Overview of different HD Computing/VSA models’

Denis Kleyko

*Lots of images from Internet were used to prepare this presentation



A beloved child has many names

* Umbrella terms:
* Vector Symbolic Architectures (VSAs) — R. Gayler (2003)
* Hyperdimensional Computing (HDC/HD computing) — P. Kanerva (2009)

* Concrete models:
 Multiply Add Permute, MAP — R. Gayler
* Tensor Product Variable Binding, TPR — P. Smolensky

* (Frequency) Holographic Reduced Representations, (F)HRR —T. Plate
* Semantic Pointer Architecture, SPA — C. Eliasmith

* Binary Spatter Codes, BSC — P. Kanerva

* Matrix Binding of Additive Terms, MBAT —S. Gallant

» Sparse Binary Distributed Representations, SBDR — E. Kussul, D. Rachkovskij, et al.
» Sparse Block-Codes, SBC — M. Laiho, et al.



Recap: basic components of VSAs

The basic ingredients of any VSA model are: IS
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* Representational space, e.g., binary/bipolar ¥ s S AN

* High-dimensionality
* e.g., 103 dimensions
* HD vectors
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* Similarity metric, e.g., dot (inner) product: sim,

* [tem memory

* Operations on representations
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Assoclative memory: Meaning

* Meaning is a fundamental
component of nearly
all aspects of human cognition

* A semantic memory is necessary
for humans to construct
meaning from otherwise
meaningless words




Associative memory: a simple experiment

e corkscrew

e korkskruv

e dugdéhuzo

° LUTOMOP




ltem memory

» A codebook of (random) HD vectors with assigned meanings
* autoassociative ay

* Also called clean-up memory

* Uses the similarity metric (e.g., simy,)

* Nearest-neighbor search among
the set of stored meaningful HD vectors

"~ Wovector | Meaning__ Va
1 >1 /

-1111-1-11-11-11 (ay) Object 1
1-11-11-11-1-111 (a,) Object 2 IN: Noisy HD vector

1-1111-111-111 (a,)  Object D-1
-11-11-11-1111-1 (s,) Object D OUT: Atomic/seed HD vector




HD Computing/VSA operations

Bundling/superposition (sets) 00
 Example: component-wise addition
* z=a+b+c
* simy,(a, z)>0

* Binding (variable binding)
* Example: component-wise multiplication
* denotedasac-b
* simy.(a, a°b)=0
* Unbinding (release)
 denotedasb @ (a°b)
* simy(a, b @ (a°b))=n

Permutation (sequences)
* Example: cyclic shift
* denoted as p'(a) | | |
o ci 1 - -0.3 -0.2 -0.1 0 0.1 0.2
5|mdot(a; P (a))~0 Cosine similarity

p'(a) ° p*(b)

p*(b)




Operations: superposition properties

e Superposition can be inverted with subtraction:
* z=a+b+c
e z-c=a+b
* The result of superposition is similar to its arguments (z=a+b+c):
* simy.(a, z) = simy.(b, z) = simy.(c, z) >0
* Binding arguments can be recovered (approx.) from the superposition:
*b@®(acbtced)xa+b@ced=a+noisex~a
* Superposition is commutative
* at+b =b+a

* Normalized superposition is approximately associative
* g() — normalization function

* g(g(a+b)+c) = g(a+ g(b+c))




Operations: binding properties

* Commutative:acb=b-a

* Associative:cec(a°b)=(cca)°b

* Distributes over superpostion: ¢ ° (a+b) =(c°a) + (c ° b)
* Invertible:b ® (a°b)=a

* The result of binding is dissimilar to its arguments
* simy.(a, a° b)=simy,(b,a°b)=0

* Preserves similarity (for similar a & a'): simy(a' ° b, a~ b)>0

* “Randomizing” (since simy.(a, a ° b) = 0) but preserves similarity:
* simy(acb, cob)=simy.(a, c)



Operations: permutation properties

* Invertible for r = pt(a): a = pi(r)
* Distributes over binding: p(a ° b) = p(a) ° p(b)
* Distributes over superpostion: p(a + b) = p(a) + p(b)

* The result of permutation is dissimilar to its argument
* simy.(a, p(a)) =0

* Preserves similarity (for similar a & a'): simy.(p(a'), p(a))>0

* “Randomizing” (since simy.(a, p(a)) = 0) but preserves similarity:
* simye(p(a), p(b)) = simy.i(a, b)




Historical excursus

Artificial Intelligence

* Several challenges for connectionist representations

* Superposition catastrophe:
* red square or blue circle —> no problem

Good Old-

ANNs criticism Artificial

° . S . |
red square & blue circle —> issue Tfﬁgg:? i s
Intelligence Networks

* Critics of the connectionism by Fodor & Pylyshyn

Composition, decomposition, and manipulation:
* How are components composed to form a structure
* How are components extracted from a structure?
* (Can the structures be manipulated using connectionist techniques?

Connectionils\ncl: ::;ga(l::?‘r;ilg\slies‘\rchitecture: F O U N D AT l O N S
N of LANGUAGE

Rutgers Center for Cognitive Science.
Rutgers University,
New Brunswick, NJ

 Jackendoff 's challenges:

* The problem of two gttt TR S
* How multiple instances of the same token are instantiated?

* How “little star” and “big star” are instantiated?

* Both are stars, yet distinguishable.

C. von der Malsburg, “Am | thinking assemblies?”, Brain Theory, 1986.
J. A. Fodor and Z. W. Pylyshyn, “Connectionism and Cognitive Architecture: A Critical Analysis,” Cognition, 1988.
R. Jackendoff, “Foundations of Language: Brain, Meaning, Grammar, Evolution”, Oxford University Press, 2002.
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Tensor Product Representations

r®s ! b® c L r®@s+bQ®c '

I-Dueto P. Smolensky (r)Cb)CS)CC) Q@'@ OOQ‘

 “..work reported here began = g = "o -t oo ¢

as a response to this attack ...” 8 888 O 2 888 O 888 O

e RBindine: O @ O
e et eomophe 01000 010/000010000
* Unbinding: inner product OOOOOOOOOQOOOO

* Dimensionality of bound HVs
* Grows exponentially di;‘:riil?:tc»d s i bl
e 2->n%3->n3; etc.
e Recursive application of the binding is challenging |
* Binding between different levels is ill-defined Learning and compressing Tensor

Product Representations for

* Underlying “hardware” is changing constantly Large-scale Al problems

P. Smolensky, “Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems,” Artificial Intelligence, 1990. '
E. Mizraji, “Context-Dependent Associations in Linear Distributed Memories,” Bulletin of Mathematical Biology, 1989. Paul Sm0|en5ky




Holographic Reduced Representations

. Due to T. Plate

Zo = XoYo T X2y1 + X1Y2;
» Seed HD vectors: ~ N(0,1/n) w,” nw, v
: Z] = X1Y0 + X0Y1 1+ X2Y¥2; Xo
* unitL2 norm
. . . . Zo = X + X + X : Zo
* Binding: circular convolution, ® 27 Y0 TR TR0y .
* Compression of the tensor product n—1 .
 Unbinding: circular correlation Zj = Y YkXj—k mod n .
k=0 B
 Similarity: dot product
* Dimensionality is fixed to n
* Superposition:
* Compor.]ent_WISe addltlon Vector Representations + Addition
* Normalizes HD vectors to preserve norm + Multiplication = Conceptual

Reasoning

G. E. Hinton, “Mapping Part-whole Hierarchies into Connectionist Networks” Artificial Intelligence, 1990.
T. A. Plate, “Holographic Reduced Representations: Convolution Algebra for Compositional Distributed Representations,”
International Joint Conference on Artificial Intelligence (1JCAI), 1991.

Tony Plate
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Fourier Holographic Reduced Representations

« Due to T, Plate TN /”a\ /Q\
* Comes from the observation that: NI
/ b
x®y =1{(f(x) © £(y)) 0 6\ A
* Seed HD vectors: ~ phasors e® ¢ ~ U(-1t,+1) N / N
* Binding: component-wise multiplication, () m
* Avoids convolution and Fourier transforms

* Unbinding: component-wise multiplication with conjugate

 Similarity: mean of sum of cosines of angle differences
* Re(a™™)/n

* Superposition:
 Component-wise addition
* Normalizes each component to have unit magnitude

Tony PIate

T. A. Plate, “Distributed Representations and Nested Compositional Structure,” University of Toronto, PhD Thesis, 1994.
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FHRR: Effect of normalization

* Unit magnltude normallzatlon
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Binary Spatter Codes

. Due to P. Kanerva a“@‘@@@‘@
* Comes from Sparse Distributed Memory
 @@O@O@OOO

* Seed HD vectors: dense random binary vectors {0,1}" 0000 @ ‘@. O®0O
* Binding: component-wise XOR, @ P @@@O@OOO

* Result of the binding in also a binary vector a@bdb . ' Q . Q O ' Q

* Unbinding: component-wise XOR, &
e Can be thought as a special case of FHRR

« phasors e® ¢ ~ U({0,+11})
 Similarity: normalized Hamming distance, dist,,,,
* Superposition:

 Component-wise addition

 Normalize each component to binary value

P. Kanerva, “The Spatter Code for Encoding Concepts at Many Levels,” International Conference on Artificial Neural Networks (ICANN), 1994.

P. Kanerva, “A Famili of Binari Siatter Codes,” International Conference on Artificial Neural Networks (ICANN), 1995. Pentti Kanerva




Binary Spatter Codes: majority rule

* Majority rules implements bundling/superposition:
o z=[xW+x2)+ .. + x(m)]

( m 0.5
I 1, if ngj) >m/2 0.45
i = .
=1 _ 0.4
0, otherwise Q
k §0.35
g
xD 1 0 0 1 1 0 1 |po3
£
x(2) 1 1 0 0 1 0 1 5025
x3 |0 0 0 1 1 1 0 § o2
sx0) |2 1 0 2 3 1 2 Eois
Z
Z 1 0 0 1 1 0 1 0.1
1 1 /fm—1 005 iirr?ar;gi(:; |
diStHam= 5 — 2_m —— 0 J | J —Emrlplcal,‘sequentlal
2 1 7 13 19 25 31 37 43 49 55

Number of superimposed HD vectors
P. Kanerva, “Fully Distributed Representation,” Real World Computing Symposium (RWC), 1997.




Multiply Add Permute

* Due to R. Gayler

* Seed HD vectors: bipolar {-1,+1} or real-valued U(-1,+1)

e Several variants

* Real-valued
* Integer
e Bipolar only

* Binding: component-wise multiplication, (-
e Unbinding: component-wise multiplication, (O
* Similarity: dot product/cosine similarity
* Superposition:
 Component-wise addition
e Depending on the variant may be normalized
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R. W. Gayler, “Multiplicative Binding, Representation Operators & Analogy,” Advances in Analogy Research, 1998. Ross Gayler



Historically: Why do we have all these (and more!) models?

"« Several reasons (opinion)
* Evolutionary development
e Different initial assumptions
* Variations in mathematical background of the originators

* Historically:

* Tensor Product Representations -> Holographic Reduced Representations
* Fixed dimensionality of representations to n

* Holographic Reduced Representations -> Fourier Holographic Reduced Representations
e Simplfied binding operation

* (Fourier) Holographic Reduced Representations -> Binary Spatter codes
* Binary representations

* Binary Spatter codes -> Multiply Add Permute

* Popularized permutation operation
e Simple binding operation in real-valued domain



Currently: Why do we need all these models?

* Marr’s three levels for information-processing devices:
* Computational theory

* Representation and algorithm

KComputationaI level: o)
Systems&Functionality { J =

 Hardware implementation r‘/'%v -----------
1| Algorithmic level:
1| VSAs
* Novel Computing Hardware: e ====
* Imprecise computational elements Implementational level: D
* Prone to errors but \Computing hardware v

* Increases energy efficiency

* A computing paradigm to abstract and simplify the functionality implementation
* Lot of focus on implementing Al/ML capabilities

D. Marr, “Vision: A Computational Investigation into the Human Representation and Processing of Visual Information,” W. H. Freeman and Company, 1982.
D. Kleyko, et al., “Vector Symbolic Architectures as a Computing Framework for Nanoscale Hardware,” arXiv, 2021.



Model <-> Hardware examples

* Promising computing paradigm
* intrinsic error resistance
* high level of parallelization
* simple operations

Original IM crossbar
() (d)

Complementary IM crossbar

(2) (1)
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Matrix Binding of Additive Terms

* Due to S. Gallant
* Developed largely independently

e Seed HD vectors ~ bipolar {-1,+1}" or or real-valued U(-1,+1)

* Binding: matrix-vector multiplication
e Circular convolution can be represented as a matrix
* Permutation can be represented as a matrix
* Unbinding: multiplication with matrix inverse
e Can change the dimensionality of HD vectors

 Similarity: Dot product

* Superposition:
 Component-wise addition
e Can be discretized to {-1,+1}

S. I. Gallant and T. W. Okaywe, “Representing Objects, Relations, and Sequences,” Neural Computation, 2013. Stephen Gallant




Sparse Binary Distributed Representations

* Due to E. Kussul and D. Rachkovskij a 11]0/0j0j1]0|0{0f1]0
* Developed independently of other models in 80s-90s b |olololojoj1]lo|1]1]|0

e Seed HD vectors sparse random binary vectors {0,1}"

z |1]0/0/0|1}j1|0|1|1]0

* Binding: context-dependent thinning

. p*(z) [1]ol1]olo]lo]l1l1]0]1
_ym ()
z—ijlx ,

(2) = Vi1 (2 A ps(2)) = 2 A (V1 p5(2))
e Similarity: Dot product

* Superposition:
* Component-wise OR

D. A. Rachkovskij, E. M. Kussul, “Binding and Normalization of Binary Sparse Distributed Representations by
Context-Dependent Thinning,” Neural Computation, 2001.

D. A. Rachkovskij, “Representation and Processing of Structures with Binary Sparse Distributed Codes,” IEEE
Transactions on Knowledge and Data Engineering, 2001.

Ernst Kussul Dmitri Rachkovskij
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Sparse Block-Codes

e Due to M. Laiho, et al.

» Seed HD vectors sparse random binary vectors {0,1}"

* n-dimensional HD vector is treated
as being constructed from blocks of size k

* Only one component is active in each block
* The total number of blocks is n/k
* Density of HD vector is k/n

* Binding: defined for block sparse HD vectors
* Cyclic shift within the blocks (but see next slide)
e Superposition: component-wise addition

* Increases sparsity
* WTA within the blocks

M. Laiho, et al., “High-Dimensional Computing with Sparse Vectors,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015.
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Block sparse HD vector: n=18
#

1 00/{0 01|12 0 0|0 1 0|0 1 0|0 0 1

Block: k=3

Mika Laiho




Sparse Block-Codes: binding
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* Binding: defined for block

d
sparse HD vectors O O O

* Cyclic shift within the blocks

e Circular convolution on blocks ‘i O
O:0
Ou

M. Laiho, et al., “High-Dimensional Computing with Sparse Vectors,” IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015. 2
E. P. Frady, et al., “Variable Binding for Sparse Distributed Representations: Theory and Applications,” IEEE Transactions on Neural Networks and Learning Systems, 2021.




Taxonomy of binding operations

[Binding]

[multiplicative ®j [additive @]

[self—inverse] [non self—inverse) BSDC-CDT

appr. exact appr. exact
{invertible} Linvertible} {invertible} invertible}
| | |
MAP-C MAP-B VTB FHRR
MAP-I HRR BSDC-S
BSC BSDC-SEG
MBAT

K. Schlegel, P. Neubert, P. Protzel, “A Comparison of Vector Symbolic Architectures,” arXiv, 2020.



Summary of models

clenieits X of Binding Unbinding
Name vector space V Initialization of x; Sim. metric Bundling commu- | asso- commu- asso-
tative ciative tative ciative
i D o o elem. addition elem. multipl. elem. multipl.
MAP-C X €eR x; ~U(—1,1) cosine sim. with cutting / / v /
MAP-I X ezP x; ~B(0.5)-2—-1 cosine sim. elem. addition e:}em. multlp\)}. i:/lem. multlf:}'
D . 1 o elem. addition circ. conv. CIIC. COIT.
HRR X eR x; ~N(0, 5) cosine sim. with normalization v % . <
D ‘ 1 e elem. addition matrix multipl. inv. matrix multipl.
MBAT X eR x; ~N(0, %) cosine sim. with normalization < . ; <
] D . 5 L elem. addition elem. multipl. elem. multipl.
MAP-B Xe{-1,1}"| z; ~B(0.5)-2—-1 cosine sim. with threshold / ¥ v /
D . o elem. addition XOR XOR
BSC X €{0,1} x; ~ B(0.5) hamming dist. with threshold v Y Y Y
BSDC-CDT | X € {0,1}" z; ~ B(1/v/D) overlap disjunction Y CI|)T v |_
disjunction se t shifti t shifti
) D . gment shifting segment shifting
BSDC-SEG | X € {0,1} x; ~ B(1/v/D) overlap (opt. thinning) S| x| x
elem. angle elem. angle
FHRR X ecP z; =e'? angle distance angles of elem. addition subtraction
g
O ~U(—m,m) addition v | v X | X

K. Schlegel, P. Neubert, P. Protzel, “A Comparison of Vector Symbolic Architectures,” arXiv, 2020.




Rhetorical questions

* The more the better?
* We have (hopefully) seen 8 HD Computing/VSA models
* |s there a need to develop a new models?
* Should this be driven by Marr's levels of analysis?

* Are the three operations sufficient?
* Enough evidence for necessity
* Would HD Computing/VSA benefit from new/other operations
* |deas on new operations can be a discussion point




Denis Kleyko
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