Overview of different HD Computing/VSA models*

Denis Kleyko

A beloved child has many names

- Umbrella terms:
- Vector Symbolic Architectures (VSAs) - R. Gayler (2003)
- Hyperdimensional Computing (HDC/HD computing) - P. Kanerva (2009)
- Concrete models:
- Multiply Add Permute, MAP - R. Gayler
- Tensor Product Variable Binding, TPR - P. Smolensky
- (Frequency) Holographic Reduced Representations, (F)HRR - T. Plate
- Semantic Pointer Architecture, SPA - C. Eliasmith
- Binary Spatter Codes, BSC - P. Kanerva
- Matrix Binding of Additive Terms, MBAT - S. Gallant
- Sparse Binary Distributed Representations, SBDR - E. Kussul, D. Rachkovskij, et al.
- Sparse Block-Codes, SBC - M. Laiho, et al.
- Geometric Analogue of Holographic Reduced Representations, GAHRR - D. Aerts, et al.

Recap: basic components of VSAs

The basic ingredients of any VSA model are:

- Representational space, e.g., binary/bipolar
- High-dimensionality
- e.g., 10^{3} dimensions
- HD vectors
- Randomness
- Similarity metric, e.g., dot (inner) product: sim
- Item memory
- Operations on representations

Associative memory: Meaning

- Meaning is a fundamental component of nearly all aspects of human cognition

- A semantic memory is necessary for humans to construct meaning from otherwise meaningless words

Associative memory: a simple experiment

- corkscrew
- korkskruv
- dugóhúzó
- штопор

Item memory

- A codebook of (random) HD vectors with assigned meanings
- autoassociative
- Also called clean-up memory
- Uses the similarity metric (e.g., $\operatorname{sim}_{\text {dot }}$)
- Nearest-neighbor search among the set of stored meaningful HD vectors

HD-vector	Meaning
$-1111-1-11-11-11\left(a_{1}\right)$	Object 1
$1-11-11-11-1-111\left(a_{2}\right)$	Object 2
\ldots	
$1-1111-111-111\left(a_{N}\right)$	Object D-1
$-11-11-11-1111-1\left(\mathbf{s}_{1}\right)$	Object D

HD Computing/VSA operations

- Bundling/superposition (sets)
- Example: component-wise addition
- $z=a+b+c$
- $\operatorname{sim}_{\text {dot }}(a, z)>0$
- Binding (variable binding)
- Example: component-wise multiplication
- denoted as a $\circ \mathbf{b}$
- $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \mathbf{a} \circ \mathbf{b}) \approx 0$
- Unbinding (release)
- denoted as $\mathbf{b} \oslash(\mathbf{a} \circ \mathbf{b})$
- $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \mathbf{b} \oslash(\mathbf{a} \circ \mathbf{b})) \approx n$
- Permutation (sequences)
- Example: cyclic shift
- denoted as $\rho^{1}(a)$
- $\operatorname{sim}_{\text {dot }}\left(a, \rho^{1}(a)\right) \approx 0$

Operations: superposition properties

- Superposition can be inverted with subtraction:
- $\mathbf{z = a + b + c}$
- $\mathbf{z - c}=\mathrm{a}+\mathrm{b}$
- The result of superposition is similar to its arguments ($\mathbf{z}=\mathbf{a}+\mathbf{b}+\mathbf{c}$):
- $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \mathbf{z}) \approx \operatorname{sim}_{\text {dot }}(\mathbf{b}, \mathbf{z}) \approx \operatorname{sim}_{\text {dot }}(\mathbf{c}, \mathbf{z})>0$
- Binding arguments can be recovered (approx.) from the superposition:
- $\mathbf{b} \oslash(\mathbf{a} \circ \mathbf{b}+\mathbf{c} \circ \mathbf{d}) \approx \mathbf{a}+\mathbf{b} \oslash \mathbf{c} \circ \mathbf{d}=\mathbf{a}+$ noise $\approx \mathbf{a}$
- Superposition is commutative
- a+b = b+a
- Normalized superposition is approximately associative
- $g()$ - normalization function
- $g(g(\mathbf{a}+\mathbf{b})+\mathbf{c}) \approx g(\mathbf{a}+g(\mathbf{b}+\mathbf{c}))$

Operations: binding properties

- Commutative: $\mathbf{a} \circ \mathbf{b}=\mathbf{b} \circ \mathbf{a}$
- Associative: $\mathbf{c} \circ(\mathbf{a} \circ \mathbf{b})=(\mathbf{c} \circ \mathbf{a}) \circ \mathbf{b}$
- Distributes over superpostion: $\mathbf{c} \circ(\mathbf{a}+\mathbf{b})=(\mathbf{c} \circ \mathbf{a})+(\mathbf{c} \circ \mathbf{b})$
- Invertible: $\mathbf{b} \oslash(\mathbf{a} \circ \mathbf{b})=\mathbf{a}$
- The result of binding is dissimilar to its arguments
- $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \mathbf{a} \circ \mathbf{b}) \approx \operatorname{sim}_{\text {dot }}(\mathbf{b}, \mathbf{a} \circ \mathbf{b}) \approx 0$
- Preserves similarity (for similar $\left.\mathbf{a} \& \mathbf{a}^{\prime}\right): \operatorname{sim}_{\text {dot }}\left(\mathbf{a}^{\prime} \circ \mathbf{b}, \mathbf{a} \circ \mathbf{b}\right)>0$
- "Randomizing" (since $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \mathbf{a} \circ \mathbf{b}) \approx 0$) but preserves similarity:
$\cdot \operatorname{sim}_{\mathrm{dot}}(\mathbf{a} \circ \mathbf{b}, \mathbf{c} \circ \mathbf{b})=\operatorname{sim}_{\mathrm{dot}}(\mathbf{a}, \mathbf{c})$

Operations: permutation properties

- Invertible for $\mathbf{r}=\rho^{1}(\mathbf{a}): \mathbf{a}=\rho^{-1}(\mathbf{r})$
- Distributes over binding: $\rho(\mathbf{a} \circ \mathbf{b})=\rho(\mathbf{a}) \circ \rho(\mathbf{b})$
- Distributes over superpostion: $\rho(\mathbf{a}+\mathbf{b})=\rho(\mathbf{a})+\rho(\mathbf{b})$
- The result of permutation is dissimilar to its argument
- $\operatorname{sim}_{\mathrm{dot}}(\mathrm{a}, \rho(\mathrm{a})) \approx 0$
- Preserves similarity (for similar a \& \mathbf{a}^{\prime}): $\operatorname{sim}_{\text {dot }}\left(\rho\left(\mathbf{a}^{\prime}\right), \rho(\mathbf{a})\right)>0$
- "Randomizing" (since $\operatorname{sim}_{\text {dot }}(\mathbf{a}, \rho(\mathbf{a})) \approx 0$) but preserves similarity:
- $\operatorname{sim}_{d o t}(\rho(\mathbf{a}), \rho(\mathbf{b}))=\operatorname{sim}_{d o t}(\mathbf{a}, \mathbf{b})$

Historical excursus

- Several challenges for connectionist representations
- Superposition catastrophe:
- red square or blue circle $->$ no problem
- red square \& blue circle $->$ issue
- Critics of the connectionism by Fodor \& Pylyshyn
- Composition, decomposition, and manipulation:
- How are components composed to form a structure
- How are components extracted from a structure?
- Can the structures be manipulated using connectionist techniques?
- Jackendoff 's challenges:
- The problem of two
- How multiple instances of the same token are instantiated?
- How "little star" and "big star" are instantiated?
- Both are stars, yet distinguishable.

Tensor Product Representations

- Due to P. Smolensky
- "... work reported here began as a response to this attack ..."
- Binding: tensor product, \otimes
- Solves superposition catastrophe
- Unbinding: inner product

- Dimensionality of bound HVs
- Grows exponentially
- 2 -> $n^{2} ; 3$-> n^{3}; etc.
- Recursive application of the binding is challenging
- Binding between different levels is ill-defined

The linearly recursive roles are uniformly distributed to an excellent approximation

Learning and compressing Tensor Product Representations for Large-scale AI problems

Holographic Reduced Representations

- Due to T. Plate

- Seed HD vectors: $\sim N(0,1 / n)$
- unit L2 norm
- Binding: circular convolution, \circledast
- Compression of the tensor product
- Unbinding: circular correlation

$$
\begin{aligned}
& \mathbf{z}_{0}=\mathbf{x}_{0} \mathbf{y}_{0}+\mathbf{x}_{2} \mathbf{y}_{1}+\mathbf{x}_{1} \mathbf{y}_{2} \\
& \mathbf{z}_{1}=\mathbf{x}_{1} \mathbf{y}_{0}+\mathbf{x}_{0} \mathbf{y}_{1}+\mathbf{x}_{2} \mathbf{y}_{2} ; \\
& \mathbf{z}_{2}=\mathbf{x}_{2} \mathbf{y}_{0}+\mathbf{x}_{1} \mathbf{y}_{1}+\mathbf{x}_{0} \mathbf{y}_{2} .
\end{aligned}
$$

$$
\mathbf{z}_{j}=\sum_{k=0}^{n-1} \mathbf{y}_{k} \mathbf{x}_{j-k} \quad \bmod n
$$

- Similarity: dot product
- Dimensionality is fixed to n
- Superposition:

Neural networks for language processing juthas busbes
nome

\cdots
. wost wreatury 23

Vector Representations + Addition + Multiplication = Conceptual Reasoning

Fourier Holographic Reduced Representations

- Due to T. Plate
- Comes from the observation that:

$$
\mathbf{x} \circledast \mathbf{y}=\mathbf{f}^{\prime}(\mathbf{f}(\mathbf{x}) \odot \mathbf{f}(\mathbf{y}))
$$

- Seed HD vectors: ~ phasors $e^{i \varphi} \varphi \sim U(-\pi,+\pi)$
- Binding: component-wise multiplication, \odot
- Avoids convolution and Fourier transforms
- Unbinding: component-wise multiplication with conjugate

FHRR: Effect of normalization

- Unit magnitude normalization

Binary Spatter Codes

- Due to P. Kanerva
- Comes from Sparse Distributed Memory
- Seed HD vectors: dense random binary vectors $\{0,1\}^{n}$
- Binding: component-wise XOR, \oplus
- Result of the binding in also a binary vector
- Unbinding: component-wise XOR, \oplus

- Can be thought as a special case of FHRR
- phasors $e^{i \varphi} \varphi \sim U(\{0,+\pi\})$
- Similarity: normalized Hamming distance, dist ${ }_{H a m}$
- Superposition:
- Component-wise addition
- Normalize each component to binary value

Binary Spatter Codes: majority rule

- Majority rules implements bundling/superposition:
- $\mathbf{z}=\left[\mathbf{x}^{(1)}+\mathbf{x}^{(2)}+\ldots+\mathbf{x}^{(m)}\right]$

$$
z_{i}=\left\{\begin{array}{lr}
1, & \text { if } \sum_{j=1}^{m} \mathbf{x}_{i}^{(j)}>m / 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Multiply Add Permute

- Due to R. Gayler
- Seed HD vectors: bipolar $\{-1,+1\}$ or real-valued $U(-1,+1)$
- Several variants
- Real-valued
- Integer
- Bipolar only
- Binding: component-wise multiplication, \odot
- Unbinding: component-wise multiplication, \odot
- Similarity: dot product/cosine similarity
- Superposition:
- Component-wise addition
- Depending on the variant may be normalized

Historically: Why do we have all these (and more!) models?

- Several reasons (opinion)
- Evolutionary development
- Different initial assumptions
- Variations in mathematical background of the originators
- Historically:
- Tensor Product Representations -> Holographic Reduced Representations
- Fixed dimensionality of representations to n
- Holographic Reduced Representations -> Fourier Holographic Reduced Representations
- Simplfied binding operation
- (Fourier) Holographic Reduced Representations -> Binary Spatter codes
- Binary representations
- Binary Spatter codes -> Multiply Add Permute
- Popularized permutation operation
- Simple binding operation in real-valued domain

Currently: Why do we need all these models?

- Marr's three levels for information-processing devices:
- Computational theory
- Representation and algorithm
- Hardware implementation
- Novel Computing Hardware:
- Imprecise computational elements
- Prone to errors but

- Increases energy efficiency
- A computing paradigm to abstract and simplify the functionality implementation
- Lot of focus on implementing $\mathrm{AI} / \mathrm{ML}$ capabilities

Model <-> Hardware examples

- Promising computing paradigm

- intrinsic error resistance
- high level of parallelization
- simple operations

Rate-based coding for neuromorphic hardware

Complex Domain

Temporal Domain

Phase-to-timing mapping

Matrix Binding of Additive Terms

- Due to S. Gallant
- Developed largely independently
- Seed HD vectors ~ bipolar $\{-1,+1\}^{n}$ or or real-valued $U(-1,+1)$
- Binding: matrix-vector multiplication
- Circular convolution can be represented as a matrix
- Permutation can be represented as a matrix
- Unbinding: multiplication with matrix inverse
- Can change the dimensionality of HD vectors
- Similarity: Dot product
- Superposition:
- Component-wise addition
- Can be discretized to $\{-1,+1\}$

Sparse Binary Distributed Representations

- Due to E. Kussul and D. Rachkovskij
- Developed independently of other models in 80s-90s
- Seed HD vectors sparse random binary vectors $\{0,1\}^{n}$
- Binding: context-dependent thinning

$$
\mathbf{z}=\vee_{j=1}^{m} \mathbf{x}^{(j)}
$$

$$
\langle\mathrm{z}\rangle=\vee_{s=1}^{T}\left(\mathrm{z} \wedge \rho_{s}(\mathrm{z})\right)=\mathrm{z} \wedge\left(\vee_{s=1}^{T} \rho_{s}(\mathrm{z})\right)
$$

- Similarity: Dot product
- Superposition:
- Component-wise OR

Sparse Block-Codes

- Due to M. Laiho, et al.
- Seed HD vectors sparse random binary vectors $\{0,1\}^{n}$
- n-dimensional HD vector is treated as being constructed from blocks of size k
- Only one component is active in each block
- The total number of blocks is n / k
- Density of HD vector is k / n

Block sparse HD vector: $n=18$

- Binding: defined for block sparse HD vectors
- Cyclic shift within the blocks (but see next slide)
- Superposition: component-wise addition
- Increases sparsity
- WTA within the blocks

Mika Laiho

Sparse Block-Codes: binding

- Binding: defined for block sparse HD vectors
- Cyclic shift within the blocks
- Circular convolution on blocks

Taxonomy of binding operations

Summary of models

Name	elements X of vector space \mathbb{V}	Initialization of x_{i}	Sim. metric	Bunding	Binding		Unbinding	
					commutative	associative	commutative	associative
MAP-C	$X \in \mathbb{R}^{D}$	$x_{i} \sim \mathcal{U}(-1,1)$	cosine sim.	elem. addition with cutting	elem. multipl.		elem. multipl.	
MAP-I	$X \in \mathbb{Z}^{D}$	$x_{i} \sim \mathcal{B}(0.5) \cdot 2-1$	cosine sim.	elem. addition	elem. multipl.		elem. multipl.	
HRR	$X \in \mathbb{R}^{D}$	$x_{i} \sim \mathcal{N}\left(0, \frac{1}{D}\right)$	cosine sim.	$\begin{gathered} \text { elem. addition } \\ \text { with normalization } \end{gathered}$	circ. conv.		circ. corr.	
MBAT	$X \in \mathbb{R}^{D}$	$x_{i} \sim \mathcal{N}\left(0, \frac{1}{D}\right)$	cosine sim.	$\begin{gathered} \text { elem. addition } \\ \text { with normalization } \end{gathered}$	$\begin{aligned} & \text { matrix multipl. } \end{aligned}$		$$	
MAP-B	$X \in\{-1,1\}^{D}$	$x_{i} \sim \mathcal{B}(0.5) \cdot 2-1$	cosine sim.	elem. addition with threshold	elem. multipl. $\checkmark \quad \checkmark$		elem. multipl.	
BSC	$X \in\{0,1\}^{D}$	$x_{i} \sim \mathcal{B}(0.5)$	hamming dist.	elem. addition with threshold	v^{X}	R	XOR	\checkmark
BSDC-CDT	$X \in\{0,1\}^{D}$	$x_{i} \sim \mathcal{B}(1 / \sqrt{D})$	overlap	disjunction	\checkmark^{Cl}	T_{\checkmark}		
BSDC-SEG	$X \in\{0,1\}^{D}$	$x_{i} \sim \mathcal{B}(1 / \sqrt{D})$	overlap	disjunction (opt. thinning)	segment shifting		segment shifting	
FHRR	$X \in \mathbb{C}^{D}$	$\begin{aligned} & x_{i}=e^{i \cdot \theta} \\ & \theta \sim \mathcal{U}(-\pi, \pi) \end{aligned}$	angle distance	angles of elem. addition	$\begin{aligned} & \text { elem. angle } \\ & \text { addition } \end{aligned}$		elem. angle subtraction	

Rhetorical questions

- The more the better?
- We have (hopefully) seen 8 HD Computing/VSA models
- Is there a need to develop a new models?
- Should this be driven by Marr's levels of analysis?
- Are the three operations sufficient?
- Enough evidence for necessity
- Would HD Computing/VSA benefit from new/other operations
- Ideas on new operations can be a discussion point

Overview of different HD Computing/VSA models

取

Denis Kleyko

