding

Three observations:
• Each letter hypervector is permuted twice times
• Pointwise multiplication (XOR binding) requires three registers to generate trigram hypervector
• Pointwise addition produces text hypervector

Dense Hyperdimensional Encoder for Language Recognition

21

[HELLO WORLD …]

Dense Hyperdimensional Encoder for Language Recognition

22

[HELLO WORLD …]
H

Dense Hyperdimensional Encoder for Language Recognition

23

[HELLO WORLD …]
E
𝜌H

Dense Hyperdimensional Encoder for Language Recognition

24

[HELLO WORLD …]
𝜌E
𝜌𝜌H

L

𝜌𝜌H*𝜌E*L

Dense Hyperdimensional Encoder for Language Recognition

25

[HELLO WORLD …]

𝜌𝜌E*𝜌L*L

(𝜌𝜌H*𝜌E*L)

𝜌L
𝜌𝜌E

L

Dense Hyperdimensional Encoder for Language Recognition

26

[HELLO WORLD …]
𝜌L
𝜌𝜌L

O

𝜌𝜌L*𝜌L*O

(𝜌𝜌H*𝜌E*L) + (𝜌𝜌E*𝜌L*L)

Dense Hyperdimensional Encoder for Language Recognition

27Rahimi, Abbas, et al. "A robust and energy-efficient classifier using brain-inspired hyperdimensional computing." 2016.

Training: Store encoded language hypervectors in the associative memory

Dense Hyperdimensional Encoder for Language Recognition

28Rahimi, Abbas, et al. "A robust and energy-efficient classifier using brain-inspired hyperdimensional computing." 2016.

Testing/Query: Encode text of an unknown language (Query hypervector)

Associative Search

29

Digital Hyperdimensional
Associative Memory (D-HAM)

• SoA associative search uses content-addressable
memories (CAMs)

• Distance Computation: Hamming distance is
hardware friendly (avoid normalization in Cosine)

Associative Search

30

Digital Hyperdimensional
Associative Memory (D-HAM)

• SoA associative search uses content-addressable
memories (CAMs)

• Distance Computation: Hamming distance is
hardware friendly (avoid normalization in Cosine)

1 0 1 0 0 0
1 1 1 0 1 0

0 1 0 0 1 0

XOR

Hamming distance = Count of 1’s = 2

Associative Search

31

Digital Hyperdimensional
Associative Memory (D-HAM)

Associative Search

32

Digital Hyperdimensional
Associative Memory (D-HAM)

• Nearest neighbor = Class HV
with Minimum Hamming
distance to Query HV

Associative Search

33

Digital Hyperdimensional
Associative Memory (D-HAM)

• Nearest neighbor = Class HV
with Minimum Hamming
distance to Query HV

• Use a binary tree of
comparators (height = log C)

Associative Search

34

Imani, Mohsen, et al. "Exploring
hyperdimensional associative memory.” 2017.

Digital Hyperdimensional
Associative Memory (D-HAM)

• Nearest neighbor = Class HV
with Minimum Hamming
distance to Query HV

• Use a binary tree of
comparators (height = log C)

58%
42%

Total area
(26 𝑚𝑚!)

𝐷 = 10,000
𝐶 = 100

Total Energy Consumed Per Query
(6155 𝑝𝐽)

81%

19%

CAM array

Counters and Comparators

Associative Search

35

Imani, Mohsen, et al. "Exploring
hyperdimensional associative memory.” 2017.

Digital Hyperdimensional
Associative Memory (D-HAM)

• Nearest neighbor = Class HV
with Minimum Hamming
distance to Query HV

• Use a binary tree of
comparators (height = log C)

58%
42%

Total area
(26 𝑚𝑚!)

𝐷 = 10,000
𝐶 = 100

81%

19%

CAM array

Counters and Comparators

The CAM array is the energy bottleneck since each component of
the query HV needs to be compared with the same component of

the learnt HV—High switching activities at XOR gates

Total Energy Consumed Per Query
(6155 𝑝𝐽)

Sparse Hyperdimensional Encoder for Language Recognition

36

• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements
o Example: If D = 100 000, number of “1” elements could be 1000

Sparse Hyperdimensional Encoder for Language Recognition

• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements
o Example: If D = 100 000, number of “1” elements could be 1000

Encoder Distance
Comp.

Assoc.
Search

How can we use sparseness to reduce energy?

37

Sparse Hyperdimensional Encoder for Language Recognition

• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements
o Example: If D = 100 000, number of “1” elements could be 1000

Encoder Distance
Comp.

Assoc.
Search

How can we use sparseness to reduce energy?

XOR Binding does not work with
sparse representation! Why?

The alignment of 1’s in the compared sparse HVs is
more important now—Use dot product as a metric…

Sparse Hyperdimensional Encoder for Language Recognition

39

A
B
C

Item Memory

SA

SB

SC

Signature Memory

Sparse Hyperdimensional Encoder for Language Recognition

40

A
B
C

Item Memory

SA

SB

SC

Signature Memory

HELLO WORLD …[]

𝜌" = 𝑆#⊕𝑆$

Introduce permutation-based binding/encoding…

𝜌# = 𝑆"⊕𝑆$

𝜌$ = 𝑆"⊕𝑆#

Sparse Hyperdimensional Encoder for Language Recognition

41

A
B
C

Item Memory

SA

SB

SC

Signature Memory

HELLO WORLD …[]

𝜌" = 𝑆#⊕𝑆$

Introduce permutation-based binding/encoding…

𝜌# = 𝑆"⊕𝑆$

𝜌$ = 𝑆"⊕𝑆#

Use them for bundling-based 3-gram encoding

42

H
E
L

Permutation-based encoding…

A form of bundling and context-dependent
thinning to maintain appropriate density…

Sparse Hyperdimensional Encoder for Language Recognition

Associative Search (AND Gates)

43

Sparse vs. Dense Data Representation

44

Encoding Associative Memory

Sparse vs. Dense Data Representation

45

Encoding Associative Memory

Current hardware based on sparse data representation offers
advantages in energy saving. However, its dataflow may not be

flexible enough due its inherent encoding properties…

Hyperdimensional Processor Architecture for Emotion Recognition

46

Nearly General-Purpose HD Encoding Architectures

47[Slides Courtesy of Sohum Datta, UC Berkeley]

Binary HD Computing Processor Architecture

48

• Item Memory: Stores the randomly generated high-dimensional vectors.
• Encoder: Performs computations on high-dimensional vectors to produce learned representations.
• Associative Memory: Stores learned representations and computes distance between them and test

vector representations for prediction.

Binary HD Computing Processor Architecture

49

• Unidirectional Dataflow Architecture: No reconfiguration in the Item Memory or Associative Memory
• Generic Encoding: Reconfiguration is possible in the Encoder, through DPUs and control signals

Programmable HD Encoder

50

Hyperdimensional Logic Unit (HLU)
“The simplest (single-bit) DPU”

• Multiply (𝐶 = 𝐴⨁𝐵)
• Permute (𝐶 = 𝜌(𝐴))
• Delay (𝐶 = 𝐴)
• Permute-and-multiply (𝐶 = 𝐴⨁𝜌(𝐵))

Programmable HD Encoder

51

Hyperdimensional Logic Unit (HLU)
“The simplest (single-bit) DPU”

• Multiply (𝐶 = 𝐴⨁𝐵)
• Permute (𝐶 = 𝜌(𝐴))
• Delay (𝐶 = 𝐴)
• Permute-and-multiply (𝐶 = 𝐴⨁𝜌(𝐵))

Permute: Any Hamiltonian path connection through
p_in and p_out is valid… But we need to take
physical routing into consideration (Minimize wire
length and routing congestion) …

HLU Layer

Programmable HD Encoder

52

Accumulator: Perform superposition at each component
Threshold: Perform binarization (MSB of counters are used)

HLU Layer
,QWHUFRQQHFWLRQ�1HWZRUN

��

Ɣ 0XOWLSOH�SRVVLEOH�LQSXWV�$�DQG�%�IRU�
HDFK�+/8�/D\HU�

Ɣ 0RVW�JHQHUDO��)XOO\��FRQQHFWHG�
LQWHUFRQQHFWLRQ�QHWZRUN��4XDGUDWLF�
ZLULQJ�FRVW�

Ɣ)HHG�IRUZDUG��1R�F\FOHV�LQ�WKH�SDWK�
IURP�LWHP�WR�KOXBILQDOBRXW�

Ɣ 3URJUDP�VWDWH����ELWV�+/8�/D\HU�
/RDGHG�LQWR�FRQWURO�UHJLVWHUV�GXULQJ�
VHWXS������F\FOHV�WRWDO�

Accumulate

Threshold

(*, r)

(+)

Sp
at

io
-te

m
po

ra
l e

nc
od

er

Encoder Parameters: HLU Network, Depth, Width

53

Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers

Encoder Parameters: HLU Network, Depth, Width

54

Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers

Encoder Parameters: HLU Network, Depth, Width

55

Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers

7-layer configurable pipelined data-path to efficiently
implement space-time encoders encountered in
streaming-based learning and classification tasks

Width = 2048 bits

CMOS Chip Design Flow

56

Item Memory

EncoderEMG

Associative
Memory

Encoder

Processor Logic
(SystemVerilog)

Processor Config.
Header

(D = 2048, 1024 items, 32
classes, …)

Vector Data
(Item Memory vectors,
Trained class vectors)

Synthesis
(DC Compiler I)

Synthesized Netlist
(Synopsys DB)

Verilog Simulation
(VCS)

Netlist Logic
Transitions
(.VCD, .SAIF)

Test Examples

Power Simulation
(PrimePower)

Num. of
Predictions

Total Energy

Simulation
Time

Energy/prediction = Total Energy / Num. of Predictions; Latency = Simulation Time / Num. of Predictions

Introducing Analog Computing and
Non-Volatile Memories

57[Slides Courtesy of G. Karunaratne, IBM Research]

In-Memory HD Computing

58

I = G * V

In-Memory HD Computing

59

I = G * V

In-Memory HD Computing

60

Time

Co
nd

uc
ta

nc
e

I = G * V

10-5

10-4

In-Memory HD Computing

61

Time

Co
nd

uc
ta

nc
e

I = G * V

Non-Idealities:
• Read noise
• Drift
• Less programmability
• Programming power

Nice properties:
• Low read latency, energy
• High endurance (1012)
• Scalable (1000 elems per dim)
• High density
• Non-volatile

In-Memory HD Computing

62

Time

Co
nd

uc
ta

nc
e

I = G * V

Non-Idealities:
• Read noise
• Drift
• Less programmability
• Programming power

Nice properties:
• Low read latency, energy
• High endurance (1012)
• Scalable (1000 elems per dim)
• High density
• Non-volatile

Challenges:
• Von Neumann bottleneck
• Massively parallel

Nice properties:
• Well-defined arithmetic

operations
• Robust

HD Computing

In-Memory HD Computing

63

In-Memory HD Encoding

64

• Goal: Combine the basis (letter) HD
vectors from the Item Memory to
create:
o The prototype (language) HD vectors

representing each class, or
o The query HD vector (from unknown

language) for inference

• Item Memory HD vectors encoded in
conductance states of memristive
devices

In-Memory HD Encoding

65

• Goal: Combine the basis (letter) HD
vectors from the Item Memory to
create:
o The prototype (language) HD vectors

representing each class, or
o The query HD vector (from unknown

language) for inference

• Item Memory HD vectors encoded in
conductance states of memristive
devices

• Encoding operations performed
using in-memory read logic

Select row

HD Encoding Based on 2-minterms

66

• How to find an encoding solution that suits in-memory read logic?
• Minterm expansion of XNOR function:

𝐴#⨁𝐵 = (𝐴⋀𝐵)⋁(𝐴̅⋀ ,𝐵)

All-negative mintermAll-positive minterm

HD Encoding Based on 2-minterms

67

• Use two parallel crossbars to approximate the encoding dynamics
• Original and complementary item memories in two crossbars to produce 2-minterms

HD Encoding Based on 2-minterms

68

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

HD Encoding Based on 2-minterms

69

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

1 1 1 1 1 1

HD Encoding Based on 2-minterms

70

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝐼 ̅𝐼

HD Encoding Based on 2-minterms

71

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝐼 ̅𝐼

HD Encoding Based on 2-minterms

72

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝐼⋀C 𝜌 ̅𝐼⋀ ̅𝐶

HD Encoding Based on 2-minterms

73

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝐼⋀C 𝜌 ̅𝐼⋀ ̅𝐶

HD Encoding Based on 2-minterms

74

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻

HD Encoding Based on 2-minterms

75

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻
OR

To bundler

HD Encoding Based on 2-minterms

76

• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻
OR

To bundler

2-minterm provides accuracy that is close to all-minterm:

In-Memory Associative Search

77

In-Memory Associative Search

78

• Goal: Find which class (language) a
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of
memristive devices

In-Memory Associative Search

79

• Goal: Find which class (language) a
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of
memristive devices

• Approximate Hamming distance by
dot-product for hardware-friendly
implementation:

𝐶𝑙𝑎𝑠𝑠 = argmax
%

𝑃% ⋅ 𝑄 + 2𝑃% ⋅ ?𝑄 ≈ argmax
%

𝑃% ⋅ 𝑄

Mitigating Array-Level Variability

80

• Coarse-grained randomization of HD vector
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%

Mitigating Array-Level Variability

81

• Coarse-grained randomization of HD vector
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%

In-Memory Associative Search

82

• Goal: Find which class (language) a
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of
memristive devices

• Approximate Hamming distance by
dot-product for hardware-friendly
implementation:

𝐶𝑙𝑎𝑠𝑠 = argmax
%

𝑃% ⋅ 𝑄 + 2𝑃% ⋅ ?𝑄 ≈ argmax
%

𝑃% ⋅ 𝑄

Mitigating Array-Level Variability

83

• Coarse-grained randomization of HD vector
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%

• In-memory computing with PCM + 65nm CMOS peripherals leads to
6.61x energy reduction and 3.81x area reduction, compared to full
65nm CMOS design

• Room for improvement in CMOS peripheral circuits

• Same concepts can be applied to other memristive technologies
(RRAM, MRAM, …)

Takeaways

84

• HD computing is realized today in CMOS – but true opportunity lays in
integrating memory, logic, and sensing

• In-memory HD computing shows a great potential in reducing energy
– but there is still a room for improving the digital peripherals

• Hardware design is all about resolving tradeoffs: performance,
flexibility, energy efficiency

85

