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• Motivation and Goals
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• Specialized HD Architectures
• Nearly General-Purpose HD Encoding 

Architectures
• Introducing Analog Computing and 

Non-Volatile Memories

Topics

Digital Hardware

Analog Hardware
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Motivation and Goals

4[Slides Courtesy of Jan M. Rabaey, UC Berkeley]



Rethinking Computing…
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The nature of computing is changing
• Programming driven by data and learning, not algorithms
• Truly ubiquitous (smart world, smart humans, …)

While technologies of old are plateauing
• Traditional computer architecture limited by interconnect
• Variability and leakage constraints limit energy scaling
• Limitations of deterministic computing paradigm



From IoT to IoA
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The Cloud

The Fog

TRUE Swarms

[J. Rabaey, 2017]

Digitization of society – an extremely 
rapidly accelerating phenomenon
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[IoA: Term coined by the Institute for the Future 2018]



From IoT to IoA
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The Cloud

The Fog

TRUE Swarms

[J. Rabaey, 2017]
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• Huge fraction of this data generated 
at the “edge”

Share knowledge and insights, not data

Autonomy
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Security
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Energy efficiency

[IoA: Term coined by the Institute for the Future 2018]



The Neuroscience Promise
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An Amazing 
Computational Engine

Still marginally understood, let alone “cloned” 

2-3 orders more efficient than today’s silicon 
equivalent  (>1016 FLOPS with ~20 W)

Robustness in presence of component failure and 
variations

§ Neural response is highly variable

Amazing performance with mediocre 
components

§ E.g., sensory pathways– auditory, olfactory, vision, …



Learning-Based Computational Models
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Deep Neural Nets
Learning compute and data hungry
Separate from inference
Complex

Bayesian Machine learning 
(Believe propagation, reinforcement learning,
graphical models, support-vector machines)

Model building non-trivial
Executed on standard processors (graph analytics)

High-dimensional 
computing

(Holographic)
Computing with patterns, one-shot learning

Neuromorphic computing
Bottom-up, Networks of neurons



Brain-Like Principles:

1- Memory and computing are interconnected

2- Resilient computing (Redundancy as a feature)

Memory-centric algorithms: Highly parallel; Approximate computing

Brain-like robust algorithms: Low SNR; High variability



Hyperdimensional vectors (N > 1000) as basic computational symbols
- represent patterns rather then numbers
- can be approximate – that is,  can be compared for similarity

Mathematical properties of high-dimensional spaces 
in remarkable agreement with behaviors observed in brain

Brain-Like Principles:

1- Memory and computing are interconnected

2- Resilient computing (Redundancy as a feature)

Memory-centric algorithms: Highly parallel; Approximate computing

Brain-like robust algorithms: Low SNR; High variability



Background

12[Slides Courtesy of Mohsen Imani, UC Irvine]
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HD Operations: Bundling & Binding
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HD Operations: Permutation



Digital Circuits
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• Combinational circuit: Output 
determined solely by inputs

• Sequential circuits: Output determined 
by inputs AND previous outputs



Digital Circuits
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• Gates are made of CMOS transistors, 
which require voltage source (VDD) to 
function

• What happens when we increase or 
decrease VDD?
o Energy efficiency
o Performance

[Source: David Blaauw, U Michigan, Ann Arbor]

Near-threshold logic Clock

Vout

Vin
Leakage



Specialized HD Architectures

17[Slides Courtesy of Abbas Rahimi, IBM Research; Alisha Menon, UC Berkeley]



Dense Hyperdimensional Encoder for Language Recognition
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HELLO WORLD …[ ]



Dense Hyperdimensional Encoder for Language Recognition
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HELLO WORLD …
A
B
C

Item Memory

𝜌𝜌H*𝜌E*L + 𝜌𝜌E*𝜌L*L + 𝜌𝜌L*𝜌L*O + …

[ ]

3-gram hyperdimensional encoding



Dense Hyperdimensional Encoder for Language Recognition
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HELLO WORLD …
A
B
C

Item Memory

𝜌𝜌H*𝜌E*L + 𝜌𝜌E*𝜌L*L + 𝜌𝜌L*𝜌L*O + …

[ ]

3-gram hyperdimensional encoding

Three observations:
• Each letter hypervector is permuted twice times 
• Pointwise multiplication (XOR binding) requires three registers to generate trigram hypervector
• Pointwise addition produces text hypervector



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]
H



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]
E
𝜌H



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]
𝜌E
𝜌𝜌H

L

𝜌𝜌H*𝜌E*L



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]

𝜌𝜌E*𝜌L*L

(𝜌𝜌H*𝜌E*L)

𝜌L
𝜌𝜌E

L



Dense Hyperdimensional Encoder for Language Recognition
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[HELLO WORLD …]
𝜌L
𝜌𝜌L

O

𝜌𝜌L*𝜌L*O

(𝜌𝜌H*𝜌E*L) + (𝜌𝜌E*𝜌L*L)



Dense Hyperdimensional Encoder for Language Recognition

27Rahimi, Abbas, et al. "A robust and energy-efficient classifier using brain-inspired hyperdimensional computing." 2016.

Training: Store encoded language hypervectors in the associative memory 



Dense Hyperdimensional Encoder for Language Recognition

28Rahimi, Abbas, et al. "A robust and energy-efficient classifier using brain-inspired hyperdimensional computing." 2016.

Testing/Query: Encode text of an unknown language (Query hypervector) 



Associative Search
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Digital Hyperdimensional 
Associative Memory (D-HAM)

• SoA associative search uses content-addressable 
memories (CAMs)

• Distance Computation: Hamming distance is 
hardware friendly (avoid normalization in Cosine)



Associative Search
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Digital Hyperdimensional 
Associative Memory (D-HAM)

• SoA associative search uses content-addressable 
memories (CAMs)

• Distance Computation: Hamming distance is 
hardware friendly (avoid normalization in Cosine)

1 0 1 0 0 0
1 1 1 0 1 0

0 1 0 0 1 0

XOR

Hamming distance = Count of 1’s = 2



Associative Search
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Digital Hyperdimensional 
Associative Memory (D-HAM)



Associative Search
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Digital Hyperdimensional 
Associative Memory (D-HAM)

• Nearest neighbor = Class HV 
with Minimum Hamming 
distance to Query HV



Associative Search
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Digital Hyperdimensional 
Associative Memory (D-HAM)

• Nearest neighbor = Class HV 
with Minimum Hamming 
distance to Query HV

• Use a binary tree of 
comparators (height = log C)



Associative Search
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Imani, Mohsen, et al. "Exploring 
hyperdimensional associative memory.” 2017.

Digital Hyperdimensional 
Associative Memory (D-HAM)

• Nearest neighbor = Class HV 
with Minimum Hamming 
distance to Query HV

• Use a binary tree of 
comparators (height = log C)

58%
42%

Total area
(26 𝑚𝑚!)

𝐷 = 10,000
𝐶 = 100

Total Energy Consumed Per Query
(6155 𝑝𝐽)

81%

19%

CAM array

Counters and Comparators



Associative Search
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Imani, Mohsen, et al. "Exploring 
hyperdimensional associative memory.” 2017.

Digital Hyperdimensional 
Associative Memory (D-HAM)

• Nearest neighbor = Class HV 
with Minimum Hamming 
distance to Query HV

• Use a binary tree of 
comparators (height = log C)

58%
42%

Total area
(26 𝑚𝑚!)

𝐷 = 10,000
𝐶 = 100

81%

19%

CAM array

Counters and Comparators

The CAM array is the energy bottleneck since each component of 
the query HV needs to be compared with the same component of 

the learnt HV—High switching activities at XOR gates

Total Energy Consumed Per Query
(6155 𝑝𝐽)



Sparse Hyperdimensional Encoder for Language Recognition
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• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements 
o Example: If D = 100 000, number of “1” elements could be 1000



Sparse Hyperdimensional Encoder for Language Recognition

• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements 
o Example: If D = 100 000, number of “1” elements could be 1000

Encoder Distance 
Comp.

Assoc. 
Search

How can we use sparseness to reduce energy? 
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Sparse Hyperdimensional Encoder for Language Recognition

• An attempt to reduce switching activity…

• Number of “1” elements ≪ Number of “0” elements 
o Example: If D = 100 000, number of “1” elements could be 1000

Encoder Distance 
Comp.

Assoc. 
Search

How can we use sparseness to reduce energy? 

XOR Binding does not work with 
sparse representation! Why?

The alignment of 1’s in the compared sparse HVs is 
more important now—Use dot product as a metric…



Sparse Hyperdimensional Encoder for Language Recognition
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A
B
C

Item Memory

SA

SB

SC

Signature Memory



Sparse Hyperdimensional Encoder for Language Recognition
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A
B
C

Item Memory

SA

SB

SC

Signature Memory

HELLO WORLD …[ ]

𝜌" = 𝑆#⊕𝑆$

Introduce permutation-based binding/encoding… 

𝜌# = 𝑆"⊕𝑆$

𝜌$ = 𝑆"⊕𝑆#



Sparse Hyperdimensional Encoder for Language Recognition
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A
B
C

Item Memory

SA

SB

SC

Signature Memory

HELLO WORLD …[ ]

𝜌" = 𝑆#⊕𝑆$

Introduce permutation-based binding/encoding… 

𝜌# = 𝑆"⊕𝑆$

𝜌$ = 𝑆"⊕𝑆#

Use them for bundling-based 3-gram encoding
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H
E
L

Permutation-based encoding…

A form of bundling and context-dependent 
thinning to maintain appropriate density…

Sparse Hyperdimensional Encoder for Language Recognition



Associative Search (AND Gates)
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Sparse vs. Dense Data Representation
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Encoding Associative Memory



Sparse vs. Dense Data Representation
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Encoding Associative Memory

Current hardware based on sparse data representation offers 
advantages in energy saving. However, its dataflow may not be 

flexible enough due its inherent encoding properties…



Hyperdimensional Processor Architecture for Emotion Recognition
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Nearly General-Purpose HD Encoding Architectures

47[Slides Courtesy of Sohum Datta, UC Berkeley]



Binary HD Computing Processor Architecture
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• Item Memory: Stores the randomly generated high-dimensional vectors. 
• Encoder: Performs computations on high-dimensional vectors to produce learned representations. 
• Associative Memory: Stores learned representations and computes distance between them and test 

vector representations for prediction.



Binary HD Computing Processor Architecture
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• Unidirectional Dataflow Architecture: No reconfiguration in the Item Memory or Associative Memory
• Generic Encoding: Reconfiguration is possible in the Encoder, through DPUs and control signals



Programmable HD Encoder
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Hyperdimensional Logic Unit (HLU)
“The simplest (single-bit) DPU”

• Multiply (𝐶 = 𝐴⨁𝐵)
• Permute (𝐶 = 𝜌(𝐴))
• Delay (𝐶 = 𝐴)
• Permute-and-multiply (𝐶 = 𝐴⨁𝜌(𝐵))



Programmable HD Encoder
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Hyperdimensional Logic Unit (HLU)
“The simplest (single-bit) DPU”

• Multiply (𝐶 = 𝐴⨁𝐵)
• Permute (𝐶 = 𝜌(𝐴))
• Delay (𝐶 = 𝐴)
• Permute-and-multiply (𝐶 = 𝐴⨁𝜌(𝐵))

Permute: Any Hamiltonian path connection through
p_in and p_out is valid… But we need to take
physical routing into consideration (Minimize wire
length and routing congestion) …

HLU Layer



Programmable HD Encoder
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Accumulator: Perform superposition at each component
Threshold: Perform binarization (MSB of counters are used)

HLU Layer
,QWHUFRQQHFWLRQ�1HWZRUN

��

Ɣ 0XOWLSOH�SRVVLEOH�LQSXWV�$�DQG�%�IRU�
HDFK�+/8�/D\HU�

Ɣ 0RVW�JHQHUDO��)XOO\��FRQQHFWHG�
LQWHUFRQQHFWLRQ�QHWZRUN��4XDGUDWLF�
ZLULQJ�FRVW�

Ɣ )HHG�IRUZDUG��1R�F\FOHV�LQ�WKH�SDWK�
IURP�LWHP�WR�KOXBILQDOBRXW�

Ɣ 3URJUDP�VWDWH����ELWV�+/8�/D\HU�
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Encoder Parameters: HLU Network, Depth, Width
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Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers



Encoder Parameters: HLU Network, Depth, Width
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Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers



Encoder Parameters: HLU Network, Depth, Width
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Feedback Feedforward

Optimal for 3-gram 3-gram in 5 HLU layers

7-layer configurable pipelined  data-path to efficiently 
implement space-time encoders encountered in 
streaming-based learning and classification tasks

Width = 2048 bits



CMOS Chip Design Flow
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Item Memory

EncoderEMG

Associative
Memory

Encoder

Processor Logic
(SystemVerilog)

Processor Config.
Header

(D = 2048, 1024 items, 32 
classes, …)

Vector Data
(Item Memory vectors,
Trained class vectors)

Synthesis 
(DC Compiler I)

Synthesized Netlist
(Synopsys DB)

Verilog Simulation 
(VCS)

Netlist Logic 
Transitions
(.VCD, .SAIF)

Test Examples

Power Simulation 
(PrimePower)

Num. of 
Predictions

Total Energy

Simulation 
Time

Energy/prediction = Total Energy / Num. of Predictions;   Latency = Simulation Time / Num. of Predictions



Introducing Analog Computing and 
Non-Volatile Memories

57[Slides Courtesy of G. Karunaratne, IBM Research]



In-Memory HD Computing
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I = G * V



In-Memory HD Computing
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I = G * V



In-Memory HD Computing
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Time

Co
nd
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nc
e

I = G * V

10-5

10-4



In-Memory HD Computing
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Time

Co
nd

uc
ta

nc
e

I = G * V

Non-Idealities: 
• Read noise
• Drift
• Less programmability
• Programming power

Nice properties: 
• Low read latency, energy
• High endurance (1012)
• Scalable  (1000 elems per dim)
• High density
• Non-volatile



In-Memory HD Computing
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Time

Co
nd

uc
ta

nc
e

I = G * V

Non-Idealities: 
• Read noise
• Drift
• Less programmability
• Programming power

Nice properties: 
• Low read latency, energy
• High endurance (1012)
• Scalable  (1000 elems per dim)
• High density
• Non-volatile

Challenges: 
• Von Neumann bottleneck
• Massively parallel

Nice properties: 
• Well-defined arithmetic 

operations
• Robust

HD Computing



In-Memory HD Computing
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In-Memory HD Encoding

64

• Goal: Combine the basis (letter) HD 
vectors from the Item Memory to 
create:
o The prototype (language) HD vectors 

representing each class, or
o The query HD vector (from unknown 

language) for inference

• Item Memory HD vectors encoded in 
conductance states of memristive
devices 



In-Memory HD Encoding
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• Goal: Combine the basis (letter) HD 
vectors from the Item Memory to 
create:
o The prototype (language) HD vectors 

representing each class, or
o The query HD vector (from unknown 

language) for inference

• Item Memory HD vectors encoded in 
conductance states of memristive
devices 

• Encoding operations performed 
using in-memory read logic

Select row



HD Encoding Based on 2-minterms
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• How to find an encoding solution that suits in-memory read logic?
• Minterm expansion of XNOR function:

𝐴#⨁𝐵 = (𝐴⋀𝐵)⋁(𝐴̅⋀ ,𝐵)

All-negative mintermAll-positive minterm



HD Encoding Based on 2-minterms
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• Use two parallel crossbars to approximate the encoding dynamics
• Original and complementary item memories in two crossbars to produce 2-minterms



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

1 1 1 1 1 1



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝐼 ̅𝐼



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝐼 ̅𝐼



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝐼⋀C 𝜌 ̅𝐼⋀ ̅𝐶



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝐼⋀C 𝜌 ̅𝐼⋀ ̅𝐶



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻
OR

To bundler



HD Encoding Based on 2-minterms
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• Example:
𝐼𝐶𝐻 = 𝜌𝜌𝐼 ∗ 𝜌𝐶 ∗ 𝐻 ≈ (𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻)⋁(𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀2𝐻)

𝜌𝜌𝐼⋀𝜌𝐶⋀𝐻 𝜌𝜌 ̅𝐼⋀𝜌 ̅𝐶⋀-𝐻
OR

To bundler

2-minterm provides accuracy that is close to all-minterm:



In-Memory Associative Search

77



In-Memory Associative Search

78

• Goal: Find which class (language) a 
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of 
memristive devices



In-Memory Associative Search
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• Goal: Find which class (language) a 
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of 
memristive devices

• Approximate Hamming distance by 
dot-product for hardware-friendly 
implementation:

𝐶𝑙𝑎𝑠𝑠 = argmax
%

𝑃% ⋅ 𝑄 + 2𝑃% ⋅ ?𝑄 ≈ argmax
%

𝑃% ⋅ 𝑄



Mitigating Array-Level Variability
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• Coarse-grained randomization of HD vector 
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%
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• Coarse-grained randomization of HD vector 
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%



In-Memory Associative Search

82

• Goal: Find which class (language) a 
query vector 𝑸 belongs to

• Learned prototype vectors 𝑷𝒊
encoded in conductance states of 
memristive devices

• Approximate Hamming distance by 
dot-product for hardware-friendly 
implementation:

𝐶𝑙𝑎𝑠𝑠 = argmax
%

𝑃% ⋅ 𝑄 + 2𝑃% ⋅ ?𝑄 ≈ argmax
%

𝑃% ⋅ 𝑄



Mitigating Array-Level Variability
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• Coarse-grained randomization of HD vector 
programming across chip to mitigate array-
level variability

Naïve placement: Accuracy drop 15%

• In-memory computing with PCM + 65nm CMOS peripherals leads to 
6.61x energy reduction and 3.81x area reduction, compared to full 
65nm CMOS design

• Room for improvement in CMOS peripheral circuits

• Same concepts can be applied to other memristive technologies 
(RRAM, MRAM, …)



Takeaways
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• HD computing is realized today in CMOS – but true opportunity lays in 
integrating memory, logic, and sensing

• In-memory HD computing shows a great potential in reducing energy 
– but there is still a room for improving the digital peripherals

• Hardware design is all about resolving tradeoffs: performance, 
flexibility, energy efficiency
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