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Seems easy to me...
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school bus 1.0 garbage truck 0.99 punching bag 1.0 snowplow 70.92

Alcorn et al. (2019) Strike (with) a Pose: Neural Networks Are Easily Fooled by
Strange Poses of Familiar Objects. ArXiv

How to incorporate new “machinery” to solve these problems?
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DISENTANGLING IMAGES WITH LIE GROUP TRANSFOR-
MATIONS AND SPARSE CODING
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Generative models with transformations

T (S) Qa Must infer multiple parameters

VSAs to represent transformation parameters
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What did we learn?

2D Translation Rotation + Scaling
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Vector-Symbolic Architectures (VSA): a framework for
computing with distributed representations

a+ b : set operation

— N
a,b,c..={-1,+1} (element-wise sum)

a O b : binding operation
(element-wise multiply)

N = 10,000

a-b : similarity

(dot product) p(a) : ordering operation

(cyclic shift)
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Binary Bipolar Real Complex

Binary spatter code Multiply, Add, Permute Holographic Reduced Fourier Holographic

(Kanerva, 1996)
Binary sparse distributed
code (Rachkovskij, 2001)

(Gayler, 1998)
Hyperdimensional

Computing (Kanerva,
2009)

Representation (Plate,
1991)

Matrix binding with
additive terms (Gallant &
Okaywe, 2013)

Reduced Representations
(Plate, 2003)




VSAs and abstract algebra

* What makes VSA interesting/why did | want to study VSA?
* VSA includes a binding operation, which is missing in most neural network
models

* Abstract algebra defines multiplication as an operation that
distributes over addition

* This immediately leads to the combinatoric nature of multiplication
c(a+b+c)x(d+e+f)=ad+ae+af +bd+be+bf +cd+ce+cf

e 2 product with 3 sums -> 372 terms



HD computing is a field ...and more?

* A field has addition/subtraction and multiplication/division

* Multiplication distributes over addition
* Distributivity is key to multiplication
* Combinatorics of distributivity (a + b +¢) *(x + y + 2z)

* Binding distributes over addition
cxO+2)=xOy +x0Oz

* Permutation also has distributive property
*p(x+y)=p)+pQ)

* Permutation also distributes across binding
*p(xOQy)=pkx)Op®»)



Combinatoric representations in
connectionism

* The need to represent conjunctions and other types of combinatoric
data structures lead connectionists to develop new operations in
neural networks.

e Superposition catastrophe

* Tensor products were natural extension of requirements for
representing combinatoric structure in neural networks
* Dimensionality increases with combinatorics
* VSAs utilize randomness to represent combinatoric structures in
vector spaces of fixed dimensionality

* VSA binding is equivalent to tensor products through lens of compressed
sensing.



When are VSAs useful?

* Exploit the combinatoric structure

* The combinatorics of data structures greatly exceeds the dimensionality of
the representation space
* Trigrams of letters: 26”3 > 17K, want to reduce dimensions to less than 17K

 Avoid large superpositions

e Sparsity in the data — only a few of these combinatoric possibilities are
represented at a time.



LLANGUAGE RECOGNITION USING RANDOM INDEXING

Aditya Joshi Johan T. Halseth
Vi =ppAxpBxC
Vo = ppAxpC x B

10,000 < 273 = 19,683

Sparse statistics = less noise

Pentti Kanerva
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Language Vectors = histogram of letter-trigrams




Factorization in perception
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reflectance shading
(Adelson, 2000)



Scene understanding and inverse graphics are
factoring problems

{C'U,be, Size, X0, Y0, Z0, Qxy, sz, Qyz, }
{sphere,radius, x{,y1,21, .- }

Computer '

Graphics
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Computer
Vision

Disentangle “what’and “where’
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Representing simple scenes

Input Image Neural Network VSA encoding
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Figure 3: Generating a vector symbolic encoding of a visual scene.
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Factorization problems are common in VSAS

x € X:={x0,X1,...,Xn}
Let b=xQyQ®z Yy €Y :={yo,¥1,-,¥n}
2z €71 :={20,21,...,2n}

Problem: You are given b, what are x, y and z?



Consider the following energy function

EFE=-b xRy ®z)

n n n
X = E a; X, Y= 5 Bi¥i, z=§ Vi Zi
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Consider the following energy function

1,000,000 combinations! (n=100)

(fimxiQy1®2z1 + ... + @BXiQy; @2 + ... + BnTnXn QYn Q 2y,)
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Resonator networks for factoring distributed
representations of data structures

s=x0OyOz+noise
X € X: {+1}V*Px
y € Y: {+1}VN*Dy
z € Z: {+1}V*Dz

Strategy: Search in superposition £

) =fXXT(sOy(t—-1) O2(t-1))
yO) =fXY (sOx(t—1) Oz(t—-1))

11

20) =fZZ(s Ox(t—1) Oy - 1))

|
- ! Combination of attractor networks and

COMSIE 7 GUESSEs  Use guesses in X, ¥ multiplication/binding
to codebook Z o infer 2



Performance of the resonator network
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Tree search as factorization problem

tree = a0 left ® p(left) ® p*(left)
+ b ® left ® p(right) ® p?(left)
+ ¢ ®right ® p(right) ® p?(left)
+ d ®right ® p(right) ® /) (right) ® p*(left)
+ e ®right ® p(right) ® p?(right) ?/ (right)
+ f @ left ® p(right) ® p*(right) ® p*(left) ® p*(left)
+ g © left ® p(right) ® p*(right) ® p*(left) ® p*(right)

tree ® (left ® p(right) ® p*(left)) = b + noise



Using the resonator network to solve tree
search

tree © ¢ = right © p(right) © p*(left) + noise.

We denote each factor estimate as ), 1), 3 @) %) and the codebook
matrices as Xp, X1, X2, X3, X4. Each codebook matrix contains permuted ver-
sions of left and right, and 1: X; = [ p?(left), p?(right), 1] where d indicates
the depth in the tree. The network is constructed analogous to equation 3.2,
but with five factor estimates running in parallel instead of three. For in-
stance, the update equation for the first estimate is

RO +1) = g(x()XJ(S OxVH e PM) 0Pt o f((4)(t)))- (4.4)



Resonator networks performance comparison
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Resonator network convergence properties
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Resonator networks for simple scene
inference
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How to represent continuous manifolds with
complex HD vectors

VSA binding in the complex domain can form

index patterns of continuous variables. eiqblx(t) @\

(1) Distinguishability: Points far
apart are encoded by dissimilar vOv= v? /'
“indexing” patterns.

(2) Smoothness: Points close to each vOvO \/v = v* @
other are encoded by similar patterns
that smoothly transition.

Spinning Phasors:
pinning vx(t)

“exponentiation trick”



arXiv.org > cs > arXiv:2109.03429

Computer Science > Machine Learning

[Submitted on 8 Sep 2021]

Computing on Functions Using Randomized Vector Representations

E. Paxon Frady, Denis Kleyko, Christopher J. Kymn, Bruno A. Olshausen, Friedrich T. Sommer
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Programming the resonator network

X = [x1,x2, ..., x¥]

: Y = [y1,92, ..,

s Hs0y 0z} XX T _
: Z=[t%th, ... 7]

,!s@fc@i}—-YYT—o@y— -

t* = z x* O yY -Template(x,y)
X,y

-...-0

0



Resonator networks for simple scene
inference
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How to scale on neuromorphic hardware?
How might the brain be doing it?

* Complex-valued matrix operatior |

 Patterns of sparse spike-timing
activity

Complex Domain Temporal Domain
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Frady, E.P., Sommer, F.T. (2019) Robust computation with
rhythmic spike patterns. PNAS 116(36) 18050-59.



Sparse binding operation?

* Want something like the binding operation, but with sparse vectors
* Operation produces quasi-orthogonal vector from two inputs

* Want atomic vectors to be sparse, and binding of atomic vectors
should stay sparse

* Want minimal scaling of synaptic connections



Sparse VSA strategies

TPS, random TPS, structured Block code
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Frady, E. P., Kleyko, D., & Sommer, F. T. (2021). Variable binding for sparse distributed representations:
theory and applications. IEEE Transactions on Neural Networks and Learning Systems.
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Modern neuroscience of cortical circuits

elongated neurogliaform
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Active dendritic mechanisms in pyramidal
neurons
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NEUROSCIENCE

Dendritic action potentials and computation in
human layer 2/3 cortical neurons

Albert Gidon', Timothy Adam Zolnik', Pawel Fidzinski®>, Felix Bolduan®, Athanasia Papoutsi®,
Panayiota Poirazi®, Martin Holtkamp?, Imre Vida®*, Matthew Evan Larkum™3*



Overview of active dendritic processing
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Conclusions

* Factorization is an important problem in perception
* Solving factorization problems requires significant computation

* Resonator networks use the strategy of searching in superposition to solve
factorization problems efficiently

* VSAs can be extended to represent geometry and binding can be used to
perform geometrical transformations

* Sparse and Complex VSAs bring us much closer to linking VSAs with
neuroscience

* Binding operations in sparse VSAs resembles active dendritic integration in
pyramidal cells

e Cortical microcircuit is a resonator network??
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