
Overview of different HD Computing/VSA models*

Denis Kleyko

*Lots of images from Internet were used to prepare this presentation

A beloved child has many names
• Umbrella terms:
• Vector Symbolic Architectures (VSAs) – R. Gayler (2003)
• Hyperdimensional Computing (HDC/HD computing) – P. Kanerva (2009)

• Concrete models:
• Multiply Add Permute, MAP – R. Gayler
• Tensor Product Variable Binding, TPR – P. Smolensky
• (Frequency) Holographic Reduced Representations, (F)HRR – T. Plate

• Semantic Pointer Architecture, SPA – C. Eliasmith
• Binary Spatter Codes, BSC – P. Kanerva
• Matrix Binding of Additive Terms, MBAT – S. Gallant
• Sparse Binary Distributed Representations, SBDR – E. Kussul, D. Rachkovskij, et al.
• Sparse Block-Codes, SBC – M. Laiho, et al.
• Geometric Analogue of Holographic Reduced Representations, GAHRR – D. Aerts, et al.

2

Recap: basic components of VSAs
The basic ingredients of any VSA model are:
• Representational space, e.g., binary/bipolar
• High-dimensionality
• e.g., 103 dimensions
• HD vectors

• Randomness
• Similarity metric, e.g., dot (inner) product: simdot

• Item memory
• Operations on representations

3

Associative memory: Meaning

4

• Meaning is a fundamental
component of nearly
all aspects of human cognition

• A semantic memory is necessary
for humans to construct
meaning from otherwise
meaningless words

Associative memory: a simple experiment

5

• dugóhúzó

• korkskruv

• штопор

• corkscrew

Item memory
• A codebook of (random) HD vectors with assigned meanings
• autoassociative

• Also called clean-up memory
• Uses the similarity metric (e.g., simdot)
• Nearest-neighbor search among

the set of stored meaningful HD vectors
HD-vector Meaning

-1111-1-11-11-11 (a1) Object 1
1-11-11-11-1-111 (a2) Object 2

…
1-1111-111-111 (aN) Object D-1
-11-11-11-1111-1 (s1) Object D

6

a1

a2

aN

s1

s1’

IN: Noisy HD vector

OUT: Atomic/seed HD vector

HD Computing/VSA operations
• Bundling/superposition (sets)

• Example: component-wise addition
• z=a+b+c
• simdot(a, z)>0

• Binding (variable binding)
• Example: component-wise multiplication
• denoted as a ◦ b
• simdot(a, a ◦ b)≈0

• Unbinding (release)
• denoted as b ⊘ (a ◦ b)
• simdot(a, b ⊘ (a ◦ b))≈n

• Permutation (sequences)
• Example: cyclic shift
• denoted as ρ1(a)
• simdot(a, ρ1(a))≈0

7

perm
utatio

n1

Operations: superposition properties
• Superposition can be inverted with subtraction:
• z=a+b+c
• z-c=a+b

• The result of superposition is similar to its arguments (z=a+b+c):
• simdot(a, z) ≈ simdot(b, z) ≈ simdot(c, z) >0

• Binding arguments can be recovered (approx.) from the superposition:
• b ⊘ (a ◦ b+ c ◦ d) ≈ a + b ⊘ c ◦ d = a + noise ≈ a

• Superposition is commutative
• a+b = b+a

• Normalized superposition is approximately associative
• g() – normalization function
• g(g(a+b)+c) ≈ g(a+ g(b+c))

8

Operations: binding properties
• Commutative: a ◦ b = b ◦ a
• Associative: c ◦ (a ◦ b) = (c ◦ a) ◦ b
• Distributes over superpostion: c ◦ (a+b) = (c ◦ a) + (c ◦ b)
• Invertible: b ⊘ (a ◦ b) = a
• The result of binding is dissimilar to its arguments
• simdot(a, a ◦ b)≈ simdot(b, a ◦ b)≈ 0

• Preserves similarity (for similar a & a'): simdot(a' ◦ b, a ◦ b)>0
• “Randomizing” (since simdot(a, a ◦ b) ≈ 0) but preserves similarity:
• simdot(a ◦ b, c ◦ b) = simdot(a, c)

9

Operations: permutation properties
• Invertible for r = ρ1(a): a = ρ-1(r)
• Distributes over binding: ρ(a ◦ b) = ρ(a) ◦ ρ(b)
• Distributes over superpostion: ρ(a + b) = ρ(a) + ρ(b)
• The result of permutation is dissimilar to its argument
• simdot(a, ρ(a)) ≈ 0

• Preserves similarity (for similar a & a'): simdot(ρ(a'), ρ(a))>0
• “Randomizing” (since simdot(a, ρ(a)) ≈ 0) but preserves similarity:
• simdot(ρ(a), ρ(b)) = simdot(a, b)

10

Historical excursus

11

• Several challenges for connectionist representations
• Superposition catastrophe:

• red square or blue circle –> no problem
• red square & blue circle –> issue

• Critics of the connectionism by Fodor & Pylyshyn
• Composition, decomposition, and manipulation:

• How are components composed to form a structure
• How are components extracted from a structure?
• Can the structures be manipulated using connectionist techniques?

• Jackendoff 's challenges:
• The problem of two

• How multiple instances of the same token are instantiated?
• How “little star” and “big star” are instantiated?
• Both are stars, yet distinguishable.

C. von der Malsburg, “Am I thinking assemblies?”, Brain Theory, 1986.
J. A. Fodor and Z. W. Pylyshyn, “Connectionism and Cognitive Architecture: A Critical Analysis,” Cognition, 1988.
R. Jackendoff, “Foundations of Language: Brain, Meaning, Grammar, Evolution”, Oxford University Press, 2002.

Tensor Product Representations

12

• Due to P. Smolensky
• “... work reported here began

as a response to this attack …”

• Binding: tensor product, ⊗
• Solves superposition catastrophe
• Unbinding: inner product

• Dimensionality of bound HVs
• Grows exponentially
• 2 -> n2; 3 -> n3 ; etc.
• Recursive application of the binding is challenging
• Binding between different levels is ill-defined

• Underlying “hardware” is changing constantly
P. Smolensky, “Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems,” Artificial Intelligence, 1990.
E. Mizraji, “Context-Dependent Associations in Linear Distributed Memories,” Bulletin of Mathematical Biology, 1989. Paul Smolensky

Learning and compressing Tensor
Product Representations for

Large-scale AI problems

r b s r ⊗ s b ⊗ c r ⊗ s + b ⊗ cc

Holographic Reduced Representations

13

G. E. Hinton, “Mapping Part-whole Hierarchies into Connectionist Networks” Artificial Intelligence, 1990.
T. A. Plate, “Holographic Reduced Representations: Convolution Algebra for Compositional Distributed Representations,”
International Joint Conference on Artificial Intelligence (IJCAI), 1991.

• Due to T. Plate
• Seed HD vectors: ~ N(0,1/n)
• unit L2 norm

• Binding: circular convolution,
• Compression of the tensor product
• Unbinding: circular correlation

• Similarity: dot product
• Dimensionality is fixed to n
• Superposition:
• Component-wise addition
• Normalizes HD vectors to preserve norm

Tony Plate

Vector Representations + Addition
+ Multiplication = Conceptual

Reasoning

Fourier Holographic Reduced Representations

14
T. A. Plate, “Distributed Representations and Nested Compositional Structure,” University of Toronto, PhD Thesis, 1994.

• Due to T. Plate
• Comes from the observation that:

• Seed HD vectors: ~ phasors eiφ φ ~ U(-π,+π)
• Binding: component-wise multiplication, ⊙
• Avoids convolution and Fourier transforms
• Unbinding: component-wise multiplication with conjugate

• Similarity: mean of sum of cosines of angle differences
• Re(aTb*)/n

• Superposition:
• Component-wise addition
• Normalizes each component to have unit magnitude

Tony Plate

FHRR: Effect of normalization

15

• Unit magnitude normalization

Binary Spatter Codes

16
Pentti Kanerva

P. Kanerva, “The Spatter Code for Encoding Concepts at Many Levels,” International Conference on Artificial Neural Networks (ICANN), 1994.
P. Kanerva, “A Family of Binary Spatter Codes,” International Conference on Artificial Neural Networks (ICANN), 1995.

• Due to P. Kanerva
• Comes from Sparse Distributed Memory

• Seed HD vectors: dense random binary vectors {0,1}n

• Binding: component-wise XOR, ⊕
• Result of the binding in also a binary vector
• Unbinding: component-wise XOR, ⊕

• Can be thought as a special case of FHRR
• phasors eiφ φ ~ U({0,+π})

• Similarity: normalized Hamming distance, distHam
• Superposition:

• Component-wise addition
• Normalize each component to binary value

a ⊕ b

a

b
⊕

⊕
b

a ⊕ b ⊕ b

Binary Spatter Codes: majority rule

17
P. Kanerva, “Fully Distributed Representation,” Real World Computing Symposium (RWC), 1997.

• Majority rules implements bundling/superposition:
• z=[x(1)+x(2)+ … + x(m)]

1 0 0 1 1 0 1

1 1 0 0 1 0 1

0 0 0 1 1 1 0

2 1 0 2 3 1 2

1 0 0 1 1 0 1

𝑧! =
1, if)

"#$

%

𝐱!
(") > 𝑚/2

0, otherwise

distHam=

z

x(1)

x(2)

x(3)

Σx(j)

Multiply Add Permute

18
Ross Gayler

• Due to R. Gayler
• Seed HD vectors: bipolar {-1,+1} or real-valued U(-1,+1)
• Several variants

• Real-valued
• Integer
• Bipolar only

• Binding: component-wise multiplication, ⊙
• Unbinding: component-wise multiplication, ⊙

• Similarity: dot product/cosine similarity
• Superposition:
• Component-wise addition
• Depending on the variant may be normalized

R. W. Gayler, “Multiplicative Binding, Representation Operators & Analogy,” Advances in Analogy Research, 1998.

Historically: Why do we have all these (and more!) models?

19

• Several reasons (opinion)
• Evolutionary development
• Different initial assumptions
• Variations in mathematical background of the originators

• Historically:
• Tensor Product Representations -> Holographic Reduced Representations

• Fixed dimensionality of representations to n
• Holographic Reduced Representations -> Fourier Holographic Reduced Representations

• Simplfied binding operation
• (Fourier) Holographic Reduced Representations -> Binary Spatter codes

• Binary representations
• Binary Spatter codes -> Multiply Add Permute

• Popularized permutation operation
• Simple binding operation in real-valued domain

Currently: Why do we need all these models?

20

• Marr’s three levels for information-processing devices:
• Computational theory
• Representation and algorithm
• Hardware implementation

• Novel Computing Hardware:
• Imprecise computational elements

• Prone to errors but
• Increases energy efficiency

• A computing paradigm to abstract and simplify the functionality implementation
• Lot of focus on implementing AI/ML capabilities

D. Marr, “Vision: A Computational Investigation into the Human Representation and Processing of Visual Information,” W. H. Freeman and Company, 1982.
D. Kleyko, et al., “Vector Symbolic Architectures as a Computing Framework for Nanoscale Hardware,” arXiv, 2021.

Model <-> Hardware examples
• Promising computing paradigm
• intrinsic error resistance
• high level of parallelization
• simple operations

21

M
em

ris
tiv

e
de

vi
ce

s
Fi

el
d-

pr
og

ra
m

m
ab

le

ga
te

 a
rr

ay
s

Rate-based coding for neuromorphic hardware

Phase-to-timing mapping

Matrix Binding of Additive Terms

22
Stephen Gallant

• Due to S. Gallant
• Developed largely independently

• Seed HD vectors ~ bipolar {-1,+1}n or or real-valued U(-1,+1)
• Binding: matrix-vector multiplication

• Circular convolution can be represented as a matrix
• Permutation can be represented as a matrix
• Unbinding: multiplication with matrix inverse
• Can change the dimensionality of HD vectors

• Similarity: Dot product
• Superposition:

• Component-wise addition
• Can be discretized to {-1,+1}

S. I. Gallant and T. W. Okaywe, “Representing Objects, Relations, and Sequences,” Neural Computation, 2013.

Sparse Binary Distributed Representations

23

• Due to E. Kussul and D. Rachkovskij
• Developed independently of other models in 80s-90s

• Seed HD vectors sparse random binary vectors {0,1}n

• Binding: context-dependent thinning

• Similarity: Dot product
• Superposition:
• Component-wise OR

D. A. Rachkovskij, E. M. Kussul, “Binding and Normalization of Binary Sparse Distributed Representations by
Context-Dependent Thinning,” Neural Computation, 2001.
D. A. Rachkovskij, “Representation and Processing of Structures with Binary Sparse Distributed Codes,” IEEE
Transactions on Knowledge and Data Engineering, 2001. Dmitri RachkovskijErnst Kussul

• Due to M. Laiho, et al.
• Seed HD vectors sparse random binary vectors {0,1}n

• n-dimensional HD vector is treated
as being constructed from blocks of size k

• Only one component is active in each block
• The total number of blocks is n/k
• Density of HD vector is k/n

• Binding: defined for block sparse HD vectors
• Cyclic shift within the blocks (but see next slide)

• Superposition: component-wise addition
• Increases sparsity
• WTA within the blocks

1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1

Block: k=3

Block sparse HD vector: n=18

Sparse Block-Codes

M. Laiho, et al., “High-Dimensional Computing with Sparse Vectors,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.
Mika Laiho

24

1 0 0

Sparse Block-Codes: binding

M. Laiho, et al., “High-Dimensional Computing with Sparse Vectors,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.
E. P. Frady, et al., “Variable Binding for Sparse Distributed Representations: Theory and Applications,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

25

• Binding: defined for block
sparse HD vectors
• Cyclic shift within the blocks
• Circular convolution on blocks

a ◦ c

a
0 1 0

b
0 0 1

c

1 0 1 = 0 0 1 b ◦ c 1 0 1 = 1 1 0

a ⊗ c c ⊗ a b ⊗ c c ⊗ b

Taxonomy of binding operations

26
K. Schlegel, P. Neubert, P. Protzel, “A Comparison of Vector Symbolic Architectures,” arXiv, 2020.

Summary of models

27
K. Schlegel, P. Neubert, P. Protzel, “A Comparison of Vector Symbolic Architectures,” arXiv, 2020.

Rhetorical questions

28

• The more the better?
• We have (hopefully) seen 8 HD Computing/VSA models
• Is there a need to develop a new models?
• Should this be driven by Marr's levels of analysis?

• Are the three operations sufficient?
• Enough evidence for necessity
• Would HD Computing/VSA benefit from new/other operations
• Ideas on new operations can be a discussion point

Overview of different HD Computing/VSA models

Denis Kleyko

