Locality-preserving encodings (LPE):

Representing Continuous Values and Functions

How can we extend HD Computing/VSA to non-symbolic computation?
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We've glimpsed at these ideas before...

Visual working memory as a superposition of
‘what’ and ‘where’ bindings
(Eric Weiss, Ph.D. thesis)

2.1 STORING SEQUENCES BY TRAJECTORY-ASSOCIATION

@Q M= MOy, Elements of the sequence and loci (points) on the trajectory are all represented by
Q n-dimensional vectors. The loci are derived from a single vector k — they are its
| /:\ ‘ successive convolutive powers: k°, k', k?, etc. The convolutive power is defined in
T T the obvious way: k° is the identity vector and k**! = k*®k.
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Generalizing from Vectors to Symbols

VSA Formulation
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LPE: Problem formulation

* |nput:x€e R, d>1
* OQutput:z(x) eV",n>>d

= Goal: find a mapping x -> z(x) that is a Locality Preserving Encoding (LPE)
= High similarity between x; & x; results in high similarity between z(x;) & z(x,)
= Low similarity between x; & x, results in high similarity between z(x;) & z(x,)



Some methods we will cover today

* Older methods for designing LPEs
* Thermometer code
* Float/sliding code
 Scatter code

* Kernel LPEs and Vector Function Architectures (VFAs)

* Designing kernels in VFAs

arXiv.org > c¢s > arXiv:2109.03429

Computer Science > Machine Learning

[Submitted on 8 Sep 2021]

Computing on Functions Using Randomized Vector Representations

E. Paxon Frady, Denis Kleyko, Christopher J. Kymn, Bruno A. Olshausen, Friedrich T. Sommer

https://arxiv.org/abs/2109.03429
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LPE for scalars: Thermometer code

* Encodes levels by the number of “activated” units

=  Quantize xinto n discrete levels x-> s, s € [0, n]

= 2(0) consists of all Os.
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» For other levels, the components of z(s) are determined by:
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= Thermometer code can only represent n+1 levels

P.A. Penz, “The closeness code: An integer to binary vector transformation suitable for neural network algorithms,” 6
IEEE First Annual International Conference on Neural Networks (ICNN), pp. 515-522, 1987.



Thermometer code: Example
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LPE for scalars: Float/Sliding code

* Encodes levels by the number of “activated” units
=  The number of activated units in a code is fixed to w
= Activated units are consecutive —> float @ G G Q Q

= Quantize xinto n discrete levels x-> s, s € [0, n-w] @ Q Q

= Float/Sliding code can only represent n-w+1 levels Q &n @b

= For z(0): first w units are 1s; the rest are Os.

» For other levels, the components of z(s) are determined by:

(s) +1, s<i1<s+w
Zi\8) = .
0, otherwise

A.D. Goltsev, “An assembly neural network for texture segmentation,” Neural Networks, vol. 4, no. 9 pp. 643-653, 1996.



n=60; w=10
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Float/Sliding: Example
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LPE for scalars: Scatter code

* Encodes levels by randomly swapping some of the units

it | R

: : s HH I RSty

= Real-valued input x is quantized into levels -~ —_———
(note: no strict limitation on the number of levels) @ e |\ : Q_. Hy

r
A |
= 2(0) is arandom dense binary vector @ feicia et Q 1 @ Q

» Each subsequent code is obtained from the previous one by randomly
swapping its components with some probability p:

zi(s) =

= Similarity decays nonlinearly

zi(s—1)+1 mod2, r;<p

zi(s — 1), otherwise

10
D. Smith and P. Stanford, “A random walk in Hamming space,” International Joint Conference on Neural Networks (IJCNN), vol. 2, pp. 465-470, 1990.



Examples

Scatter code

1000; p=0.05
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Kernel LPE definition (formal)

Definition 1: A randomizing LPE encoding function f :r € R — z(r) € C" is a kernel-LPE (KLPE), that
is, it induces a similarity kernel, if the following requirement holds:

In the limit for large dimensionality n, the inner product between point representations defines a
translation-invariant similarity kernel:

z(r1) " z(ry) " K (r) —r2), (9)

with a kernel function K(d), which is real-valued, assumes its maximum at d = 0 and gradually reaches
zero for large |d|.Under quite general conditions, the convergence in (9), should be fast:

z(r1) " z(ro) — K(ry —12)| < € for n o< O(g(m, ¢)) (10)

i.e., the required dimensionality of vectors is not very large (Rahimi and Recht, 2007; Thomas et al.,
2020). We will discuss the required dimensionality of vectors for different concrete KLPE methods

Definition 2: A KLPE is compatible with a VSA binding operation o, if the addition of two values of the
encoded variable can be represented by binding the individual representations of the values:

z(r1 +ry) = z(r1) o z(r2). (11)



Kernel LPE definition (informal)

* Inner product between point representations defines a translation
invariant similarity kernel

z(rl)Tz(rg) i K(ry — 1)
« Compatible with VSA binding if binding adds encoded values:

z(r1+1ry) = z(r1) oz(rs)



Example of Kernel LPE: Fractional binding

* Fractional binding is inspired by self-binding z i times with itself:

z(1) =20 - Oz=17"

X times

= With Fourier HRR:
z(xr) = [ewl‘"”’, el e’i"b"x} ;¢ ~ Ul—m,m)

= Observe that:
= For FHRR, z(x) is well defined for any x € R
= z(x1) ©®z(22) = Z(11 + 72)

T.A. Plate, “Holographic Recurrent Networks,” Advances in Neural Information Processing Systems (NIPS), pp. 34-41, 1992.
T.A. Plate, “Distributed Representations and Nested Compositional Structure,” University of Toronto, PhD Thesis, 1994.



Different Kernel LPEs

FPE with Hadamard product binding (Frady):

z"P(r) := (z)"

FPE with Circular convolution binding (Plate, Eliasmith):
z°(r) :==2®) = F Y (F(2)")=F ' (Fz)

Block-local circular convolution (Frady et al. [IEEE TNNLS 2021):

(x5 T)

zlcc(/r)(block i) =P s i) = F~! (Fz(bluck i))r

Resulting representations:

=> "phasor”

=> "real-valued”

=> "sparse”




FPEs with uniformly sampled base vectors
have a universal kernel
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Definition of Vector Function Architecture (VFA)

Definition 3: The combination of a VSA with a KLPE that is compatlble with the VSA binding operation
induces an RKHS of functions with inner product (f, g f - r)dr that we will call a Vector Function
Architecture (VFA):

a) A function of the form:

=S K (r - ) (12)
k

is represented via (10), f(r) = y}z(r), by the vector:

> agz(ry) (13)



Approximating functions with sinc

Function Representation in VFA

f(r) =) anK(r—r%)
k

2()= > afn]sine ( U T"'T)

n=—oo

£ 1)
1.0

https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
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Manipulating functions in VFA

* Point-wise readout of a function
f(s)=(f,Ks) =y;z(s)

* Point-wise addition
Yitg =¥Yf t Yy

 Function shifting

f(x) = g(z) = f(z +7) Yo =Yy oz(r)

* Function convolution Yisg = Y70 ¥y

* Overall similarity between functions (f.9)=y;¥q



Vector space in FPE-VFA

Let us denote the set of norm-preserving vectors with respect to the binding operation o with:
Ao :={z:||voz|]® =||v||>V v} (23)

Note that with the base vector chosen in A,, all points r are mapped by (22) to vectors also within As.

. Entire VFA vector space
No meaning!

Point representations Base vector Function representations



Phase distribution of the base vector
determines similarity kernel

Phase distribution Similarity kernel Phase distribution Similarity kernel RMSE
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Random Features for Large-Scale Kernel Machines

Ali Rahimi and Ben Recht

Learning with Kernels

Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel k(x,y) = k(x — y).

Ensure: A randomized feature map z(x) : RY — R so that z(x)'z(y) =~ k(x — y).
Compute the Fourier transform p of the kernel k: p(w) = 5= [ e=7%'3k(5) dA.

Draw D iid samples w;,--- ,wp € R? from p and D iid samples by,...,bp € R from the
uniform distribution on [0, 27].

Let z(x) = {/ & [cos(wix+b1) - cos(wpx+bp)]'.

Theorem 1 (Bochner [13]). A continuous kernel k(x,y) = k(x —y) on R? is positive definite if
and only if k(d) is the Fourier transform of a non-negative measure.



Discrete phase distributions produce

periodic kernels

Phase Distribution
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Binding FPEs to produce multi-dimensional

kernels
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Periodic 2D kernels (Lattices)
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Periodic 2D kernels (finite coherence)

Phases sampled - Kernel Phases sampled = Kernel
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Periodic 2D kernels
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Decoding (parsing) VFA vectors

.__..--~""""--'I‘:lltil‘(‘ VFA vector sl)zl(-(;\"“-n.,___
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Two-step method of decoding:

- Find closest pair of anchor points (spaced with 0<<f<1) stored in associative

memory

- Determine exact position on path by optimizing ¢(s) = [z°] 'x = Z et(5—7)9;

J



Generalizing from Vectors to Symbols

VSA Formulation
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Some applications
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