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Motivation & Objectives

Analogy is really cool and central to cognition

Analogy is a good use case for the unique properties of VSA/HDC

Use a set of attempts at aspects of analogy to highlight some VSA design issues

What makes analogy hard for conventional computing?

Which VSA/HDC features might help with analogy?

Not a solved problem

·

·

·
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Outline

What is analogy?

Why is analogy hard for conventional computing?

VSA design examples:

Plate - Similarity of hand crafted vectors

Mikolov et al - Similarity of learned word vectors

Kanerva - Simple substitution

Emruli et al - Substitution with lookup

Gayler & Levy - Settling on substitution

·

·

·

·

·
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What is ANALOGY?

ANALOGY  what analogy really is

Whatever it is, ANALOGY as a cognitive phenomenon is a complex, nuanced thing

ANALOGY is too big to fit in this lecture, so I will resort to assertions and hand
waving to explain enough of it for current purposes

≜

Everybody presents a different partial view of ANALOGY·

Tendency to interpret the partial view as the whole thing

Please don’t do that

-

Analogical reasoning

Proportional analogies

Grand analogy (analogy as a party trick)

-

-

-

-
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Analogy is the core of cognition

Quote from Hofstadter (2006):

analogy-making 

the perception of common essence1

between two things2

1 In one’s current frame of mind

2 Thing  mental thing

See also

Gust et al (2008)

Chalmers et al (1992)

Blokpoel et al (2018)

I will jump off from Blokpoel:

cognition as inference to the best explanation

≜

≜
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Inference to the Best Explanation

The cognitive loop:

Given some inputs (evidence ) and a set of potential explanations (hypotheses 

) find the hypothesis ( ) that best explains the evidence

Evidence and hypotheses are represented relationally (trees/graphs)

“explains” is interpreted as graph structure matching - (sub)graph isomorphism

Partial structure matching enables inference by carrying structure from one
representation to another (pattern completion via autoassociative memory)

e
H h

A bet that natural regularities are “best” captured as transformations·

structural similarity = literal similarity | optimal substitution of literals

analogical “common essence” = common relational structure

·

·
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Where do the hypotheses come from?

Hypotheses are generated from all the agent’s relevant knowledge

The hypothesis space must be open-ended, to allow for explaining novelty

Hypotheses must be compositional

Substitution enables composition (there may be other mechanisms)

·

Allows infinite productivity

Allows novel compositions of familiar components

Like a grammar for hypotheses

-

-

-

·
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Example: Relational representation

solar system = base structure = hypothesis (on this slide)

atom = target structure = evidence (on this slide)

structural similarity = literal similarity | 

Chalmers et al (1992)

{sun ↦ nucleus, planet ↦ electron}
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Example: Relational representation of evidence

Blokpoel et al (2018)
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Example: Relational representation of knowledge

Blokpoel et al (2018)
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Example: Analogical augmentation

Blokpoel et al (2018)
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Example: Augmentation of evidence

Blokpoel et al (2018)
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Example: Explanation

Blokpoel et al (2018)
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Why is analogy hard for conventional computing?

Subgraph isomorphism, of two graphs, is NP-complete (intractable)

Considering all the base structures in the agent’s knowledge is much larger

Considering the transitive closure of analogical augmentations is much larger

Considers all possible vertex mappings

The “obvious” approach is brute-force exhaustive enumeration

Each vertex mapping provides very little information about the adequacy of
the other vertex mappings

·

·

·
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Preview: Which VSA features might help?

Hardware parallelism (elementwise operations with small fan-in)

Mathematical parallelism (avoids explicit enumeration)

Substitution is a primitive (via binding)

The hardware only “sees” the total vector

Distributive parallelism

Equational parallelism

Enables holistic transformations

·

·

(A + B + C) * (P + Q + R) = A* P + A* Q + … B* P + B* Q + …- ρ ρ ρ ρ ρ

·

T = (A + B + C) = (P + Q + R + S) = (X * Y * Z) = …-

·

Every value is potentially a variable·
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Plate (1994) - Hand crafted similarity

Focus of Chapter 6 of Plate’s thesis (1994) is the use of dot-product similarity as a
measure of structural similarity of representations

Reports experiments with hand-crafted representations aimed at qualitatively
reproducing the results of psychology research into human judgement of
analogical similarity under varying contributions of component similarity to
overall similarity.

My take,

but researchers are free to suit the details of their definitions to their needs

superficial similarity  similarity of arguments of relations

structural similarity  similarity of pattern of relations

· ≈
very

· ≈
very
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Example stimuli

P (Probe) “Spot bit Jane, causing Jane to flee from Spot”

LS (Literal Similarity) “Fido bit John, causing John to flee from Fido.” (Has both structural
and superficial similarity to the probe P.)

SF (Surface features) “John fled from Fido, causing Fido to bite John.” (Has superficial but
not structural similarity.)

CM (Cross-mapped analogy) “Fred bit Rover, causing Rover to flee from Fred.” (Has both
structural and superficial similarity, but types of corresponding objects are switched.)

AN (Analogy) “Mort bit Felix, causing Felix to flee from Mort.” (Has structural but not
superficial similarity).

FOR (First-order-relations only) “Mort fled from Felix, causing Felix to bite Mort.” (Has
neither structural nor superficial similarity, other than shared predicates.)

Plate (2000)
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Base and token vectors

Plate (1994)
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Stimulus episode representation construction

Probe episode (P): “Spot bit Jane, causing Jane to flee from Spot”

Plate (1994)

Note the addition of “lower level” components into the representations

Construction of all the episode representations follows the same scheme

These are not strictly necessary for representing the structure·

19/49



Dot-product similarity with Probe

Plate (2000)
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Reminders of dot-product similarity properties

If using self-inverse products:

  is equivalent to applying the substitution 

sim(A, ) = sim(A, (A +X)) > 0A′

sim(A, (A ⊗ P)) ≈ 0

sim((A ⊗ P), ( ⊗ P)) = sim(A, ) > 0A′ A′

sim((A ⊗ P), ( ⊗ )) = sim(A, ) × sim(P , ) > 0A′ P ′ A′ P ′

sim((A ⊗ B ⊗…⊗X), ( ⊗ B ⊗…⊗X)) = sim(A, ) > 0A′ A′

sim((A ⊗ B ⊗…⊗X), ( ⊗ B ⊗…⊗X ⊗ Y )) ≈ 0A′

sim((A ⊗ B ⊗…⊗X), ( ⊗ B ⊗…⊗X ⊗ Y ) ⊗ ) = sim(A, )A′ Y † A′

† .⊗Y Y ↦ 1
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My interpretation of Plate (1994) Chapter 6

Representation of structure requires product operations,

which destroys dot-product similarity of result to arguments

Plate decorates the composite core structures with components to create similarity

structural similarity  only the dot-product similarity of core structure

Needs something extra

· ≠

·

Might be ad hoc (depends on whether it is natural for the construction process)

Might be missing necessary structure

·

·

Predicates are not represented as unique instances,

but representing them as unique instances might destroy their similarity

-

“Spot bit Fido causing Felix to bite John” is ambiguous-

-

-
sim((bit ⊗ bit ⊗ Spot), (bit ⊗ bit ⊗ Spot)) 0e1 eagt e2 eagt ≈

?
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Dot-product similarity is local

Dot-product similarity is at the heart of VSA system dynamics

Dot-product similarity is very “local”

Relational structure encoded by Multiply and Permute, which are orthogonalising

Almost all vectors are quasi-orthogonal to current state vector

Only a tiny fraction of the vector space has nonzero similarity with state

Miraculous luck if all directions of interest are local to the state

Similarity driven dynamics alone can’t select between non-local directions

·

·

·

·

Something needs to be done to map relational structure into the local space
so that it can engage the similarity dynamics

·
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Mikolov et al (2013) - Learned word similarity

Proportional analogy with learned “semantic” vectors for words

Mikolov et al (2013)

· a : :: b :a′ b′

· man : woman :: king :: queen

· − +Vwoman Vman Vking =
?
Vqueen
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Successful analogy? Not so much

Doesn’t work as well as originally thought (Rogers et al, 2017)

ANALOGY enables proportional analogy, but proportional analogy  ANALOGY

“semantic” vectors don’t capture SEMANTICS

Relies on excluding  from answer set (or using multiple choice)

Works best when , , and  are relatively similar to each other and to 

Poor at some classes of relations, e.g. synonymy, antonymy

· b

· a a′ b b′

·

≠

Semantic vectors don’t know how to change a flat tyre

Captures a narrow subset of linguistic regularities induced by SEMANTICS

ANALOGY engages with SEMANTICS

·

·

·
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Vector semantics and dot-product similarity

Proportional analogy via semantic vectors implies semantics  additive features













Additive features can’t capture SEMANTICS

ANALOGY is about structural relational similarity

≡

− +Vwoman Vman Vking

= ( + ) − ( − ) + ( − + )Vperson VFvsM Vperson VFvsM Vperson VFvsM Vroyal

= + +Vperson VFvsM Vroyal

= Vqueen

Representing relational structure requires product operators

Static dot-product similarity structure is driven by additive structure

Dot-product similarity (by itself) can’t fully capture structural similarity

·

·

·
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Systematic substitution via binding

A binding can be used as a partial function for substitution

The substitution is applied uniformly across the components of the argument

With a commutative, self-inverse product operator, e.g. BSC, MAP

(I won’t discuss non-commutative or non-self-inverse products here):


Apply the substitution by binding it with the argument:












A⊗X ≡ {A ↦ X,X ↦ A}

(A ⊗ X) ⊗ (A+A⊗B+X ⊗ C +D)
= A⊗X ⊗A+A⊗X ⊗A⊗B+A⊗X ⊗X ⊗ C +A⊗X ⊗D
= (A⊗A) ⊗X + (A⊗A) ⊗X ⊗B+A⊗ (X ⊗X) ⊗ C +A⊗X ⊗D
= 1 ⊗X + 1 ⊗X ⊗B+A⊗ 1 ⊗ C +A⊗X ⊗D
= X +X ⊗B+A⊗ C +A⊗X ⊗D

(A+A⊗B+X ⊗ C +D) (X +X ⊗B+A⊗ C + A ⊗ X ⊗ D)↦
(A⊗X)
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Subtlety of binding

Multiple interpretations of bindings (  depending on how they are used, e.g.:

 and  can be arbitrarily complex composites (everything is just a vector), e.g.:

A ⊗X)

key:value pair in a dictionary (note key and value are treated identically)

variable:value pair (note variable and value are treated identically)

Virtual feature detector neuron (  = pattern detected,  = identity of neuron)

Inference rule (  = antecedent,  = consequent)

Substitution pattern (  = search pattern,  = replacement pattern)

·

·

· A X

· A B

· A B

A X

· (A + B + C) ⊗X = A ⊗X + B ⊗X + C ⊗X

· A ⊗ (X + Y + Z) = A ⊗X + A ⊗ Y + A ⊗ Z

· A ⊗ B ⊗X ⊗ Y = A ⊗ (B ⊗X ⊗ Y ) = (A ⊗X ⊗ Y ) ⊗ B = …

28/49



Kanerva (2010) - What is the Dollar of Mexico?












(a sum of filler substitutions - fillers occupying the same role have been bound)

Warning:  is the sum of all terms you know will not be important

Apply the USA/Mexico mapping, e.g. “What is the Dollar of Mexico?”












= ⊗ + ⊗ + ⊗Vustates Vname VUSA Vcapital VWDC Vcurrency VUSD

= ⊗ + ⊗ + ⊗Vmexico Vname VMEX Vcapital VMXC Vcurrency VMXN

= ⊗VU⊗M Vustates Vmexico

= ⊗ + ⊗ + ⊗ + noisVUSA VMEX VWDC VMXC VUSD VMXN e1

noise

⊗VU⊗M VUSD

= ( ⊗ + ⊗ + ⊗ + nois ) ⊗VUSA VMEX VWDC VMXC VUSD VMXN e1 VUSD

= nois + nois + ⊗ ⊗ + nois ⊗e2 e3 VUSD VMXN VUSD e1 VUSD

≈ VMXN
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Hand crafted substitution

This approach works because of identical roles, e.g. 

The role representations are static and enumerated in advance

Great if that’s all you need

ANALOGY needs dynamic substitutions chosen in response to the context

Vcurrency

Seriously, if that’s all you need, it’s the best way to do something analogy-like·
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Emruli et al (2013) - Learned substitution

Emruli et al (2013)

“The analogical mapping unit (AMU) which learns mappings of the type 
from examples and uses bundled mapping vectors stored in the SDM to
calculate the output vector ” Emruli et al (2013)

↦xk yk

yk
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How it works

 is used as the address for the Sparse Distributed Memory (SDM)

The mapping  is used as the value to store in the SDM

Mappings are noncommutative because  and  are used differently

Write mode: mappings are written to SDM

Read mode: retrieves average mapping corresponding to  and applies it to 

SDM does a sort of averaging memory over similar addresses

Interpolates over mappings

Can’t generate completely novel mappings

Note the “circuit based” approach, including non-VSA components (SDM)

There is usually an amount of plumbing and control to deal with

A purist would make the control distributed (VSA-like) but it’s usual to make the
control localist as an engineering hack

xk
⊗xk yk

xk yk

xk xk
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Gayler & Levy (2009) - Settling on substitution

Graph isomorphism (not analogical mapping, but a proxy for necessary process)

Find vertex mappings that make the graphs identical

Gayler & Levy (2009)

· {A ↦ P ,B ↦ Q,C ↦ S,D ↦ R}

· {A ↦ P ,B ↦ Q,C ↦ R,D ↦ S}
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How it works: The long and winding road

The explanation is going to be long winded (sorry)

What is a graph isomorphism (implementable definition)?

Localist heuristic to find graph isomorphisms

VSA distributed implementation of localist method

·

·

·
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Adjacency matrix of a graph

How to represent a graph with a matrix

Gayler & Levy (2009)

Row and column indices correspond to vertices

Cell entries indicate edges

·

·
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Association graph

The association graph is a graph product of the two graphs

- Vertices correspond to vertex mappings of the two graphs

- Edges correspond to edge existence agreement of the vertex mappings

- A maximal clique corresponds to a maximal isomorphism of the two graphs

Gayler (2009) Melbourne University presentation (edited). Only a subset of vertices and edges shown.
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How to find a maximal clique of a graph

Replicator equations (from evolutionary game theory)

Also interpretable as Bayesian update


 = prior distribution = support for each possible vertex mapping

 = posterior distribution = support for each possible vertex mapping


 = adjacency matrix of association graph

 = likelihood = multiplicative update to vertex mapping support given 

Gayler (2009) Melbourne University presentation

x(t)
x(t+ 1)
w
π(t) w
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Replicator equation circuit

Localist representation of mappings (potentially large)

 number of vertices in each of the two graphs




Gayler (2009) Melbourne University presentation

 elementwise product

k
dim(x) = dim(π) = k2

dim(w) = ×k2 k2

∧ ≜
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Settling of localist replicator equations

Gayler (2009) Melbourne University presentation
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VSA representations for replicator equations

Vertices: 

Edges: 

Graph vertex sets: 

Graph edge sets: 

Initial potential vertex mappings =  =

 =


Association graph edges (positive only) = potential edge mappings =  =

 =


A,B,C,D,P ,Q,R,S

B ⊗ C,B ⊗D,Q ⊗ R,Q ⊗ S

(A + B + C +D), (P +Q + R + S)

(B ⊗ C + B ⊗D), (Q ⊗ R +Q ⊗ S)

x(t = 1)
(A + B + C +D) ⊗ (P +Q + R + S)
A ⊗ P + A ⊗Q +…+ B ⊗ P + B ⊗Q +…+D ⊗ S

w
(B ⊗ C + B ⊗D) ⊗ (Q ⊗ R +Q ⊗ S)
(B ⊗ C ⊗Q ⊗ R) + (B ⊗ C ⊗Q ⊗ S) + (B ⊗D ⊗Q ⊗ R) + (B ⊗D ⊗Q ⊗ S)
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VSA replicator equation circuit

Interpret all vectors as being of the form ,

where  is the magnitude/support for  (the unit magnitude direction)

Analog computing:  is the labelled wire,  is the voltage on the wire

Gayler (2009) Melbourne University presentation

kV
k V

V k
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Multiset intersection

 multiset intersection

A multiset is a set with a nonnegative magnitude of membership for each
element (i.e. the magnitudes of the component vectors vary across components)






The elementwise multiplication of the magnitudes of the component vectors

This corresponds to the elementwise multiplication of support for the vertex
mappings in the localist version

Won’t go into the implementation here

∧ ≜

ar = a + b + cg1 V1 V2 V3

ar = p + q + rg1 V1 V2 V4

∧(ar ,ar ) = ap + bqg1 g2 V1 V2
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Evidence propagation

Association graph edges have the form: 

and can be interpreted as mappings:


 # interpret as mapping between edges in the graphs

 # interpret as mapping between vertex mappings

Association graph edges applied as inference rules:




= 

= (vertex mappings)  (mappings between vertex mappings)

= 

= 

Interpret  as the rule:

“To the extent  that  is supported as part of the solution

Increase the support for  as part of the solution by ”

B ⊗ C ⊗Q ⊗ R

(B ⊗ C) ⊗ (Q ⊗ R)
(B ⊗Q) ⊗ (C ⊗ R)

π = x ⊗ w
(B ⊗Q +…) ⊗ (B ⊗ C ⊗Q ⊗ R +…)

⊗
(k(B ⊗Q) +…) ⊗ ((B ⊗Q) ⊗ (C ⊗ R) +…)
k(C ⊗ R) +…

(B ⊗Q) ⊗ (C ⊗ R)
k B ⊗Q

C ⊗ R k
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Settling of VSA replicator equation circuit

Gayler (2009) Melbourne University presentation
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