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Seems easy to me…

Alcorn et al. (2019) Strike (with) a Pose: Neural Networks Are Easily Fooled by 
Strange Poses of Familiar Objects. ArXiv

How to incorporate new “machinery” to solve these problems?



Redwood Journal Club!

Generative models with transformations
Must infer multiple parameters
VSAs to represent transformation parameters



What did we learn?

Fourier Log-polar

Why learn when you can engineer?
-- Still have to build-in dimensionality 
of transform



Vector-Symbolic Architectures (VSA): a framework for 
computing with distributed representations 

Binary Bipolar Real Complex

Binary spatter code 
(Kanerva, 1996)
Binary sparse distributed 
code (Rachkovskij, 2001)

Multiply, Add, Permute 
(Gayler, 1998)
Hyperdimensional 
Computing (Kanerva, 
2009)

Holographic Reduced 
Representation (Plate, 
1991)
Matrix binding with 
additive terms (Gallant & 
Okaywe, 2013) 

Fourier Holographic 
Reduced Representations 
(Plate, 2003)

𝑎 + 𝑏 ∶ 𝑠𝑒𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(element-wise sum)

𝑎 ⊙ 𝑏 ∶ 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(element-wise multiply)
𝜌 𝑎 ∶ 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(cyclic shift)

𝑎, 𝑏, 𝑐 … = −1,+1 !

𝑁 = 10,000

𝑎 ⋅ 𝑏 ∶ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
(dot product)



VSAs and abstract algebra

• What makes VSA interesting/why did I want to study VSA?
• VSA includes a binding operation, which is missing in most neural network 

models

• Abstract algebra defines multiplication as an operation that 
distributes over addition
• This immediately leads to the combinatoric nature of multiplication
• 𝑎 + 𝑏 + 𝑐 ∗ 𝑑 + 𝑒 + 𝑓 = 𝑎𝑑 + 𝑎𝑒 + 𝑎𝑓 + 𝑏𝑑 + 𝑏𝑒 + 𝑏𝑓 + 𝑐𝑑 + 𝑐𝑒 + 𝑐𝑓

• 2 product with 3 sums -> 3^2 terms



HD computing is a field …and more?

• A field has addition/subtraction and multiplication/division
• Multiplication distributes over addition

• Distributivity is key to multiplication
• Combinatorics of distributivity (𝑎 + 𝑏 + 𝑐) ∗ (𝑥 + 𝑦 + 𝑧)

• Binding distributes over addition
• 𝑥 ⊙ 𝑦 + 𝑧 = 𝑥 ⊙ 𝑦 + 𝑥 ⊙ 𝑧

• Permutation also has distributive property
• 𝜌 𝑥 + 𝑦 = 𝜌 𝑥 + 𝜌(𝑦)

• Permutation also distributes across binding
• 𝜌 𝑥 ⊙ 𝑦 = 𝜌 𝑥 ⊙ 𝜌(𝑦)



Combinatoric representations in 
connectionism
• The need to represent conjunctions and other types of combinatoric 

data structures lead connectionists to develop new operations in 
neural networks.
• Superposition catastrophe

• Tensor products were natural extension of requirements for 
representing combinatoric structure in neural networks
• Dimensionality increases with combinatorics

• VSAs utilize randomness to represent combinatoric structures in 
vector spaces of fixed dimensionality
• VSA binding is equivalent to tensor products through lens of compressed 

sensing. 



When are VSAs useful?

• Exploit the combinatoric structure
• The combinatorics of data structures greatly exceeds the dimensionality of 

the representation space
• Trigrams of letters: 26^3 > 17K, want to reduce dimensions to less than 17K

• Avoid large superpositions
• Sparsity in the data – only a few of these combinatoric possibilities are 

represented at a time.



10,000 < 27" = 19,683

Language Vectors = histogram of letter-trigrams

Sparse statistics = less noise



reflectance shading
(Adelson, 2000)

Factorization in perception



Scene understanding and inverse graphics are 
factoring problems

{𝑐𝑢𝑏𝑒, 𝑠𝑖𝑧𝑒, 𝑥!, 𝑦!, 𝑧!, 𝜃"#, 𝜃"$, 𝜃#$, … }
{𝑠𝑝ℎ𝑒𝑟𝑒, 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑥%, 𝑦%, 𝑧%, … }



Representing simple scenes 



Let

Problem: You are given b, what are x, y and z?

Factorization problems are common in VSAs



Consider the following energy function



Consider the following energy function

1,000,000 combinations!  (n=100)



Resonator networks for factoring distributed 
representations of data structures

Constrain !𝒛 guesses 
to codebook 𝒁

Use guesses in $𝒙, $𝒚
to infer !𝒛

4𝒙 𝑡 = 𝑓(𝑿𝑿& 𝒔⊙ 4𝒚 𝑡 − 1 ⊙ @𝒛 𝑡 − 1 )
Strategy: Search in superposition

Combination of attractor networks and 
multiplication/binding

𝒔 = 𝒙⊙𝒚⊙𝒛+ 𝑛𝑜𝑖𝑠𝑒

𝒙 ∈ 𝑿: {±1}'×)!

𝒚 ∈ 𝒀: {±1}'×)"

𝒛 ∈ 𝒁: {±1}'×)#

4𝒚 𝑡 = 𝑓(𝒀𝒀& 𝒔⊙4𝒙 𝑡 − 1 ⊙ @𝒛 𝑡 − 1 )

@𝒛 𝑡 = 𝑓(𝒁𝒁& 𝒔⊙4𝒙 𝑡 − 1 ⊙4𝒚 𝑡 − 1 )



Performance of the resonator network

Search in superposition

Gradient Search

Network Size
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Tree search as factorization problem



Using the resonator network to solve tree 
search 



Resonator networks performance comparison

Search in superposition

Gradient Search
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Resonator network convergence properties



Resonator networks for simple scene 
inference



How to represent continuous manifolds with 
complex HD vectors

Spinning Phasors:

𝑒!"##(%)

𝒗# %

𝒗⊙ 𝒗 = 𝒗$

𝒗⊙ 𝒗⊙ √𝒗 = 𝒗$.&

(1) Distinguishability: Points far 
apart are encoded by dissimilar  
“indexing” patterns.

(2) Smoothness: Points close to each 
other are encoded by similar patterns 
that smoothly transition.

VSA binding in the complex domain can form 
index patterns of continuous variables.

“exponentiation trick”





Programming the resonator network

𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌

𝒁 = 𝒕𝒂, 𝒕𝒃, … , 𝒕𝒛

𝒕𝒂 =D
-,/

𝑥- ⊙ 𝑦/ ⋅ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑥, 𝑦)

0

0

𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒍



Resonator networks for simple scene 
inference



How to scale on neuromorphic hardware? 
How might the brain be doing it?

• Complex-valued matrix operations
• Patterns of sparse spike-timing 

activity

Frady, E.P., Sommer, F.T. (2019) Robust computation with 
rhythmic spike patterns. PNAS 116(36) 18050-59.



Sparse binding operation?

• Want something like the binding operation, but with sparse vectors
• Operation produces quasi-orthogonal vector from two inputs

• Want atomic vectors to be sparse, and binding of atomic vectors 
should stay sparse
• Want minimal scaling of synaptic connections



Sparse VSA strategies

# 𝑆𝑦𝑛𝑎𝑝𝑠𝑒𝑠 =
𝑁
𝐾

𝑁 # 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 = 𝑁
# 𝐴𝑐𝑡𝑖𝑣𝑒 = 𝐾

Frady, E. P., Kleyko, D., & Sommer, F. T. (2021). Variable binding for sparse distributed representations: 
theory and applications. IEEE Transactions on Neural Networks and Learning Systems.



Modern neuroscience of cortical circuits



Active dendritic mechanisms in pyramidal 
neurons



Overview of active dendritic processing



Conclusions

• Factorization is an important problem in perception
• Solving factorization problems requires significant computation
• Resonator networks use the strategy of searching in superposition to solve 

factorization problems efficiently
• VSAs can be extended to represent geometry and binding can be used to 

perform geometrical transformations
• Sparse and Complex VSAs bring us much closer to linking VSAs with 

neuroscience
• Binding operations in sparse VSAs resembles active dendritic integration in 

pyramidal cells
• Cortical microcircuit is a resonator network??




