
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2019) 33:319–330
https://doi.org/10.1007/s13218-019-00623-z

TECHNICAL CONTRIBUTION

An Introduction to Hyperdimensional Computing for Robotics

Peer Neubert1  · Stefan Schubert1 · Peter Protzel1

Received: 15 December 2018 / Accepted: 11 September 2019 / Published online: 18 September 2019
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Hyperdimensional computing combines very high-dimensional vector spaces (e.g. 10,000 dimensional) with a set of carefully
designed operators to perform symbolic computations with large numerical vectors. The goal is to exploit their representa-
tional power and noise robustness for a broad range of computational tasks. Although there are surprising and impressive
results in the literature, the application to practical problems in the area of robotics is so far very limited. In this work, we aim
at providing an easy to access introduction to the underlying mathematical concepts and describe the existing computational
implementations in form of vector symbolic architectures (VSAs). This is accompanied by references to existing applica-
tions of VSAs in the literature. To bridge the gap to practical applications, we describe and experimentally demonstrate the
application of VSAs to three different robotic tasks: viewpoint invariant object recognition, place recognition and learning
of simple reactive behaviors. The paper closes with a discussion of current limitations and open questions.

Keywords  Hyperdimensional computing · Vector symbolic architectures · Robotics

1  Introduction

Humans typically gain an intuitive understanding of 2-D
and 3-D Euclidean spaces very early in their lives. Higher
dimensional spaces have some counterintuitive properties
that render the generalization of many algorithms from low
to high-dimensional spaces useless—a phenomenon known
as curse of dimensionality. However, there is a whole class
of approaches that aims at exploiting these properties. These
approaches work in vector spaces with thousands of dimen-
sions and are referred to as hyperdimensional computing
or vector symbolic architectures (VSAs) (previously they
were also called high-dimensional computing or hypervec-
tor computing). They build upon a set of carefully designed
operators to perform symbolic computations with large
numerical vectors.

Another, better known class of algorithms that (internally)
work with high-dimensional representations are (deep)

artificial neural networks (ANN). Their recent success
includes robotic subproblems, e.g., for robust perception.
However, in many robotic tasks, deep learning approaches
face (at least) three challenges [35]: (1) limited amount of
training data, (2) often, there is prior knowledge that we
want to integrate (models as well as algorithms), and (3) we
want to be able to assess the generalization capabilities (e.g.
from one environment to another or from simulation to real
world). The later is particularly important if the robot is an
autonomous car. A resulting motivation for using VSAs is
to combine the versatility, representational power and noise
robustness of high-dimensional representations (for example
learned by ANNs) with sample-efficient, programmable and
better interpretable symbolic processing.

Although processing of vectors with thousands of dimen-
sions is currently not very time efficient on standard CPUs,
typically, VSA operations can be highly parallelized. Fur-
ther, VSAs support distributed representations, which are
exceptionally robust towards noise [2], an omnipresent prob-
lem in robotics [36]. In the long term, this robustness can
also allow to use very power efficient stochastic devices that
are prone to bit errors but extend the battery life of a mobile
robot [31].

The goal of this paper is to provide an easily accessible
introduction to this field that spans the range from the math-
ematical properties of high-dimensional spaces in Sect. 2,

 *	 Peer Neubert
	 Peer.Neubert@etit.tu‑chemnitz.de

	 Stefan Schubert
	 Stefan.Schubert@etit.tu‑chemnitz.de

	 Peter Protzel
	 Peter.Protzel@etit.tu‑chemnitz.de

1	 Chemnitz University of Technology, Chemnitz, Germany

http://orcid.org/0000-0002-7312-9935
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-019-00623-z&domain=pdf

320	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

over implementations and computing principles of VSAs
in Sect. 3, and a short overview of existing applications in
Sect. 4, to three (novel) demonstrations how hyperdimen-
sional computing can address robotic problems in Sect. 5.
These demonstrations are intended as showcases to inspire
future applications in the field of robotics. Remaining
impediments in form of current limitations and open ques-
tions are discussed in Sect. 6.

2 � Properties of High‑Dimensional Spaces:
Curse and Blessing

2.1 � High‑Dimensional Spaces Have Huge Capacity

The most obvious property is high capacity. For example,
when we increase the number of dimensions in a binary
vector, the number of stored possible patterns increases
exponentially. For n dimensions, the capacity is 2n . For real
valued vector spaces and practical implementations with
limited accuracy (i.e. a finite length representation in a com-
puter) the capacity is also exponential in the number of
dimensions. Interestingly, even for sparse binary vector
spaces, the number of possibly stored patterns grows very
fast. Figure 1 illustrates this behavior. For n dimensions and
density d (the rate of ones in the vector), the capacity is �

n

⌊d⋅n⌋

�
 . Even if there are only 5% non-zero entries, a 1000

dimensional vector can store more patterns than the sup-
posed number of atoms in the universe (presumably about
1080).

2.2 � Nearest Neighbor Becomes Unstable
or Meaningless

This is a less intuitive property but nevertheless it is very
important since it lies at the heart of the curse of dimen-
sionality. This term was coined by Bellman [3] to describe
the downsides of the exponential growth of capacity (or
volume) of the space: if there is a fixed number of known

data points (e.g. training samples), the sampling density
decreases with increasing number of dimensions. For an
n-dimensional space and k samples, it is proportional to
k1∕n (cf. [11, p. 23]). If we require 100 samples for an
accurate representation of a one dimensional problem, the
same problem in a 10 dimensional space would require
10010 samples to achieve the same sample density.

Beyer et al. [4] showed a direct consequence for the
nearest neighbor problem (given a set of data points in an
n-dimensional metric space, the task is to find the clos-
est data point to some query point). They define a query
as unstable if the distance from the query point to most
datapoints is less than (1 + �) times the distance from the
query to the nearest neighbor. Under a broad range of prac-
tically relevant conditions, for any fixed 𝜖 > 0 and increas-
ing number of dimensions, the probability that a query is
unstable converges to 1. In other words, the distance to the
nearest neighbor approaches the distance to the farthest
data point.

Based on the these results on the contrast in nearest
neighbor queries in high-dimensional spaces, Aggarwal
et al. [1] investigated the influence of the choice of the
metric. For example, the often used Euclidean L2 norm is
not well suited for high-dimensional spaces, better choices
are Lp norms with smaller p (for some applications this
includes fractal norms with p < 1 ). Also angular distances
for real vectors and Hamming distance for binary vectors
are suitable choices.

2.3 � Random Vectors are Very Likely Almost
Orthogonal

Random vectors are created by sampling each dimension
independently and uniformly from the underlying space.
The distribution of angles between two such random vectors
contradicts our intuition. In an n-dimensional real valued
space, for any given vector, there are n − 1 exactly orthog-
onal vectors. However, the number of almost orthogonal
vectors, whose angular distance to the given random vec-
tor is ≤ �

2
+ � , grows exponentially for any fixed 𝜖 > 0 . An

0 500 1000 1500 2000
dimensions

10 0

10 20

10 40

10 60

10 80
ca

pa
ci

ty

d=0.01
d=0.03
d=0.05
d=0.10
dense (d=1)

Fig. 1   Capacity of dense and sparse vector spaces quickly becomes
very large (d is the ratio of ones). A discussion of properties of sparse
representations can, e.g., be found in [2]

Fig. 2   Example visualization for similar and almost orthogonal areas
in 2-D and 3-D spaces (angular thresholds 0.1)

321KI - Künstliche Intelligenz (2019) 33:319–330	

1 3

important consequence is that two randomly chosen vectors
are very likely to be almost orthogonal.

Although we can not directly illustrate this effect in
high-dimensional spaces, the transition from 2-D to 3-D
space already gives an idea of what is happening. Figure 2
shows the sets of similar and almost orthogonal vectors on
unit spheres in 2-D and 3-D space. It can be easily seen
that in the higher dimensional space, a random point on
the sphere is much more likely to lie in the red area of
almost orthogonal vectors than in the yellow area of simi-
lar vectors, and that this effect increased from 2-D to 3-D.

Figure 3 shows analytical results for higher dimensional
spaces based on the equations of surface areas of n-spheres
and n-caps.1 The first plot shows the surface areas of the
similar and almost orthogonal ranges for an angular dis-
tance for � = 0.1 (the similar and almost orthogonal one
and two dimensional surfaces from Fig. 2 provide each
two points on the corresponding curves in this first plot).2
Although the value of the surface area also decreases
beyond the local maximum (which is also a global maxi-
mum), it decreases much slower than the area value of the
similar region. This is demonstrated in the second plot in
Fig. 3 that shows the ratio of the almost orthogonal and
similar surface areas. The linear shape in this logarithmic
plot reveals the exponential growth of this ratio. The two
right plots show the probability to randomly sample either
a similar or an almost orthogonal vector. For high number
of dimensions (e.g. > 700 ) the probability that two random
vectors are almost orthogonal ( � = 0.1 ) gets close to 1.

2.4 � Noise has Low Influence on Nearest Neighbor
Queries with Random Vectors

Why is it important that random vectors are very likely
almost orthogonal? If random vectors point in almost
orthogonal directions, this creates a remarkably robust-
ness when trying to recognize them from noisy measure-
ments. Let us demonstrate this with an example:3 suppose
there is a database of one million random feature vectors
fi ∈ � = [0, 1]n (again, each dimension is sampled indepen-
dently from a uniform distribution). Also there is a query
vector, which is a noisy measurement of one of the database
vectors (each dimension has additive noise ∼ N(0, �) , as a
consequence they can also leave their original range [0, 1]).
Using the angular distance, what is the probability to get a
wrong query answer (i.e. that a wrong vector from the data-
base is closer to the noisy query than the correct one)? Fig-
ure 4 shows results for increasing number of dimensions and
increasing amounts of noise. Even for noise with standard
deviation of 0.5, that is half the available range of the initial
value (this is illustrated in the right part of Fig. 4), using

0 5 10 15 20 25
dimensions

0

1

2

3

4

5

6

7

ar
ea

 (
va

ry
in

g
un

it)
Surface areas

Similar
Almost orthogonal

0 5 10 15 20 25
dimensions

10 0

10 5

10 10

10 15

10 20

10 25

A
A

lm
os

t o
rt

ho
go

na
l

/A
S

im
ila

r

Ratio of surface areas

0 5 10 15 20 25
dimensions

0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

Random sampling probability

Similar
Almost orthogonal

0 200 400 600 800 1000
dimensions

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

Random sampling probability (extended)

Similar
Almost orthogonal

Fig. 3   Analytical results on n-spheres. Note the logarithmic scale in the second plot. Due to numerical reasons, the dashed extension for
#dimensions > 300 in the right plot is not obtained analytically but using sampling

0 50 100 150 200
dimensions

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 w

ro
ng

 q
ue

ry
 a

ns
w

er noise
=0.10

noise
=0.25

noise
=0.50

0 50 100 150 200
dimension index

-1

-0.5

0

0.5

1

1.5

2

va
lu

e

Fig. 4   (Left) Robustness towards different noise. (Right) For illustra-
tion: the blue example database vector [1

2
,
1

2
,…] is affected by addi-

tive noise ∼ N(0, 0.5) (the amount represented by the yellow curve on
the left) and becomes the red vector (color figure online)

1  n-sphere: a hypersphere in the (n+1)-dimensional space. n-cap:
portion of an n-sphere cut off by a hyperplane.
2  Please keep in mind, that the unit of the surface area of an
n-sphere is an n-dimensional object, thus the unit along the vertical
axis changes and the values along the curves are not directly com-
parable. Nevertheless, the fact that there is a local maximum of the
surface area of the almost orthogonal range is surprising. However,
it is a direct consequence of the local maximum of the surface area
of the whole unit n-sphere (which in turn becomes intuitive based on
the recursive expression of the surface area An+1 = An ⋅

n

2�
 since for

n > 2𝜋 this factor becomes smaller one).
3  Similar experiments can, e.g., be found in [31] and [2]; analytical
results on VSA capacity can be found in [7].

322	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

more than about 170 dimensions renders the probability of
a false matching almost zero.

Adding noise to each dimension is the same as adding
a noise vector to the the whole data vector. This yields an
interesting application: What if this added vector is again a
known data vector? This is known as the bundle of two vec-
tors and will be subject of Sect. 3 where we will use the sym-
bol + to refer to this operator. Since both vectors act sym-
metrically as noise for the recognition of the other, a query
with the sum of two data vectors is expected to return both
vectors as the two nearest neighbors. Figure 5 shows results
for this experiment using the above database of one million
data vectors and also different numbers k of summed vectors.
We evaluate the capability to return perfect query answers
(i.e. exactly the k true vectors are the k-nearest neighbors).
As a reading example for these plots: The purple curve in the
left plot shows that in a 600 dimensional vector space, we
can safely add five vectors and the result is almost certainly
more similar to all of these five vectors than to any other
of the one million data vectors from our example database.

This is the most straightforward way of implementing
bundling and we can easily improve performance. E.g., to
allow for increasing and decreasing values during summa-
tion, we could sample each dimension from [−1, 1] instead
of [0, 1] as before. The result are shown in the right part of
Fig. 5. In this configuration, 300 dimensions are sufficient
to recognize each of a sum of five vectors, and a 600 dimen-
sional sum can handle a sum of ten vectors. Presumably,
there are many other ways to improve performance in this
simple example.

The next section will present a more systematic approach
to solve problems with hyperdimensional computing that
build upon the presented properties of high-dimensional
spaces. While the examples from this section build upon ran-
dom vectors, Sect. 5 will demonstrate performance of these
approaches when confronted with data from robot sensors.

3 � How to do Hyperdimensional Computing:
Vector Symbolic Architectures (VSA)

The previous Sect. 2 listed properties of high-dimensional
vector spaces and demonstrated how a bundle of vectors can
be represented by their sum. Formally, the resulting vector
represents the unordered set of the bundled vectors. To be of
broader value, we need to be able to represent more complex
and compositional structures such as ordered lists, hierarchies,
or object-part relations. A key element to storing structured
data is to assign different roles to different parts of the data
[15]. Think of the personal record: {name = Alice, year_of_
birth = 1980, high_score = 1000} . Storing just the values {
Alice, 1980, 1000} is of limited help, since, for example, this
unordered set cannot distinguish between Alice’s year of birth
and her high score. We need information about the binding
between the role (or variable) “year_of_birth” and its filler
(or value) “1980”.

There have been multiple approaches presented to do this
using hyperdimensional computing, e.g. by Plate [28], Kanerva
[15], Gayler [8], and others. In 2003, Gayler coined the term
Vector Symbolic Architectures (VSA) for these approaches [9].
In a nutshell, a VSA combines a vector space with a set of
carefully chosen (designed) operators with particular proper-
ties. Each of the above VSAs uses a different vector space.
The set of operators has to include the two operators bundling
+ and binding ⊗ , and for certain applications a permute (or
protect) � operator is required. The output of each operator
is again a vector from the same space. Bundling shares some
properties with addition and binding some properties with
multiplication of numbers.

Before we proceed with the formal requirements, let us give
an example of the overall goal. Given are vector representa-
tions AliceV , 1980V and 1000V , of the string “Alice” and the
two numbers “1980” and “1000”; they can be obtained using
a suitable encoder or be just random vectors whose meaning
we have stored for later decoding. Also, we have random vec-
tors nameV , year_of_birthV , and high_scoreV that represent
the corresponding roles. Using hyperdimensional computing,
we want to be able to create a single vector H that contains the
whole record using the above operators:

Subsequently, we want to be able to query for the value of
each part of the composite structure using the same opera-
tors, e.g. for the name:

(1)

H = nameV ⊗ AliceV

+ year_of_birthV ⊗ 1980V

+ high_scoreV ⊗ 1000V

(2)H ⊗ nameV → AliceV

0 200 400 600 800 1000
dimensions

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y
of

 w
ro

ng
 q

ue
ry

 a
ns

w
er

k=2
k=3
k=4
k=5

0 200 400 600 800 1000
dimensions

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 w

ro
ng

 q
ue

ry
 a

ns
w

er

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

Fig. 5   Performance using bundles. Correct query answers are those
were all k-nearest neighbors are correct. (left) Random vectors are
from � = [0, 1]n (right) � = [−1, 1]n

323KI - Künstliche Intelligenz (2019) 33:319–330	

1 3

This example will be explained in the following subsections.
Querying a record is a simple example of high-dimensional
computing. Before we proceed with more sophisticated
demonstrations in Sects. 4 and 5, we will characterize the
operators in more detail and explain how the properties of
high-dimensional spaces are exploited in the query-record
example. However, there is no exact definition available of
the required properties of the VSA operators, the exact set of
operators or the vector space �  . The following is a summary
of properties from the literature, i.e. the VSAs from Table 1.

3.1 � Binding ⊗

Binding ⊗ ∶ � × � → � combines two input vectors into
a single output vector that is not similar to the input vec-
tors but allows to (approximately) recover any of the input
vectors given the output vector and the other input vec-
tor. E.g., we can bind the filler AliceV to the role nameV by
N = AliceV ⊗ nameV and later recover the filler AliceV given
N and the role vector nameV . To recover this vector, we need
to unbind one vector from another. For VSAs were vectors
are also (approximately) self inverse, unbinding and binding
are the same operation (e.g. [8, 15]). Self-inverse means:

where � is the neutral element of binding in the space �  . We
will use this property in the following examples.

An intuitive example of such a binding operator is the
special case of Gayler’s VSA with � = {−1, 1}n (instead of
[−1, 1]n ) and binding and unbinding as elementwise mul-
tiplication. The self-invertibility is due to the limitation to
±1 , since −1 ⋅ −1 = 1 ⋅ 1 = 1 and 1 is the neutral element of
multiplication. With such a VSA, recovering the name in the
above role-filler example works as follows:

This example also requires the binding operator to be asso-
ciative. Further, to allow to change the order of the vectors,
binding is typically also commutative. Table 1 lists several

∀X ∈ �∶ X ⊗ X = �

N ⊗ nameV = (AliceV ⊗ nameV)⊗ nameV

= AliceV ⊗ (nameV ⊗ nameV)

= AliceV ⊗ � = AliceV

available binding implementations. Section 2 illustrated that
the distribution of similar and dissimilar vectors is an impor-
tant property of high-dimensional vectors spaces. Thus,
the effect of VSA operations on these similarities is also
important. E.g., binding should be similarity preserving:
∀A,B,X ∈ � ∶ dist(A,B) = dist(A⊗ X,B⊗ X) , the distance
of two vectors remains constant when binding both vectors
to the same third vector. Moreover, as the first sentence of
this section already said, the result vector has to be dissimi-
lar to the two inputs. This is important for the combination
with the bundle operator explained in the following section.

3.2 � Bundling +

The goal of the bundling operation + ∶ � × � → � is to com-
bine two input vectors such that the output vector is similar
to both inputs. This is also called superposition of vectors.
Typically, the bundling operator is some kind of elementwise
sum of the vector elements (see Table 1). E.g., the Multi-
ply–Add–Permute VSA of Gayler [8] uses elementwise sum
on the same vector space [−1, 1]n as the experiments from
Fig. 5 (the sum is limited to the range of the vector space ele-
ments [−1, 1] ). In these experiments, we already showed that
the elementwise sum of vectors is similar to each of the vec-
tors; this was a direct consequence of the almost orthogonality
of random vectors.

According to Kanerva [17] the bundle and bind operations
should “form an algebraic field or approximate a field”. In par-
ticular, bundling should be associative and commutative and
binding should distribute over bundling. Let us illustrate this
with a closer look at the example of Alice’s record. For brevity
we use X, Y, Z for the role vectors “name”, “ year_of_birth ”
and “ high_score ” and A, B, C for the vector representations
of their values “Alice”, “1980” and “1000”. The record vector
is formed by H = (X ⊗ A) + (Y ⊗ B) + (Z ⊗ Z) . What hap-
pens when querying for the name by binding with its vector X?

X ⊗ H = X ⊗ ((X ⊗ A) + (Y ⊗ B) + (Z ⊗ Z))

= (X ⊗ X ⊗ A) + (X ⊗ Y ⊗ B) + (X ⊗ Z ⊗ C)

= A + noise

Table 1   Example VSAs

A more extensive list can be found in [31]
aThis operator changes the vector size and shape

Smolensky [32] Plate [28] Kanerva [15] Gayler [8]

Space � Tensors of real numbers Real and complex vectors {0, 1}n [−1, 1]n (or {−1, 1}n)
Bundle + Elementwise sum Elementwise sum Thresholded elementwise sum Limited elementwise sum
Bind ⊗ Tensor producta Circular convolution Elementwise XOR Elementwise product
Protect � (Not considered) (Not considered) Permutations Permutations

324	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

 The noise term includes the terms (X ⊗ Y ⊗ B) and
(X ⊗ Z ⊗ C) . Both are non-similar to each of their elements
(a property of binding). Thus the only known vector that
is similar to X ⊗ H is A. Again this exploits the property
of high-dimensional vectors to be almost sure non-similar
(i.e. almost orthogonal) to random vectors. The database
experiments from Sect. 2.4 already illustrated how a noise-
free version of vector A can be recovered: given a database
with all elementary vectors, returning the nearest neighbor
to A + noise results very likely in A (to not return a vector
which is similar to noise, we need the property of binding
to be non-similar to its inputs). In VSAs this database is
typically called clean-up or item memory [16]. It can be as
simple as our look-up table or, e.g., an attractor network
[17]. Section 5.2 will evaluate properties of such a clean-up
memory in combination with real-world data.

There can be trade-offs between the performance of the
bundling and binding operators. For example, in the VSA of
Gayler, the bundling operator works well for � = [−1, 1]n ;
however, the self-inverse property of binding holds only
exactly for the special case of � = {−1, 1}n . The clean-up
memory can also be used to restore exact values in the non-
exact inversion case.

3.3 � Permutation (or Protect) ̆

Gayler [8] discussed the benefit of using an additional
operator in order to protect vectors. Think of a situation
with two bound role-filler pairs: A⊗ X and B⊗ Y  . When
binding these two pairs to (A⊗ X)⊗ (B⊗ Y) , it becomes
necessary to prevent mixing roles and fillers: Since bind-
ing is associative and commutative, this is equivalent to
(A⊗ Y)⊗ (B⊗ X) . The permutation operator � protects
a term from associative and distributive rules. In the above
example this is (A⊗ X)⊗𝛱(B⊗ Y) . It is typically imple-
mented as a permutation of vector dimensions. Its output is
dissimilar to the input and by application of the reverse per-
mutation, it is also invertible. For details please refer to [8].

4 � Applications from the Literature

VSAs have been applied to various problems like text clas-
sification [20], fault detection [19], analogy mapping [30],
and reinforcement learning [18]. Kanerva [17] discusses
the general computational power of VSAs and concludes
one could create a “High dimensional computing-Lisp”.
While this is still open, work in this direction includes syn-
thesis of finite state automata [27] and hyperdimensional
stack machines [38]. Danihelka et al. [5] (Deepmind) used
a VSA to model long-short term memory. In the medical
domain, Widdows and Cohen [37] used Predication-based
Semantic Indexing which exploits a VSA to represent

traditional subject-predicate-object relationships (e.g. “aspi-
rin TREATS headache”) for fast approximate inference on
the relationships of diseases, symptoms and treatments. Nat-
ural language processing is considered a challenging task.
Jackendoff [13] specified this statement to four theoretical
challenges that a system that aims at processing language at
a human level has to solve. According to Gayler [9], VSAs
can solve these challenges. Hyperdimensional computing
was also used to encode n-gram statistics to recognize the
language of a text [14]. There is evidence that distributed
high-dimensional representations are widely used for rep-
resentation in the human brain [2]. This is extensively used
in brain-inspired cognitive systems like Spaun [6] and in
hierarchical temporal memory (HTM) [12], a computational
model of working principles of the human neocortex. The
latter was also applied for mobile robot place recognition
[24].

5 � Application to Robotic Tasks

This section showcases three examples, how hyperdimen-
sional computing can be used for real robotic tasks. We do
not claim that the presented approaches are better than exist-
ing solutions to the considered tasks, however, they dem-
onstrate the versatility of hyperdimensional computing, its
capability to work with real world data and advocate the
practical value. Before we start with the applications, we
will describe how we bridge the gap between real world
sensors and vector computations.

5.1 � Encoding Real World Data

Section 2.4 used synthetic data to demonstrate the noise
robustness of hyperdimensional computations and its appli-
cation to bundling. The random vectors in this synthetic data
fulfill the requirements to achieve pairwise almost orthogo-
nal vectors by design. What if we want to work with real
world data that does not provide thousands of independent
random dimensions? For simple data structures and the par-
ticular case of sparse binary vectors, Purdy [29] discusses
different encodings. Very recently, Kleyko et al. [20] dis-
cussed trade-offs in binary hyperdimensional encodings of
images. A comprehensive discussion of encoding approaches
of real world sensor data is beyond the scope of this paper.
However, we want to shortly describe our approach to
encode the real world image data in our experiments.

Any high-dimensional image feature vector can poten-
tially be used. Based on their recent success, we decided
to use image descriptors from early layers from deep con-
volutional neural networks in a similar fashion as they are
used for place recognition [25, 33]. To get a descriptor for
an image, it is fed to an off-the-shelf readily trained CNN

325KI - Künstliche Intelligenz (2019) 33:319–330	

1 3

(we use AlexNet [21]) and instead of using the final out-
put (e.g. the 1000 dimensional soft-max class output), the
intermediate output of an earlier layer is used [we use the
13 × 13 × 385 = 64,896 dimensional output of the third con-
volutional layer (conv3)]. To reduce computational effort
and to get a distributed representation, we use a locality
sensitive hashing (LSH) approach and project the normal-
ized conv3 descriptor with a random matrix R to a lower
dimensional space. Each row in R is the normal of a 64,896
dimensional hyperplane (obtained by sampling R from a
standard normal distribution followed by normalization of
rows to length one). Since these products of the normalized
conv3 descriptor and each row (hyperplane normal) reflect
the cosine of the angle between the vectors, they are in range
[−1, 1] and can be directly used in the Multiply–Add–Per-
mute Architecture [8] (see Table 1). We use 8192 rows in R.

5.2 � Bundling Views for Object Recognition

Robotic task For the first robotic use-case, we demonstrate
the application of hyperdimensional computing to recog-
nize objects from multiple viewpoints. This is important for
mobile robot localization by recognizing known landmarks,
recognizing objects for manipulation, and other robotics
tasks.

Motivation We use this task to transfer the results on syn-
thetic data from Sect. 2.4 on bundling of high-dimensional
vectors to real world data. Bundling allows to combine mul-
tiple vectors into one. This can be straightforwardly used
to combine two or more known views. The motivation is
threefold: (1) if we combine all known views into one repre-
sentation, the comparison of a query vector to all known rep-
resentations is a single vector comparison. (2) There might
be a better interpolation between the known views. (3) This
allows to straightforwardly update the representation of an
object, particularly iteratively in an online-filter fashion.

Experimental setup We practically demonstrate this
approach using the Amsterdam Library of Object Images
(ALOI) dataset [10], in particular the collection of 72,000
images of 1000 objects seen from 72 different horizontal
viewing angles ( 5◦ steps). Figure 6 shows example images.
In our experiments, given are a database of k ∈ {1… 1000}
known images Ik

x
 and Ik

y
 at viewing angles x and y, as well as

a query image Iqz at viewing angle z = x+y

2
 (the viewing angle

in between) and image index q. The task is to assoziate q to
the correct image index k.

VSA approach We bundle the image descriptors Ik
x
 and Ik

y
 ,

i.e. create Ik
x
+ Ik

y
 for each k (there will be one vector for each

object in the database).
Results When comparing a query image Iqz to the data-

base, motivation (1) is achieved by design: instead of com-
paring Iqz to Ik

x
 and Ik

y
 individually, we can now compare

against the single bundle vector and reduce the number of
required comparisons by factor two.

The results in Fig. 7 demonstrate the better interpolation
capabilities from motivation (2): the bundled representation
(red curve) has a smaller cosine distance to the object image
under a novel viewing angle than the individual images (blue
curve). This also results in a better object recognition accu-
racy (right part). See footnote4 for details.

To evaluate towards continiously integrating more views
[motivation (3)], the yellow and the purple curves in Fig. 7
show query results when bundling a (static) set of multiple
views from the four angles {0, 90, 180, 270} and the eight
angles {0, 45, 90,… , 315} . Although the distance values

Fig. 6   Example views of one of the 1000 ALOI objects from 0◦ , 90◦
and 180◦ viewing angle 0 45 90 135 180

Angular distance of query to known vectors

0

0.05

0.1

0.15

0.2

C
os

in
e

di
st

an
ce

Individual
Bundle
Static B4
Static B8

0 45 90 135 180
Angular distance of query to known vectors

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y Individual
Bundle
Static B4
Static B8

Fig. 7   Object recognition performance on ALOI dataset (color figure
online)

4  Details: the red curve in the left plot evaluates vector similari-
ties (the query image index q is known and we compare the simi-
larity of Ik

x
+ Ik

y
 and Iq=kz  ), the red curve in the right plot evaluates

the accuracy of a nearest neighbor query (the query image index q
is not known to the system and it returns the index k of the nearest
neighbor to Iqz of all Ik

x
+ Ik

y
 , k ∈ {1… 1000} ). x is fixed at viewing

angle 0◦ . y varies from 0◦ to 350◦ . The horizontal axis is the mean
angular distance from z to x and y. As a reading example: in the left
plot, the red curve evaluated at 90◦ means that for x = 0◦ , y = 180◦ ,
z = 90◦ (e.g. the images from Fig. 6), the average cosine distance of
the bundle (Ik

0
+ Ik

180
) and Ik

90
 is about 0.17, and the right plot tells us

that for about 53% of the objects the query image was most similar
to the correct bundle. For comparison without bundling, the blue
curves in Fig. 7 show the results when comparing the query image
to the individual images Ik

x
 and Ik

y
 (instead of their bundle). For the

distance evaluation in the left plot, we use the closest of the two indi-
vidual results for each query. For the query results in the right plot,
all views Ik

x
 and Ik

y
 are stored in the database and a single query is

made (the number of data base entries and thus comparisons has now
doubled compared to the bundling approach). The VSA approach not
only reduces the number of comparison, it also performs slightly bet-
ter than using individual comparisons in both plots.

326	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

does not reach zero distance for known views for these larger
bundles, the cosine distance varies the less the more views
are bundled.

5.3 � Sequence Processing for Place Recognition

Robotic task Place recognition is a task similar to image
retrieval: given a set of images from known places, find cor-
responding places to the current camera view of the robot.
In contrast to the more general image retrieval task, for
place recognition, we can assume that the robot does not
jump arbitrarily between places and that the sequence of
previous places provide some information about the cur-
rent place.

Motivation The previous application used only bundling.
This second examples demonstrates the combination with
the binding operator ⊗ to implement the important concept
of role-filler pairs using hyperdimensional computing. We
also use this example to showcase how hyperdimensional
computing can provide a simple and concise implemen-
tation of an existing algorithm (SeqSLAM). This VSA
implementation can also potentially benefit from the gen-
eral advantages of hyperdimensional computing like noise
tolerance and potential energy efficiency. Similar to the
previous object recognition example, the superposition of
vectors also reduces the number of required comparison
operations.

Mimicked approach SeqSLAM [23] exploits image
sequence information to approach the challenging problem
of place recognition in changing environments (e.g. given a
database of images taken in summer and the goal is to local-
ize during winter). Input to Seq-SLAM’s sequence process-
ing part is a pairwise image similarity matrix S shown in
Fig. 8. Each entry si,j is the similarity between the ith image
from the database and the jth image of the robot’s current
camera sequence. The output of SeqSLAM is a new value
for the similarity of images i and j based on their similarity

in S and the similarities between images before and after i
and j. SeqSLAM assumes a constant velocity within each
sequence, thus it sums over the similarities on a short linear
segment in S centered at si,j (illustrated as red line in Fig. 8).
See [23] for more details.

VSA approach To implement the SeqSLAM idea using
hyperdimensional computing, we first encode each image as
a vector using the approach from Sect. 5.1. Then, the basic
idea is to replace each image vector in each sequence by a
vector (of the same dimensionality) that encodes this image
and the d images before and after this image in a bundle.
To preserve the order of the images, each image is bound
to a static position vector Pk before bundling. In our experi-
ments, the position vectors are random vectors, thus they are
very likely almost orthogonal. The encoding of each image
is: Yi = +d

k=−d
(Xi+k ⊗ Pk) ; for the beginning and end of the

sequence (e.g. i < d + 1 ), fewer vectors are bundled. Since
the bundle of an arbitrary number of vectors has exactly
the same shape, this is neatly handled. Finally, to obtain
place recognition results, the Yi encodings of the database
and query image sets can be compared pairwise.

Why does this work? Consider the encodings of a
sequence of two consecutive images from the database:
(Aa ⊗ P0) + (Aa−1 ⊗ P−1) , and a sequence of two consecu-
tive query images: (Bb ⊗ P0) + (Bb−1 ⊗ P−1) . When com-
paring these two bundles, they are the more similar, the
more of their components are similar. Let us evaluate some
component pairs: The similarity of (Aa ⊗ P0) and (Bb ⊗ P0)
depends on the similarity of Aa and Bb since both are bound
to the same vector P0 and operator ⊗ is similarity preserving.
The same holds for Aa−1 and Bb−1 . In contrast, e.g., (Aa ⊗ P0)
and (Bb−1 ⊗ P−1) are known to be non similar since P0 and
P−1 are almost orthogonal.

Experimental setup We use the Nordland dataset [34]
which provides images from four 728 km train journeys
through Norway, once each season (see Fig. 8 for exam-
ple images). We use 288 equally spaced places along the
tracks and perform place recognition between the spring and
the winter image sets. The evaluation is done using preci-
sion-recall curves based on the known ground-truth place
associations.

Results The experimental results in Fig. 9 show that the
VSA SeqSLAM implementation (solid curves) can exploit
sequential information to improve the place recognition per-
formance. The results closely approximate the results of the
original SeqSLAM sequence processing approach (dashed
curves).

There is an additional theoretical benefit: the number of
performed operations is significantly smaller for the VSA
approach. For database size n, a query size m, and sequence
length ds = 2 ⋅ d + 1 ( past + future + current ), the number

Fig. 8   (Left) Illustration of a similarity matrix and SeqSLAM post-
processing. (Right) Three example places from the Nordland dataset
in spring and winter

327KI - Künstliche Intelligenz (2019) 33:319–330	

1 3

of original SeqSLAM operations is m ⋅ n ⋅ ds . For the VSA
implementation it is m ⋅ ds + n ⋅ ds + m ⋅ n (the first two
terms represent the descriptor bundling and the last term
the final pairwise comparison). E.g., for our database and
query size of 288 images and d = 5 , the ratio of the numbers
of operations is more than factor 10 and it becomes larger if
any of these values increases. Unfortunately, while for the
original SeqSLAM most of the operations deal with scalar
similarity values, for the VSA approach all operations are
high-dimensional vector operations. Presumably, a practi-
cal runtime improvement can only be achieved with special
hardware for high-dimensional vector computations (which
then could also exploit the energy saving potential of VSAs).

Extensions The Nordland data is perfectly suited for
SeqSLAM and its vector variant since each train journey is
a single long sequence with constant speed. To account for
a slightly varying speed between the sequences, the original
SeqSLAM algorithm evaluates line segments with different
slopes and uses the best choice. The proposed VSA imple-
mentation can be straightforwardly extended to these vary-
ing velocities by superposing the different combinations of
image vectors and sequence position vectors. Further inter-
esting directions would be to control the similarity between
neighbored sequence position vectors or to use other VSAs’
ways of encoding sequence information, e.g. permutations
[16].

5.4 � Learning and Recall of Reactive Behavior

Robotic Task The task is to learn simple reactive behaviors
from demonstration. ”Simple“ means that we can repre-
sent them as a set of sensor-action (condition-result) pairs.
Given a successful demonstration of a navigation run (e.g.
from a human) by pairs of sensor input and actuator output,

the system learns a representation that encodes this reac-
tive behavior and can resemble it during new runs in the
environment.

Motivation The goal of this final example is to showcase a
more complex VSA-based system.5 In contrast to the previ-
ous applications this does also involve action selection by
the robot. The goal is to encode the whole robot program
(a set of reactive behavior rules) in a single vector. When
executing (and combining) such VSA-based behaviors, the
advantages of vectors (i.e. the representational power and
robustness to noise) are preserved. A particular beauty of
this approach is that it can learn encodings for behaviors that
have exactly the same form (a single vector) no matter how
complex the sensor input or the behaviors are.

Experimental setup We use the simulation task described
in [22]. Figure 9 illustrates the used simple robot with dif-
ferential drive (i.e. a left and a right motor), a left and a right
distance sensor, and a central light sensor. The robot starts
at a random location in a labyrinth and the task is to wander
around while avoiding obstacles, until the robot finds a light
source. Then the robot should stay under this light. This is
a simple task that can be coded using a simple set of rules
(e.g. see [22]).

VSA approach The listing in Algorithm 1 describes the
learning procedure. Inputs are pairs of sensor measures and
corresponding actuator commands. The idea is to (1) encode
the sensor and actuator values individually, (2) combine a
sensor value in a condition vector and all actuator encodings
in a result vector, (3) combine the condition with the result
vector to a rule vector, and finally (4) combine all rule vec-
tors to a single vector that contains the whole ”program“.
Algorithm 2 is used in the execution phase to find the best
actuator commands for the current sensor input.

Fig. 9   (Left) Place recognition results on Nordland dataset. The origi-
nal SeqSLAM sequence processing approach is well approximated
by the vector sequence encoding. Both improve the place recognition

performance compared to a direct pairwise comparison (top-right is
better). (Right) Schematic overview of data flow for behavior learning

5  This work was previously presented at an IROS workshop, see [26]
for details.

328	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

Algorithm 1: Learning
Data: k training samples [S,A]1:k of sensor and actuator

values, a VSA, an encoder, an empty program
progHV and an empty vector knownCondHV of
known conditions

Result: progHV - a vector representation of the behaviour

// get vector representations for each sensor and actor
1 [sensor, actuator] = V SA.assignRandomV ectors()

// for each training sample [S,A]
2 foreach pair [S = (s1, ..., sn), A = (a1, ..., am)] do

// encode values, bind to device and bundle
condition/result

3 conditionHV := +n
i=1(sensori ⊗ encode(si))

4 resultHV := +m
i=1(actuatori ⊗ encode(ai))

5 if isDissimilar(knownCondHV,Π(conditionHV))
then

// protect the condition and append (bundle) to
the program

6 progHV :=
progHV + (Π(conditionHV) ⊗ resultHV)

// also append (bundle) the condition to the set
of known conditions

7 knownCondHV :=
knownCondHV + (Π(conditionHV))

// insert the result and the actuator encoding
to the clean-up memory

8 V SA.addToCUM(resultHV)
9 foreach actuatori do

10 V SA.addToCUM(actuatori ⊗ encode(ai))
11 end
12 end
13 end

Algorithm 2: Query
Data: progHV - the output of the learning procedure Alg.

1, the VSA and encoder/decoder used in Alg. 1, the
query sensor inputs S

Result: output actuator commands A

// encode values, bind to device and bundle condition
1 conditionHV := +n

i=1(sensori ⊗ encode(si))

// query program to get a noisy version of the resultHV
2 resultHV Noisy := Π(conditionHV) ⊗ progHV

// remove noise
3 resultHV := vsa.queryCUM(resultHV Noisy)

// for each actuator , extract the command from the
result vector

4 foreach actuatori do

// unbind a noisy version from the result vector
5 commandHVNoisy := actuatori ⊗ resultHV

// remove noise
6 commandHV := vsa.queryCUM(commandHVNoisy)

// decode the command value from the vector
7 ai := decode(commandHV)
8 end

Figure 9 illustrates how VSA operators are used during
training and query. Each encoded sensor value is bound to
a random vector that represents the corresponding sensor
(see 1 in Fig. 9). E.g., the left distance sensor has a ran-
dom, but static vector representation (coined sensor1 ) that
indicates the role ”left distance sensor“. During training, for
each input pair, all sensor-value-binding are bundled 2  . The
same happens on the actuator side. The complete sensor-
action rule is stored as the binding of sensors and actuators

3  . Since many of these rules are bundled to create the com-
plete program 4  , the condition vector has to be protected
(think of it as using brackets that also prevent distribution
in an equation) to prevent mixing up sensor conditions from
different training pairs. To allow later recall from noisy vec-
tors, each actuator-value pair [e.g. actuator1 ⊗ encode(a1) ]
and the result bundle have to be stored in the clean-up
memory.

In this example, during query, the task is to obtain the
left and right motor commands given the current sensor
input and the program vector. To be able to get the cor-
rect commands, also the encoder/decoder and the clean up
memory are required 5  . The given sensor information are
combined to a condition vector as before 6  . Binding this
vector to the program vector retrieves the most similar rule
vector from training 7  . The clean-up memory can be used
to obtain a noise-free version. By binding this result with an
actuator role vector (e.g. actuator1 ), a noisy version of the
corresponding command is obtained 8  . Using the clean-up
memory and the decoder, this can be translated in a motor
command and used to control the robot 9 .

Results We implemented this system and were able to
successfully learn behaviors that solve the described simu-
lation task from [22] using human demonstration runs. For
more details, please refer to [26].

This demonstrates that VSAs can also be used to imple-
ment more complex programs, including action selection. It
is possible to encode a complete robot program in a single
vector. However, the complexity of the program is limited by
the capacity of this vector. More work is required to investi-
gate the practical potential of this example.

6 � Limitations, Discussion and Open
Questions

We demonstrated that hyperdimensional computing and its
implementation in form of VSAs have interesting properties
and a variety of applications in the literature, and that they
can be used to address robotic problems. However, there
are a couple of shortcomings and potential limitations we
want to discuss.

In our opinion, the first challenge is the lack of a clear defi-
nition of VSAs. It is a name for a collection of approaches
to exploit the properties of high-dimensional vector spaces
based on a set of operators with similar properties. We tried
to collect information about different VSAs in Sect. 3 to pro-
vide a coherent definition. However, the list of properties of
the operators includes terms like ”should“ or ”approximately“
without further ascertainment. The ultimate goal would be a
theoretically rigorous definition in form of axioms and derived
theorems about the capabilities of such systems.

329KI - Künstliche Intelligenz (2019) 33:319–330	

1 3

There are trade-offs like the one between the binding and
bundling operators in the Multiply–Add–Permute architecture
explained in Sect. 3, the first works better using {0, 1}n as vec-
tor space, the other when using the interval [0, 1]n . This is
not an unscalable problem, neither in theory (e.g by using a
clean-up memory) nor in practice (we also used this VSA in
the robotics experiments in Sect. 5). Although some theoretical
insights on properties of VSAs are available (e.g. on the bundle
capacity [7]), better insights in such trade-offs and limitations
would support the practical application.

A particularly important and challenging task is the encod-
ing of real world data into vectors. Our examples in Sect. 2
and most applications from Sect. 4 use random vectors—
which are very likely pairwise almost orthogonal. However,
for the shown robotic experiments in Sects. 5.2 and 5.3, we
used encodings obtained from images using a CNN and LSH
(Sect. 5.1). The resulting vectors span only a subspace of the
vectorspace. Thus, presumably, the VSA mechanisms work
only approximately—nevertheless, they provide reasonable
results. Insights to requirements on properties of the encoding/
decoding could have a huge influence for practical application.

The fact that in hyperdimensional computing most things
work only approximately, requires a different engineer’s mind
set. In the foreseeable future, complex machines like robots
will very likely contain a lot of engineering work—an easier
access for non-mathematicians to what works why and when
in these systems would presumably be a very helpful contribu-
tion. A very interesting direction would also be the connection
to the probabilistic methods that are widely used in this field.

Beside access to theoretical findings for applications of
hyperdimensional computing, a structured way to practically
designing systems using VSAs is missing. Currently, almost
every problem that is solved using hyperdimensional comput-
ing is a somehow isolated application. Although the same prin-
ciples are used on every occasion, a structured approach how
to solve problems, e.g. by means of design patterns, would be
very desirable. Also related is the very fundamental question,
which parts of the system have to be designed manually and
which parts can be learned. Currently, many results are due
to elaborate design rather than learning. However, the high-
dimensional representations presumably provide easy access
to connectionists’ learning approaches—potentially an elegant
bridge between (deep) artificial neural networks and (vector)
symbolic processing.

References

	 1.	 Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising
behavior of distance metrics in high dimensional space. In: Van
den Bussche J, Vianu V (eds) Database theory—ICDT 2001.
Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 420–434

	 2.	 Ahmad S, Hawkins J (2015) Properties of sparse distributed
representations and their application to hierarchical temporal
memory. CoRR arxiv​:abs/1503.07469​

	 3.	 Bellman RE (1961) Adaptive Control Processes: A Guided Tour.
MIT Press, Cambridge

	 4.	 Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When
Is nearest neighbor meaningful? In: Beeri C, Buneman P (eds)
Database theory—ICDT’99. Springer, Berlin Heidelberg, Ber-
lin, Heidelberg, pp 217–235

	 5.	 Danihelka I, Wayne G, Uria B, Kalchbrenner N, Graves A
(2016) Associative long short-term memory. In: Balcan MF,
Weinberger KQ (eds) Proceedings of the 33rd international
conference on machine learning, proceedings of machine learn-
ing research, vol 48. PMLR, New York, pp 1986–1994. http://
proce​eding​s.mlr.press​/v48/danih​elka1​6.html

	 6.	 Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T,
Tang Y, Rasmussen D (2012) A large-scale model of the
functioning brain. Science 338(6111):1202–1205. https​://doi.
org/10.1126/scien​ce.12252​66. http://scien​ce.scien​cemag​.org/
conte​nt/338/6111/1202

	 7.	 Frady EP, Kleyko D, Sommer FT (2018) A theory of sequence
indexing and working memory in recurrent neural networks.
Neural Comput 30(6):1449–1513. https​://doi.org/10.1162/
neco_a_01084​

	 8.	 Gayler RW (1998) Multiplicative binding, representation opera-
tors, and analogy. In: Advances in analogy research: integr of the-
ory and data from the cogn, comp, and neural sciences. Bulgaria

	 9.	 Gayler RW (2003) Vector symbolic architectures answer Jacken-
doff’s challenges for cognitive neuroscience. In: Proc. of ICCS/
ASCS Int. Conf. on cognitive science, pp 133–138. Sydney,
Australia

	10.	 Geusebroek JM, Burghouts GJ, Smeulders AWM (2005)
The Amsterdam library of object images. Int J Comput Vis
61(1):103–112

	11.	 Hastie T, Tibshirani R, Friedman J (2009) The elements of sta-
tistical learning: data mining, inference and prediction, 2 edn.
Springer. http://www-stat.stanf​ord.edu/~tibs/ElemS​tatLe​arn/

	12.	 Hawkins J, Ahmad S (2016) Why neurons have thousands of syn-
apses, a theory of sequence memory in neocortex. Front Neural
Circ 10:23. https​://doi.org/10.3389/fncir​.2016.00023​

	13.	 Jackendoff R (2002) Foundations of language (brain, meaning,
grammar, evolution). Oxford University Press, Oxford

	14.	 Joshi A, Halseth JT, Kanerva P (2017) Language geometry using
random indexing. In: de Barros JA, Coecke B, Pothos E (eds)
Quantum interaction. Springer International Publishing, Cham,
pp 265–274

	15.	 Kanerva P (1997) Fully distributed representation. In: Proc. of
real world computing symposium, pp 358–365. Tokyo, Japan

	16.	 Kanerva P (2009) Hyperdimensional computing: an introduction
to computing in distributed representation with high-dimensional
random vectors. Cognit Comput 1(2):139–159

	17.	 Kanerva P (2014) Computing with 10,000-bit words. In: 2014
52nd annual Allerton conference on communication, control,
and computing (Allerton), pp 304–310 . https​://doi.org/10.1109/
ALLER​TON.2014.70284​70

	18.	 Kleyko D, Osipov E, Gayler RW, Khan AI, Dyer AG (2015) Imita-
tion of honey bees’ concept learning processes using Vector Sym-
bolic Architectures. Biol Inspired Cognit Arch 14:57–72. https​://
doi.org/10.1016/j.bica.2015.09.002

	19.	 Kleyko D, Osipov E, Papakonstantinou N, Vyatkin V, Mousavi
A (2015) Fault detection in the hyperspace: towards intelligent
automation systems. In: 2015 IEEE 13th international confer-
ence on industrial informatics (INDIN), pp 1219–1224. https​://
doi.org/10.1109/INDIN​.2015.72819​09

http://arxiv.org/abs/abs/1503.07469
http://proceedings.mlr.press/v48/danihelka16.html
http://proceedings.mlr.press/v48/danihelka16.html
https://doi.org/10.1126/science.1225266
https://doi.org/10.1126/science.1225266
http://science.sciencemag.org/content/338/6111/1202
http://science.sciencemag.org/content/338/6111/1202
https://doi.org/10.1162/neco_a_01084
https://doi.org/10.1162/neco_a_01084
http://www-stat.stanford.edu/%7etibs/ElemStatLearn/
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.1109/ALLERTON.2014.7028470
https://doi.org/10.1109/ALLERTON.2014.7028470
https://doi.org/10.1016/j.bica.2015.09.002
https://doi.org/10.1016/j.bica.2015.09.002
https://doi.org/10.1109/INDIN.2015.7281909
https://doi.org/10.1109/INDIN.2015.7281909

330	 KI - Künstliche Intelligenz (2019) 33:319–330

1 3

	20.	 Kleyko D, Rahimi A, Rachkovskij DA, Osipov E, Rabaey JM
(2018) Classification and recall with binary hyperdimensional
computing: tradeoffs in choice of density and mapping character-
istics. IEEE Trans Neural Netw Learn Syst 29(12):5880–5898.
https​://doi.org/10.1109/TNNLS​.2018.28144​00

	21.	 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet clas-
sification with deep convolutional neural networks. In: Pereira
F, Burges C, Bottou L, Weinberger K (eds) Advances in neural
information processing systems, vol 25. Curran Associates, Inc.,
pp 1097–1105. http://paper​s.nips.cc/paper​/4824-image​net-class​
ifica​tion-with-deep-convo​lutio​nal-neura​l-netwo​rks.pdf

	22.	 Levy SD, Bajracharya S, Gayler RW (2013) Learning behavior
hierarchies via high-dimensional sensor projection. In: Proc. of
AAAI conference on learning rich representations from low-level
sensors, AAAIWS’13–12, pp 25–27

	23.	 Milford M, Wyeth GF (2012) SeqSLAM: visual route-based
navigation for sunny summer days and stormy winter nights. In:
Proceedings of the IEEE international conference on robotics and
automation (ICRA)

	24.	 Neubert P, Ahmad S, Protzel P (2018) A sequence-based neuronal
model for mobile robot localization. In: Proc of KI: advances in
artificial intelligence

	25.	 Neubert P, Protzel P (2015) Neubert P, Protzel P (2015) Local
region detector+ CNN based landmarks for practical place recog-
nition in changing environments. In: Proceedings of the European
conference on mobile robotics (ECMR)

	26.	 Neubert P, Schubert S, Protzel P (2016) Learning vector symbolic
architectures for reactive robot behaviours. In: Proc of Intl Conf
on intelligent robots and systems (IROS) workshop on machine
learning methods for high-level cognitive capabilities in robotics

	27.	 Osipov E, Kleyko D, Legalov A (2017) Associative synthesis of
finite state automata model of a controlled object with hyperdi-
mensional computing. In: IECON 2017—43rd annual conference
of the IEEE industrial electronics society, pp 3276–3281. https​://
doi.org/10.1109/IECON​.2017.82165​54

	28.	 Plate TA (1994) Distributed representations and nested composi-
tional structure. Ph.D. thesis, Toronto, Ont., Canada, Canada

	29.	 Purdy S (2016) Encoding data for HTM systems. CoRR arxiv​
:abs/1602.05925​

	30.	 Rachkovskij DA, Slipchenko SV (2012) Similarity-based
retrieval with structure-sensitive sparse binary distributed repre-
sentations. Comput Intell 28(1):106–129. https​://doi.org/10.111
1/j.1467-8640.2011.00423​.x

	31.	 Rahimi A, Datta S, Kleyko D, Frady EP, Olshausen B, Kanerva P,
Rabaey JM (2017) High-dimensional computing as a nanoscalable
paradigm. IEEE Trans Circ Syst I Regular Pap 64(9):2508–2521.
https​://doi.org/10.1109/TCSI.2017.27050​51

	32.	 Smolensky P (1990) Tensor product variable binding and the rep-
resentation of symbolic structures in connectionist systems. Artif
Intell 46(1–2):159–216

	33.	 Sünderhauf N, Dayoub F, Shirazi S, Upcroft B, Milford M (2015)
On the performance of ConvNet features for place recognition.
CoRR arxiv​:abs/1501.04158​

	34.	 Sünderhauf N, Neubert P, Protzel P (2013) Are we there yet? Chal-
lenging SeqSLAM on a 3000 km journey across all four seasons.
In: Proceedings of the IEEE international conference on robotics
and automation (ICRA), workshop on long-term autonomy

	35.	 Sünderhauf N, Brock O, Scheirer W, Hadsell R, Fox D, Leitner J,
Upcroft B, Abbeel P, Burgard W, Milford M, Corke P (2018) The
limits and potentials of deep learning for robotics. Int J Robot Res
37(4–5):405–420. https​://doi.org/10.1177/02783​64918​77073​3

	36.	 Thrun S, Burgard W, Fox D (2005) Probabilistic robotics (intelli-
gent robotics and autonomous agents). The MIT Press, Cambridge

	37.	 Widdows D, Cohen T (2015) Reasoning with vectors: a continu-
ous model for fast robust inference. Logic J IGPL/Interest Group
Pure Appl Logics 2:141–173

	38.	 Yerxa T, Anderson A, Weiss E (2018) The hyperdimensional stack
machine. In: Proceedings of Cognitive Computing, Hannover, pp.
1–2

https://doi.org/10.1109/TNNLS.2018.2814400
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/IECON.2017.8216554
https://doi.org/10.1109/IECON.2017.8216554
http://arxiv.org/abs/abs/1602.05925
http://arxiv.org/abs/abs/1602.05925
https://doi.org/10.1111/j.1467-8640.2011.00423.x
https://doi.org/10.1111/j.1467-8640.2011.00423.x
https://doi.org/10.1109/TCSI.2017.2705051
http://arxiv.org/abs/abs/1501.04158
https://doi.org/10.1177/0278364918770733

	An Introduction to Hyperdimensional Computing for Robotics
	Abstract
	1 Introduction
	2 Properties of High-Dimensional Spaces: Curse and Blessing
	2.1 High-Dimensional Spaces Have Huge Capacity
	2.2 Nearest Neighbor Becomes Unstable or Meaningless
	2.3 Random Vectors are Very Likely Almost Orthogonal
	2.4 Noise has Low Influence on Nearest Neighbor Queries with Random Vectors

	3 How to do Hyperdimensional Computing: Vector Symbolic Architectures (VSA)
	3.1 Binding
	3.2 Bundling
	3.3 Permutation (or Protect)

	4 Applications from the Literature
	5 Application to Robotic Tasks
	5.1 Encoding Real World Data
	5.2 Bundling Views for Object Recognition
	5.3 Sequence Processing for Place Recognition
	5.4 Learning and Recall of Reactive Behavior

	6 Limitations, Discussion and Open Questions
	References

