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Abstract
Hyperdimensional computing combines very high-dimensional vector spaces (e.g. 10,000 dimensional) with a set of carefully 
designed operators to perform symbolic computations with large numerical vectors. The goal is to exploit their representa-
tional power and noise robustness for a broad range of computational tasks. Although there are surprising and impressive 
results in the literature, the application to practical problems in the area of robotics is so far very limited. In this work, we aim 
at providing an easy to access introduction to the underlying mathematical concepts and describe the existing computational 
implementations in form of vector symbolic architectures (VSAs). This is accompanied by references to existing applica-
tions of VSAs in the literature. To bridge the gap to practical applications, we describe and experimentally demonstrate the 
application of VSAs to three different robotic tasks: viewpoint invariant object recognition, place recognition and learning 
of simple reactive behaviors. The paper closes with a discussion of current limitations and open questions.
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1  Introduction

Humans typically gain an intuitive understanding of 2-D 
and 3-D Euclidean spaces very early in their lives. Higher 
dimensional spaces have some counterintuitive properties 
that render the generalization of many algorithms from low 
to high-dimensional spaces useless—a phenomenon known 
as curse of dimensionality. However, there is a whole class 
of approaches that aims at exploiting these properties. These 
approaches work in vector spaces with thousands of dimen-
sions and are referred to as hyperdimensional computing 
or vector symbolic architectures (VSAs) (previously they 
were also called high-dimensional computing or hypervec-
tor computing). They build upon a set of carefully designed 
operators to perform symbolic computations with large 
numerical vectors.

Another, better known class of algorithms that (internally) 
work with high-dimensional representations are (deep) 

artificial neural networks (ANN). Their recent success 
includes robotic subproblems, e.g., for robust perception. 
However, in many robotic tasks, deep learning approaches 
face (at least) three challenges [35]: (1) limited amount of 
training data, (2) often, there is prior knowledge that we 
want to integrate (models as well as algorithms), and (3) we 
want to be able to assess the generalization capabilities (e.g. 
from one environment to another or from simulation to real 
world). The later is particularly important if the robot is an 
autonomous car. A resulting motivation for using VSAs is 
to combine the versatility, representational power and noise 
robustness of high-dimensional representations (for example 
learned by ANNs) with sample-efficient, programmable and 
better interpretable symbolic processing.

Although processing of vectors with thousands of dimen-
sions is currently not very time efficient on standard CPUs, 
typically, VSA operations can be highly parallelized. Fur-
ther, VSAs support distributed representations, which are 
exceptionally robust towards noise [2], an omnipresent prob-
lem in robotics [36]. In the long term, this robustness can 
also allow to use very power efficient stochastic devices that 
are prone to bit errors but extend the battery life of a mobile 
robot [31].

The goal of this paper is to provide an easily accessible 
introduction to this field that spans the range from the math-
ematical properties of high-dimensional spaces in Sect. 2, 
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over implementations and computing principles of VSAs 
in Sect. 3, and a short overview of existing applications in 
Sect. 4, to three (novel) demonstrations how hyperdimen-
sional computing can address robotic problems in Sect. 5. 
These demonstrations are intended as showcases to inspire 
future applications in the field of robotics. Remaining 
impediments in form of current limitations and open ques-
tions are discussed in Sect. 6.

2 � Properties of High‑Dimensional Spaces: 
Curse and Blessing

2.1 � High‑Dimensional Spaces Have Huge Capacity

The most obvious property is high capacity. For example, 
when we increase the number of dimensions in a binary 
vector, the number of stored possible patterns increases 
exponentially. For n dimensions, the capacity is 2n . For real 
valued vector spaces and practical implementations with 
limited accuracy (i.e. a finite length representation in a com-
puter) the capacity is also exponential in the number of 
dimensions. Interestingly, even for sparse binary vector 
spaces, the number of possibly stored patterns grows very 
fast. Figure 1 illustrates this behavior. For n dimensions and 
density d (the rate of ones in the vector), the capacity is �

n

⌊d⋅n⌋

�
 . Even if there are only 5% non-zero entries, a 1000 

dimensional vector can store more patterns than the sup-
posed number of atoms in the universe (presumably about 
1080).

2.2 � Nearest Neighbor Becomes Unstable 
or Meaningless

This is a less intuitive property but nevertheless it is very 
important since it lies at the heart of the curse of dimen-
sionality. This term was coined by Bellman [3] to describe 
the downsides of the exponential growth of capacity (or 
volume) of the space: if there is a fixed number of known 

data points (e.g. training samples), the sampling density 
decreases with increasing number of dimensions. For an 
n-dimensional space and k samples, it is proportional to 
k1∕n (cf. [11, p. 23]). If we require 100 samples for an 
accurate representation of a one dimensional problem, the 
same problem in a 10 dimensional space would require 
10010 samples to achieve the same sample density.

Beyer et al. [4] showed a direct consequence for the 
nearest neighbor problem (given a set of data points in an 
n-dimensional metric space, the task is to find the clos-
est data point to some query point). They define a query 
as unstable if the distance from the query point to most 
datapoints is less than (1 + �) times the distance from the 
query to the nearest neighbor. Under a broad range of prac-
tically relevant conditions, for any fixed 𝜖 > 0 and increas-
ing number of dimensions, the probability that a query is 
unstable converges to 1. In other words, the distance to the 
nearest neighbor approaches the distance to the farthest 
data point.

Based on the these results on the contrast in nearest 
neighbor queries in high-dimensional spaces, Aggarwal 
et al. [1] investigated the influence of the choice of the 
metric. For example, the often used Euclidean L2 norm is 
not well suited for high-dimensional spaces, better choices 
are Lp norms with smaller p (for some applications this 
includes fractal norms with p < 1 ). Also angular distances 
for real vectors and Hamming distance for binary vectors 
are suitable choices.

2.3 � Random Vectors are Very Likely Almost 
Orthogonal

Random vectors are created by sampling each dimension 
independently and uniformly from the underlying space. 
The distribution of angles between two such random vectors 
contradicts our intuition. In an n-dimensional real valued 
space, for any given vector, there are n − 1 exactly orthog-
onal vectors. However, the number of almost orthogonal 
vectors, whose angular distance to the given random vec-
tor is ≤ �

2
+ � , grows exponentially for any fixed 𝜖 > 0 . An 
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Fig. 1   Capacity of dense and sparse vector spaces quickly becomes 
very large (d is the ratio of ones). A discussion of properties of sparse 
representations can, e.g., be found in [2]

Fig. 2   Example visualization for similar and almost orthogonal areas 
in 2-D and 3-D spaces (angular thresholds 0.1)
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important consequence is that two randomly chosen vectors 
are very likely to be almost orthogonal.

Although we can not directly illustrate this effect in 
high-dimensional spaces, the transition from 2-D to 3-D 
space already gives an idea of what is happening. Figure 2 
shows the sets of similar and almost orthogonal vectors on 
unit spheres in 2-D and 3-D space. It can be easily seen 
that in the higher dimensional space, a random point on 
the sphere is much more likely to lie in the red area of 
almost orthogonal vectors than in the yellow area of simi-
lar vectors, and that this effect increased from 2-D to 3-D.

Figure 3 shows analytical results for higher dimensional 
spaces based on the equations of surface areas of n-spheres 
and n-caps.1 The first plot shows the surface areas of the 
similar and almost orthogonal ranges for an angular dis-
tance for � = 0.1 (the similar and almost orthogonal one 
and two dimensional surfaces from Fig. 2 provide each 
two points on the corresponding curves in this first plot).2 
Although the value of the surface area also decreases 
beyond the local maximum (which is also a global maxi-
mum), it decreases much slower than the area value of the 
similar region. This is demonstrated in the second plot in 
Fig. 3 that shows the ratio of the almost orthogonal and 
similar surface areas. The linear shape in this logarithmic 
plot reveals the exponential growth of this ratio. The two 
right plots show the probability to randomly sample either 
a similar or an almost orthogonal vector. For high number 
of dimensions (e.g. > 700 ) the probability that two random 
vectors are almost orthogonal ( � = 0.1 ) gets close to 1.

2.4 � Noise has Low Influence on Nearest Neighbor 
Queries with Random Vectors

Why is it important that random vectors are very likely 
almost orthogonal? If random vectors point in almost 
orthogonal directions, this creates a remarkably robust-
ness when trying to recognize them from noisy measure-
ments. Let us demonstrate this with an example:3 suppose 
there is a database of one million random feature vectors 
fi ∈ � = [0, 1]n (again, each dimension is sampled indepen-
dently from a uniform distribution). Also there is a query 
vector, which is a noisy measurement of one of the database 
vectors (each dimension has additive noise ∼ N(0, �) , as a 
consequence they can also leave their original range [0, 1]). 
Using the angular distance, what is the probability to get a 
wrong query answer (i.e. that a wrong vector from the data-
base is closer to the noisy query than the correct one)? Fig-
ure 4 shows results for increasing number of dimensions and 
increasing amounts of noise. Even for noise with standard 
deviation of 0.5, that is half the available range of the initial 
value (this is illustrated in the right part of Fig. 4), using 

0 5 10 15 20 25
# dimensions

0

1

2

3

4

5

6

7

ar
ea

 (
va

ry
in

g 
un

it)
Surface areas

Similar
Almost orthogonal

0 5 10 15 20 25
# dimensions

10 0

10 5

10 10

10 15

10 20

10 25

A
A

lm
os

t o
rt

ho
go

na
l

/A
S

im
ila

r

Ratio of surface areas

0 5 10 15 20 25
# dimensions

0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

Random sampling probability

Similar
Almost orthogonal

0 200 400 600 800 1000
# dimensions

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty

Random sampling probability (extended)

Similar
Almost orthogonal

Fig. 3   Analytical results on n-spheres. Note the logarithmic scale in the second plot. Due to numerical reasons, the dashed extension for 
#dimensions > 300 in the right plot is not obtained analytically but using sampling
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Fig. 4   (Left) Robustness towards different noise. (Right) For illustra-
tion: the blue example database vector [ 1

2
,
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,…] is affected by addi-

tive noise ∼ N(0, 0.5) (the amount represented by the yellow curve on 
the left) and becomes the red vector (color figure online)

1  n-sphere: a hypersphere in the (n+1)-dimensional space. n-cap: 
portion of an n-sphere cut off by a hyperplane.
2  Please keep in mind, that the unit of the surface area of an 
n-sphere is an n-dimensional object, thus the unit along the vertical 
axis changes and the values along the curves are not directly com-
parable. Nevertheless, the fact that there is a local maximum of the 
surface area of the almost orthogonal range is surprising. However, 
it is a direct consequence of the local maximum of the surface area 
of the whole unit n-sphere (which in turn becomes intuitive based on 
the recursive expression of the surface area An+1 = An ⋅

n

2�
 since for 

n > 2𝜋 this factor becomes smaller one).
3  Similar experiments can, e.g., be found in [31] and [2]; analytical 
results on VSA capacity can be found in [7].
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more than about 170 dimensions renders the probability of 
a false matching almost zero. 

Adding noise to each dimension is the same as adding 
a noise vector to the the whole data vector. This yields an 
interesting application: What if this added vector is again a 
known data vector? This is known as the bundle of two vec-
tors and will be subject of Sect. 3 where we will use the sym-
bol + to refer to this operator. Since both vectors act sym-
metrically as noise for the recognition of the other, a query 
with the sum of two data vectors is expected to return both 
vectors as the two nearest neighbors. Figure 5 shows results 
for this experiment using the above database of one million 
data vectors and also different numbers k of summed vectors. 
We evaluate the capability to return perfect query answers 
(i.e. exactly the k true vectors are the k-nearest neighbors). 
As a reading example for these plots: The purple curve in the 
left plot shows that in a 600 dimensional vector space, we 
can safely add five vectors and the result is almost certainly 
more similar to all of these five vectors than to any other 
of the one million data vectors from our example database.

This is the most straightforward way of implementing 
bundling and we can easily improve performance. E.g., to 
allow for increasing and decreasing values during summa-
tion, we could sample each dimension from [−1, 1] instead 
of [0, 1] as before. The result are shown in the right part of 
Fig. 5. In this configuration, 300 dimensions are sufficient 
to recognize each of a sum of five vectors, and a 600 dimen-
sional sum can handle a sum of ten vectors. Presumably, 
there are many other ways to improve performance in this 
simple example.

The next section will present a more systematic approach 
to solve problems with hyperdimensional computing that 
build upon the presented properties of high-dimensional 
spaces. While the examples from this section build upon ran-
dom vectors, Sect. 5 will demonstrate performance of these 
approaches when confronted with data from robot sensors.

3 � How to do Hyperdimensional Computing: 
Vector Symbolic Architectures (VSA)

The previous Sect. 2 listed properties of high-dimensional 
vector spaces and demonstrated how a bundle of vectors can 
be represented by their sum. Formally, the resulting vector 
represents the unordered set of the bundled vectors. To be of 
broader value, we need to be able to represent more complex 
and compositional structures such as ordered lists, hierarchies, 
or object-part relations. A key element to storing structured 
data is to assign different roles to different parts of the data 
[15]. Think of the personal record: {name = Alice, year_of_
birth = 1980, high_score = 1000} . Storing just the values {
Alice, 1980, 1000} is of limited help, since, for example, this 
unordered set cannot distinguish between Alice’s year of birth 
and her high score. We need information about the binding 
between the role (or variable) “year_of_birth” and its filler 
(or value) “1980”.

There have been multiple approaches presented to do this 
using hyperdimensional computing, e.g. by Plate [28], Kanerva 
[15], Gayler [8], and others. In 2003, Gayler coined the term 
Vector Symbolic Architectures (VSA) for these approaches [9]. 
In a nutshell, a VSA combines a vector space with a set of 
carefully chosen (designed) operators with particular proper-
ties. Each of the above VSAs uses a different vector space. 
The set of operators has to include the two operators bundling 
+ and binding ⊗ , and for certain applications a permute (or 
protect) � operator is required. The output of each operator 
is again a vector from the same space. Bundling shares some 
properties with addition and binding some properties with 
multiplication of numbers.

Before we proceed with the formal requirements, let us give 
an example of the overall goal. Given are vector representa-
tions AliceV , 1980V and 1000V , of the string “Alice” and the 
two numbers “1980” and “1000”; they can be obtained using 
a suitable encoder or be just random vectors whose meaning 
we have stored for later decoding. Also, we have random vec-
tors nameV , year_of_birthV , and high_scoreV that represent 
the corresponding roles. Using hyperdimensional computing, 
we want to be able to create a single vector H that contains the 
whole record using the above operators:

Subsequently, we want to be able to query for the value of 
each part of the composite structure using the same opera-
tors, e.g. for the name:

(1)

H = nameV ⊗ AliceV

+ year_of_birthV ⊗ 1980V

+ high_scoreV ⊗ 1000V

(2)H ⊗ nameV → AliceV
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were all k-nearest neighbors are correct. (left) Random vectors are 
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This example will be explained in the following subsections. 
Querying a record is a simple example of high-dimensional 
computing. Before we proceed with more sophisticated 
demonstrations in Sects. 4 and 5, we will characterize the 
operators in more detail and explain how the properties of 
high-dimensional spaces are exploited in the query-record 
example. However, there is no exact definition available of 
the required properties of the VSA operators, the exact set of 
operators or the vector space �  . The following is a summary 
of properties from the literature, i.e. the VSAs from Table 1.

3.1 � Binding ⊗

Binding ⊗ ∶ � × � → �  combines two input vectors into 
a single output vector that is not similar to the input vec-
tors but allows to (approximately) recover any of the input 
vectors given the output vector and the other input vec-
tor. E.g., we can bind the filler AliceV to the role nameV by 
N = AliceV ⊗ nameV and later recover the filler AliceV given 
N and the role vector nameV . To recover this vector, we need 
to unbind one vector from another. For VSAs were vectors 
are also (approximately) self inverse, unbinding and binding 
are the same operation (e.g. [8, 15]). Self-inverse means:

where � is the neutral element of binding in the space �  . We 
will use this property in the following examples.

An intuitive example of such a binding operator is the 
special case of Gayler’s VSA with � = {−1, 1}n (instead of 
[−1, 1]n ) and binding and unbinding as elementwise mul-
tiplication. The self-invertibility is due to the limitation to 
±1 , since −1 ⋅ −1 = 1 ⋅ 1 = 1 and 1 is the neutral element of 
multiplication. With such a VSA, recovering the name in the 
above role-filler example works as follows:

This example also requires the binding operator to be asso-
ciative. Further, to allow to change the order of the vectors, 
binding is typically also commutative. Table 1 lists several 

∀X ∈ �∶ X ⊗ X = �

N ⊗ nameV = (AliceV ⊗ nameV )⊗ nameV

= AliceV ⊗ (nameV ⊗ nameV )

= AliceV ⊗ � = AliceV

available binding implementations. Section 2 illustrated that 
the distribution of similar and dissimilar vectors is an impor-
tant property of high-dimensional vectors spaces. Thus, 
the effect of VSA operations on these similarities is also 
important. E.g., binding should be similarity preserving: 
∀A,B,X ∈ � ∶ dist(A,B) = dist(A⊗ X,B⊗ X) , the distance 
of two vectors remains constant when binding both vectors 
to the same third vector. Moreover, as the first sentence of 
this section already said, the result vector has to be dissimi-
lar to the two inputs. This is important for the combination 
with the bundle operator explained in the following section.

3.2 � Bundling +

The goal of the bundling operation + ∶ � × � → � is to com-
bine two input vectors such that the output vector is similar 
to both inputs. This is also called superposition of vectors. 
Typically, the bundling operator is some kind of elementwise 
sum of the vector elements (see Table 1). E.g., the Multi-
ply–Add–Permute VSA of Gayler [8] uses elementwise sum 
on the same vector space [−1, 1]n as the experiments from 
Fig. 5 (the sum is limited to the range of the vector space ele-
ments [−1, 1] ). In these experiments, we already showed that 
the elementwise sum of vectors is similar to each of the vec-
tors; this was a direct consequence of the almost orthogonality 
of random vectors.

According to Kanerva [17] the bundle and bind operations 
should “form an algebraic field or approximate a field”. In par-
ticular, bundling should be associative and commutative and 
binding should distribute over bundling. Let us illustrate this 
with a closer look at the example of Alice’s record. For brevity 
we use X, Y, Z for the role vectors “name”, “ year_of_birth ” 
and “ high_score ” and A, B, C for the vector representations 
of their values “Alice”, “1980” and “1000”. The record vector 
is formed by H = (X ⊗ A) + (Y ⊗ B) + (Z ⊗ Z) . What hap-
pens when querying for the name by binding with its vector X?

X ⊗ H = X ⊗ ((X ⊗ A) + (Y ⊗ B) + (Z ⊗ Z))

= (X ⊗ X ⊗ A) + (X ⊗ Y ⊗ B) + (X ⊗ Z ⊗ C)

= A + noise

Table 1   Example VSAs

A more extensive list can be found in [31]
aThis operator changes the vector size and shape

Smolensky [32] Plate [28] Kanerva [15] Gayler [8]

Space � Tensors of real numbers Real and complex vectors {0, 1}n [−1, 1]n (or {−1, 1}n)
Bundle + Elementwise sum Elementwise sum Thresholded elementwise sum Limited elementwise sum
Bind ⊗ Tensor producta Circular convolution Elementwise XOR Elementwise product
Protect � (Not considered) (Not considered) Permutations Permutations
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 The noise term includes the terms (X ⊗ Y ⊗ B) and 
(X ⊗ Z ⊗ C) . Both are non-similar to each of their elements 
(a property of binding). Thus the only known vector that 
is similar to X ⊗ H is A. Again this exploits the property 
of high-dimensional vectors to be almost sure non-similar 
(i.e. almost orthogonal) to random vectors. The database 
experiments from Sect. 2.4 already illustrated how a noise-
free version of vector A can be recovered: given a database 
with all elementary vectors, returning the nearest neighbor 
to A + noise results very likely in A (to not return a vector 
which is similar to noise, we need the property of binding 
to be non-similar to its inputs). In VSAs this database is 
typically called clean-up or item memory [16]. It can be as 
simple as our look-up table or, e.g., an attractor network 
[17]. Section 5.2 will evaluate properties of such a clean-up 
memory in combination with real-world data.

There can be trade-offs between the performance of the 
bundling and binding operators. For example, in the VSA of 
Gayler, the bundling operator works well for � = [−1, 1]n ; 
however, the self-inverse property of binding holds only 
exactly for the special case of � = {−1, 1}n . The clean-up 
memory can also be used to restore exact values in the non-
exact inversion case.

3.3 � Permutation (or Protect) ̆

Gayler [8] discussed the benefit of using an additional 
operator in order to protect vectors. Think of a situation 
with two bound role-filler pairs: A⊗ X and B⊗ Y  . When 
binding these two pairs to (A⊗ X)⊗ (B⊗ Y) , it becomes 
necessary to prevent mixing roles and fillers: Since bind-
ing is associative and commutative, this is equivalent to 
(A⊗ Y)⊗ (B⊗ X) . The permutation operator � protects 
a term from associative and distributive rules. In the above 
example this is (A⊗ X)⊗𝛱(B⊗ Y) . It is typically imple-
mented as a permutation of vector dimensions. Its output is 
dissimilar to the input and by application of the reverse per-
mutation, it is also invertible. For details please refer to [8].

4 � Applications from the Literature

VSAs have been applied to various problems like text clas-
sification [20], fault detection [19], analogy mapping [30], 
and reinforcement learning [18]. Kanerva [17] discusses 
the general computational power of VSAs and concludes 
one could create a “High dimensional computing-Lisp”. 
While this is still open, work in this direction includes syn-
thesis of finite state automata [27] and hyperdimensional 
stack machines [38]. Danihelka et al. [5] (Deepmind) used 
a VSA to model long-short term memory. In the medical 
domain, Widdows and Cohen [37] used Predication-based 
Semantic Indexing which exploits a VSA to represent 

traditional subject-predicate-object relationships (e.g. “aspi-
rin TREATS headache”) for fast approximate inference on 
the relationships of diseases, symptoms and treatments. Nat-
ural language processing is considered a challenging task. 
Jackendoff [13] specified this statement to four theoretical 
challenges that a system that aims at processing language at 
a human level has to solve. According to Gayler [9], VSAs 
can solve these challenges. Hyperdimensional computing 
was also used to encode n-gram statistics to recognize the 
language of a text [14]. There is evidence that distributed 
high-dimensional representations are widely used for rep-
resentation in the human brain [2]. This is extensively used 
in brain-inspired cognitive systems like Spaun [6] and in 
hierarchical temporal memory (HTM) [12], a computational 
model of working principles of the human neocortex. The 
latter was also applied for mobile robot place recognition 
[24].

5 � Application to Robotic Tasks

This section showcases three examples, how hyperdimen-
sional computing can be used for real robotic tasks. We do 
not claim that the presented approaches are better than exist-
ing solutions to the considered tasks, however, they dem-
onstrate the versatility of hyperdimensional computing, its 
capability to work with real world data and advocate the 
practical value. Before we start with the applications, we 
will describe how we bridge the gap between real world 
sensors and vector computations.

5.1 � Encoding Real World Data

Section 2.4 used synthetic data to demonstrate the noise 
robustness of hyperdimensional computations and its appli-
cation to bundling. The random vectors in this synthetic data 
fulfill the requirements to achieve pairwise almost orthogo-
nal vectors by design. What if we want to work with real 
world data that does not provide thousands of independent 
random dimensions? For simple data structures and the par-
ticular case of sparse binary vectors, Purdy [29] discusses 
different encodings. Very recently, Kleyko et al. [20] dis-
cussed trade-offs in binary hyperdimensional encodings of 
images. A comprehensive discussion of encoding approaches 
of real world sensor data is beyond the scope of this paper. 
However, we want to shortly describe our approach to 
encode the real world image data in our experiments.

Any high-dimensional image feature vector can poten-
tially be used. Based on their recent success, we decided 
to use image descriptors from early layers from deep con-
volutional neural networks in a similar fashion as they are 
used for place recognition [25, 33]. To get a descriptor for 
an image, it is fed to an off-the-shelf readily trained CNN 
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(we use AlexNet [21]) and instead of using the final out-
put (e.g. the 1000 dimensional soft-max class output), the 
intermediate output of an earlier layer is used [we use the 
13 × 13 × 385 = 64,896 dimensional output of the third con-
volutional layer (conv3)]. To reduce computational effort 
and to get a distributed representation, we use a locality 
sensitive hashing (LSH) approach and project the normal-
ized conv3 descriptor with a random matrix R to a lower 
dimensional space. Each row in R is the normal of a 64,896 
dimensional hyperplane (obtained by sampling R from a 
standard normal distribution followed by normalization of 
rows to length one). Since these products of the normalized 
conv3 descriptor and each row (hyperplane normal) reflect 
the cosine of the angle between the vectors, they are in range 
[−1, 1] and can be directly used in the Multiply–Add–Per-
mute Architecture [8] (see Table 1). We use 8192 rows in R.

5.2 � Bundling Views for Object Recognition

Robotic task For the first robotic use-case, we demonstrate 
the application of hyperdimensional computing to recog-
nize objects from multiple viewpoints. This is important for 
mobile robot localization by recognizing known landmarks, 
recognizing objects for manipulation, and other robotics 
tasks.

Motivation We use this task to transfer the results on syn-
thetic data from Sect. 2.4 on bundling of high-dimensional 
vectors to real world data. Bundling allows to combine mul-
tiple vectors into one. This can be straightforwardly used 
to combine two or more known views. The motivation is 
threefold: (1) if we combine all known views into one repre-
sentation, the comparison of a query vector to all known rep-
resentations is a single vector comparison. (2) There might 
be a better interpolation between the known views. (3) This 
allows to straightforwardly update the representation of an 
object, particularly iteratively in an online-filter fashion.

Experimental setup We practically demonstrate this 
approach using the Amsterdam Library of Object Images 
(ALOI) dataset [10], in particular the collection of 72,000 
images of 1000 objects seen from 72 different horizontal 
viewing angles ( 5◦ steps). Figure 6 shows example images. 
In our experiments, given are a database of k ∈ {1… 1000} 
known images Ik

x
 and Ik

y
 at viewing angles x and y, as well as 

a query image Iqz  at viewing angle z = x+y

2
 (the viewing angle 

in between) and image index q. The task is to assoziate q to 
the correct image index k.

VSA approach We bundle the image descriptors Ik
x
 and Ik

y
 , 

i.e. create Ik
x
+ Ik

y
 for each k (there will be one vector for each 

object in the database).
Results When comparing a query image Iqz  to the data-

base, motivation (1) is achieved by design: instead of com-
paring Iqz  to Ik

x
 and Ik

y
 individually, we can now compare 

against the single bundle vector and reduce the number of 
required comparisons by factor two.

The results in Fig. 7 demonstrate the better interpolation 
capabilities from motivation (2): the bundled representation 
(red curve) has a smaller cosine distance to the object image 
under a novel viewing angle than the individual images (blue 
curve). This also results in a better object recognition accu-
racy (right part). See footnote4 for details.

To evaluate towards continiously integrating more views 
[motivation (3)], the yellow and the purple curves in Fig. 7 
show query results when bundling a (static) set of multiple 
views from the four angles {0, 90, 180, 270} and the eight 
angles {0, 45, 90,… , 315} . Although the distance values 

Fig. 6   Example views of one of the 1000 ALOI objects from 0◦ , 90◦ 
and 180◦ viewing angle 0 45 90 135 180
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Fig. 7   Object recognition performance on ALOI dataset (color figure 
online)

4  Details: the red curve in the left plot evaluates vector similari-
ties (the query image index q is known and we compare the simi-
larity of Ik

x
+ Ik

y
 and Iq=kz  ), the red curve in the right plot evaluates 

the accuracy of a nearest neighbor query (the query image index q 
is not known to the system and it returns the index k of the nearest 
neighbor to Iqz  of all Ik

x
+ Ik

y
 , k ∈ {1… 1000} ). x is fixed at viewing 

angle 0◦ . y varies from 0◦ to 350◦ . The horizontal axis is the mean 
angular distance from z to x and y. As a reading example: in the left 
plot, the red curve evaluated at 90◦ means that for x = 0◦ , y = 180◦ , 
z = 90◦ (e.g. the images from Fig. 6), the average cosine distance of 
the bundle (Ik

0
+ Ik

180
) and Ik

90
 is about 0.17, and the right plot tells us 

that for about 53% of the objects the query image was most similar 
to the correct bundle. For comparison without bundling, the blue 
curves in Fig.  7 show the results when comparing the query image 
to the individual images Ik

x
 and Ik

y
 (instead of their bundle). For the 

distance evaluation in the left plot, we use the closest of the two indi-
vidual results for each query. For the query results in the right plot, 
all views Ik

x
 and Ik

y
 are stored in the database and a single query is 

made (the number of data base entries and thus comparisons has now 
doubled compared to the bundling approach). The VSA approach not 
only reduces the number of comparison, it also performs slightly bet-
ter than using individual comparisons in both plots.
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does not reach zero distance for known views for these larger 
bundles, the cosine distance varies the less the more views 
are bundled.

5.3 � Sequence Processing for Place Recognition

Robotic task Place recognition is a task similar to image 
retrieval: given a set of images from known places, find cor-
responding places to the current camera view of the robot. 
In contrast to the more general image retrieval task, for 
place recognition, we can assume that the robot does not 
jump arbitrarily between places and that the sequence of 
previous places provide some information about the cur-
rent place.

Motivation The previous application used only bundling. 
This second examples demonstrates the combination with 
the binding operator ⊗ to implement the important concept 
of role-filler pairs using hyperdimensional computing. We 
also use this example to showcase how hyperdimensional 
computing can provide a simple and concise implemen-
tation of an existing algorithm (SeqSLAM). This VSA 
implementation can also potentially benefit from the gen-
eral advantages of hyperdimensional computing like noise 
tolerance and potential energy efficiency. Similar to the 
previous object recognition example, the superposition of 
vectors also reduces the number of required comparison 
operations.

Mimicked approach SeqSLAM [23] exploits image 
sequence information to approach the challenging problem 
of place recognition in changing environments (e.g. given a 
database of images taken in summer and the goal is to local-
ize during winter). Input to Seq-SLAM’s sequence process-
ing part is a pairwise image similarity matrix S shown in 
Fig. 8. Each entry si,j is the similarity between the ith image 
from the database and the jth image of the robot’s current 
camera sequence. The output of SeqSLAM is a new value 
for the similarity of images i and j based on their similarity 

in S and the similarities between images before and after i 
and j. SeqSLAM assumes a constant velocity within each 
sequence, thus it sums over the similarities on a short linear 
segment in S centered at si,j (illustrated as red line in Fig. 8). 
See [23] for more details.

VSA approach To implement the SeqSLAM idea using 
hyperdimensional computing, we first encode each image as 
a vector using the approach from Sect. 5.1. Then, the basic 
idea is to replace each image vector in each sequence by a 
vector (of the same dimensionality) that encodes this image 
and the d images before and after this image in a bundle. 
To preserve the order of the images, each image is bound 
to a static position vector Pk before bundling. In our experi-
ments, the position vectors are random vectors, thus they are 
very likely almost orthogonal. The encoding of each image 
is: Yi = +d

k=−d
(Xi+k ⊗ Pk) ; for the beginning and end of the 

sequence (e.g. i < d + 1 ), fewer vectors are bundled. Since 
the bundle of an arbitrary number of vectors has exactly 
the same shape, this is neatly handled. Finally, to obtain 
place recognition results, the Yi encodings of the database 
and query image sets can be compared pairwise.

Why does this work? Consider the encodings of a 
sequence of two consecutive images from the database: 
(Aa ⊗ P0) + (Aa−1 ⊗ P−1) , and a sequence of two consecu-
tive query images: (Bb ⊗ P0) + (Bb−1 ⊗ P−1) . When com-
paring these two bundles, they are the more similar, the 
more of their components are similar. Let us evaluate some 
component pairs: The similarity of (Aa ⊗ P0) and (Bb ⊗ P0) 
depends on the similarity of Aa and Bb since both are bound 
to the same vector P0 and operator ⊗ is similarity preserving. 
The same holds for Aa−1 and Bb−1 . In contrast, e.g., (Aa ⊗ P0) 
and (Bb−1 ⊗ P−1) are known to be non similar since P0 and 
P−1 are almost orthogonal.

Experimental setup We use the Nordland dataset [34] 
which provides images from four 728 km train journeys 
through Norway, once each season (see Fig. 8 for exam-
ple images). We use 288 equally spaced places along the 
tracks and perform place recognition between the spring and 
the winter image sets. The evaluation is done using preci-
sion-recall curves based on the known ground-truth place 
associations.

Results The experimental results in Fig. 9 show that the 
VSA SeqSLAM implementation (solid curves) can exploit 
sequential information to improve the place recognition per-
formance. The results closely approximate the results of the 
original SeqSLAM sequence processing approach (dashed 
curves).

There is an additional theoretical benefit: the number of 
performed operations is significantly smaller for the VSA 
approach. For database size n, a query size m, and sequence 
length ds = 2 ⋅ d + 1 ( past + future + current ), the number 

Fig. 8   (Left) Illustration of a similarity matrix and SeqSLAM post-
processing. (Right) Three example places from the Nordland dataset 
in spring and winter
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of original SeqSLAM operations is m ⋅ n ⋅ ds . For the VSA 
implementation it is m ⋅ ds + n ⋅ ds + m ⋅ n (the first two 
terms represent the descriptor bundling and the last term 
the final pairwise comparison). E.g., for our database and 
query size of 288 images and d = 5 , the ratio of the numbers 
of operations is more than factor 10 and it becomes larger if 
any of these values increases. Unfortunately, while for the 
original SeqSLAM most of the operations deal with scalar 
similarity values, for the VSA approach all operations are 
high-dimensional vector operations. Presumably, a practi-
cal runtime improvement can only be achieved with special 
hardware for high-dimensional vector computations (which 
then could also exploit the energy saving potential of VSAs).

Extensions The Nordland data is perfectly suited for 
SeqSLAM and its vector variant since each train journey is 
a single long sequence with constant speed. To account for 
a slightly varying speed between the sequences, the original 
SeqSLAM algorithm evaluates line segments with different 
slopes and uses the best choice. The proposed VSA imple-
mentation can be straightforwardly extended to these vary-
ing velocities by superposing the different combinations of 
image vectors and sequence position vectors. Further inter-
esting directions would be to control the similarity between 
neighbored sequence position vectors or to use other VSAs’ 
ways of encoding sequence information, e.g. permutations 
[16].

5.4 � Learning and Recall of Reactive Behavior

Robotic Task The task is to learn simple reactive behaviors 
from demonstration. ”Simple“ means that we can repre-
sent them as a set of sensor-action (condition-result) pairs. 
Given a successful demonstration of a navigation run (e.g. 
from a human) by pairs of sensor input and actuator output, 

the system learns a representation that encodes this reac-
tive behavior and can resemble it during new runs in the 
environment.

Motivation The goal of this final example is to showcase a 
more complex VSA-based system.5 In contrast to the previ-
ous applications this does also involve action selection by 
the robot. The goal is to encode the whole robot program 
(a set of reactive behavior rules) in a single vector. When 
executing (and combining) such VSA-based behaviors, the 
advantages of vectors (i.e. the representational power and 
robustness to noise) are preserved. A particular beauty of 
this approach is that it can learn encodings for behaviors that 
have exactly the same form (a single vector) no matter how 
complex the sensor input or the behaviors are.

Experimental setup We use the simulation task described 
in [22]. Figure 9 illustrates the used simple robot with dif-
ferential drive (i.e. a left and a right motor), a left and a right 
distance sensor, and a central light sensor. The robot starts 
at a random location in a labyrinth and the task is to wander 
around while avoiding obstacles, until the robot finds a light 
source. Then the robot should stay under this light. This is 
a simple task that can be coded using a simple set of rules 
(e.g. see [22]).

VSA approach The listing in Algorithm 1 describes the 
learning procedure. Inputs are pairs of sensor measures and 
corresponding actuator commands. The idea is to (1) encode 
the sensor and actuator values individually, (2) combine a 
sensor value in a condition vector and all actuator encodings 
in a result vector, (3) combine the condition with the result 
vector to a rule vector, and finally (4) combine all rule vec-
tors to a single vector that contains the whole ”program“. 
Algorithm 2 is used in the execution phase to find the best 
actuator commands for the current sensor input.

Fig. 9   (Left) Place recognition results on Nordland dataset. The origi-
nal SeqSLAM sequence processing approach is well approximated 
by the vector sequence encoding. Both improve the place recognition 

performance compared to a direct pairwise comparison (top-right is 
better). (Right) Schematic overview of data flow for behavior learning

5  This work was previously presented at an IROS workshop, see [26] 
for details.
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Algorithm 1: Learning
Data: k training samples [S,A]1:k of sensor and actuator

values, a VSA, an encoder, an empty program
progHV and an empty vector knownCondHV of
known conditions

Result: progHV - a vector representation of the behaviour

// get vector representations for each sensor and actor
1 [sensor, actuator] = V SA.assignRandomV ectors()

// for each training sample [S,A]
2 foreach pair [S = (s1, ..., sn), A = (a1, ..., am)] do

// encode values, bind to device and bundle
condition/result

3 conditionHV := +n
i=1(sensori ⊗ encode(si))

4 resultHV := +m
i=1(actuatori ⊗ encode(ai))

5 if isDissimilar(knownCondHV,Π(conditionHV ))
then

// protect the condition and append (bundle) to
the program

6 progHV :=
progHV + (Π(conditionHV ) ⊗ resultHV )

// also append (bundle) the condition to the set
of known conditions

7 knownCondHV :=
knownCondHV + (Π(conditionHV ))

// insert the result and the actuator encoding
to the clean-up memory

8 V SA.addToCUM(resultHV )
9 foreach actuatori do

10 V SA.addToCUM(actuatori ⊗ encode(ai))
11 end
12 end
13 end

Algorithm 2: Query
Data: progHV - the output of the learning procedure Alg.

1, the VSA and encoder/decoder used in Alg. 1, the
query sensor inputs S

Result: output actuator commands A

// encode values, bind to device and bundle condition
1 conditionHV := +n

i=1(sensori ⊗ encode(si))

// query program to get a noisy version of the resultHV
2 resultHV Noisy := Π(conditionHV ) ⊗ progHV

// remove noise
3 resultHV := vsa.queryCUM(resultHV Noisy)

// for each actuator , extract the command from the
result vector

4 foreach actuatori do

// unbind a noisy version from the result vector
5 commandHVNoisy := actuatori ⊗ resultHV

// remove noise
6 commandHV := vsa.queryCUM(commandHVNoisy)

// decode the command value from the vector
7 ai := decode(commandHV )
8 end

Figure 9 illustrates how VSA operators are used during 
training and query. Each encoded sensor value is bound to 
a random vector that represents the corresponding sensor 
(see 1  in Fig. 9). E.g., the left distance sensor has a ran-
dom, but static vector representation (coined sensor1 ) that 
indicates the role ”left distance sensor“. During training, for 
each input pair, all sensor-value-binding are bundled 2  . The 
same happens on the actuator side. The complete sensor-
action rule is stored as the binding of sensors and actuators 

3  . Since many of these rules are bundled to create the com-
plete program 4  , the condition vector has to be protected 
(think of it as using brackets that also prevent distribution 
in an equation) to prevent mixing up sensor conditions from 
different training pairs. To allow later recall from noisy vec-
tors, each actuator-value pair [e.g. actuator1 ⊗ encode(a1) ] 
and the result bundle have to be stored in the clean-up 
memory.

In this example, during query, the task is to obtain the 
left and right motor commands given the current sensor 
input and the program vector. To be able to get the cor-
rect commands, also the encoder/decoder and the clean up 
memory are required 5  . The given sensor information are 
combined to a condition vector as before 6  . Binding this 
vector to the program vector retrieves the most similar rule 
vector from training 7  . The clean-up memory can be used 
to obtain a noise-free version. By binding this result with an 
actuator role vector (e.g. actuator1 ), a noisy version of the 
corresponding command is obtained 8  . Using the clean-up 
memory and the decoder, this can be translated in a motor 
command and used to control the robot 9 .

Results We implemented this system and were able to 
successfully learn behaviors that solve the described simu-
lation task from [22] using human demonstration runs. For 
more details, please refer to [26].

This demonstrates that VSAs can also be used to imple-
ment more complex programs, including action selection. It 
is possible to encode a complete robot program in a single 
vector. However, the complexity of the program is limited by 
the capacity of this vector. More work is required to investi-
gate the practical potential of this example.

6 � Limitations, Discussion and Open 
Questions

We demonstrated that hyperdimensional computing and its 
implementation in form of VSAs have interesting properties 
and a variety of applications in the literature, and that they 
can be used to address robotic problems. However, there 
are a couple of shortcomings and potential limitations we 
want to discuss.

In our opinion, the first challenge is the lack of a clear defi-
nition of VSAs. It is a name for a collection of approaches 
to exploit the properties of high-dimensional vector spaces 
based on a set of operators with similar properties. We tried 
to collect information about different VSAs in Sect. 3 to pro-
vide a coherent definition. However, the list of properties of 
the operators includes terms like ”should“ or ”approximately“ 
without further ascertainment. The ultimate goal would be a 
theoretically rigorous definition in form of axioms and derived 
theorems about the capabilities of such systems.
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There are trade-offs like the one between the binding and 
bundling operators in the Multiply–Add–Permute architecture 
explained in Sect. 3, the first works better using {0, 1}n as vec-
tor space, the other when using the interval [0, 1]n . This is 
not an unscalable problem, neither in theory (e.g by using a 
clean-up memory) nor in practice (we also used this VSA in 
the robotics experiments in Sect. 5). Although some theoretical 
insights on properties of VSAs are available (e.g. on the bundle 
capacity [7]), better insights in such trade-offs and limitations 
would support the practical application.

A particularly important and challenging task is the encod-
ing of real world data into vectors. Our examples in Sect. 2 
and most applications from Sect. 4 use random vectors—
which are very likely pairwise almost orthogonal. However, 
for the shown robotic experiments in Sects. 5.2 and 5.3, we 
used encodings obtained from images using a CNN and LSH 
(Sect. 5.1). The resulting vectors span only a subspace of the 
vectorspace. Thus, presumably, the VSA mechanisms work 
only approximately—nevertheless, they provide reasonable 
results. Insights to requirements on properties of the encoding/
decoding could have a huge influence for practical application.

The fact that in hyperdimensional computing most things 
work only approximately, requires a different engineer’s mind 
set. In the foreseeable future, complex machines like robots 
will very likely contain a lot of engineering work—an easier 
access for non-mathematicians to what works why and when 
in these systems would presumably be a very helpful contribu-
tion. A very interesting direction would also be the connection 
to the probabilistic methods that are widely used in this field.

Beside access to theoretical findings for applications of 
hyperdimensional computing, a structured way to practically 
designing systems using VSAs is missing. Currently, almost 
every problem that is solved using hyperdimensional comput-
ing is a somehow isolated application. Although the same prin-
ciples are used on every occasion, a structured approach how 
to solve problems, e.g. by means of design patterns, would be 
very desirable. Also related is the very fundamental question, 
which parts of the system have to be designed manually and 
which parts can be learned. Currently, many results are due 
to elaborate design rather than learning. However, the high-
dimensional representations presumably provide easy access 
to connectionists’ learning approaches—potentially an elegant 
bridge between (deep) artificial neural networks and (vector) 
symbolic processing.
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