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Neuroscience 299: Computing with High-Dimensional Vectors 
Assignment 11: Hardware implementations 
Due November 17, 1pm 
 
Reminder: Please do either the writing assignment or the programming assignment. Expected 
length for the writing assignment is approximately 250-500 words, but there is no strict 
minimum or maximum. 
 
Writing assignment: 
 
Address the following questions, citing sources and references as appropriate: 

• Why does it seem promising to combine HD computing/VSA and unconventional 
hardware?  

• What are the main advantages of using HD computing/VSA from the unconventional 
hardware point of view? 

• What do you think are the most promising application domains?  
 
Programming assignment: 
 
In this programming assignment, we will simulate the non-deterministic behavior present in 
phase-change memory (PCM) devices operating at low signal-to-noise ratio conditions. First, to 
set up the context, please read the “Robust High-dimensional Memory-augmented Neural 
Networks” article.  
 
In essence, this paper suggests combining neural networks with ideas from HD computing/VSA. 
A neural network (referred to as the controller) is trained to take an image as an input and return 
a d-dimensional HD vector describing the image as an output. Once the controller is trained, it 
can operate in the context of a few-shot learning task, where for a given m-way (number of 
classes) n-shot problem (number of training samples per class) the explicit memory is composed 
of a key memory for storing and comparing the HD vectors produced by the controller (support 
vectors), and a value memory for storing labels, that are jointly referred to as a key-value 
memory. Note that the size of the key memory is [d x mn]. We will call such an organization of 
the key-value memory localist, since the HD vectors in the corresponding parts of the key-value 
memory can be identified with a particular sample of the training data. 
 
In this assignment, we will only work with the inference phase, i.e., we will not modify the 
controller architecture and its training process. As a starting point, you are provided with the 
512-dimensional HD vectors of the test data obtained as the output of a trained controller. 
The HD vectors are provided in a file called “DataLab.mat”. Please download it using the 
following link: https://www.dropbox.com/s/1vlz3rlqsuxwufs/DataLab.mat?dl=0 
 
As an alternative to the localist organization of the key-value, we will explore a distributed 
organization. The main feature of this distributed organization is that it allows decoupling the 
dimension of the key memory from mn by introducing a free parameter r for controlling the 
redundancy, such that the dimension becomes [d x r] instead of [d x mn]. In the inference phase, 
this new parameter r can add or remove redundancy in the representations of the key memory, on 
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demand, without any retraining of the controller neural network. This results in a fully 
distributed version of the key memory, which is obtained by the linear superposition of the outer 
products between the support vectors and randomized distributed representations of their 
corresponding class labels. 
 
You are provided with the Jupyter notebook (see course website) that includes the code to support 
loading the data and to implement the functionality of the original localist key-value memory in 
full. The notebook, however, is missing a few steps (search for #ToDo comments in the notebook), 
which are related to implementation of the distributed key-value memory. 
 
In order to explore the role of the redundancy introduced by the distributed key-value memory, 
we will simulate the noise present in the PCM device with an empirically measured model. The 
noise model of the PCM devices is implemented in the function “NoisePCM”. To get a better 
grasp on the model, please read the section “PCM model and simulations” in “Robust High-
dimensional Memory-augmented Neural Networks,” as well as Supplementary Table 1 and 
Supplementary Note 6: Spatial Variability on PCM Crossbar in the corresponding 
Supplementary Information of the article. 
 
Once you implement all the ToDos, please perform the following experiments and answer the 
following questions:  

1. What type of key-value memory (binary or bipolar) seems to be more robust against 
noise? Why is this the case? What is the number of the PCM devices required by each 
type for a given r?  

2. How does the value of r (n in the code) affect robustness of the distributed key-value 
memory?  

3. How do the distributed and localist key-value memories compare to each other when 
r=mn (nWay*nShot in the code)? If one seems to be better than the other, why could that 
be the case?  

4. In the implementation, we used orthogonal random vectors in the key memory of the 
distributed variant. What would be the effect of skipping the orthogonalization step, i.e., 
using random vectors, which might have some correlations between them? For which 
values of r (n in the code), it is more visible?  

 
 


