
Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain function? 
 Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence



Machines will be 
capable, within
twenty years, of doing 
any work that 
a man can do. 
— Herbert Simon, 1965  

Within a generation...the 
problem of creating 
‘artificial intelligence’ will 
be substantially solved.
— Marvin Minsky, 1967 

I confidently expect 
that within a matter of 
10 or 15 years, 
something will emerge 
from the laboratory 
which is not too far 
from the robot of 
science fiction fame.  
— Claude Shannon, 
1961  
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Lettvin, et al.: What the Frog's Eye Tells the Frog's Brain
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Fig. 1-(a) This is a diagram of the frog retina done by Ramon y Cajal over 50 years ago [9]. The rods and cones are the group of elements in

the upper left quarter of the picture. To their bushy bottom ends are connected the bipolar cells of the intermediate layer, for example, f, g,

and h. Lateral connecting neurons, called horizontal and amacrine cells, also occur in this layer, for example, i, j and m. The bipolars send
their axons down to arborize in the inner plexiform layer, roughly the region bounded by cell m above and the bodies of the ganglion cells,
o, p and q, below. In this sketch, Ramon has the axons of the bipolar cells emitting bushes at all levels in the plexiform layer; in fact, malny
of them branch at only one or two levels.

Compare the dendrites of the different ganglion cells. Not only do they spread out at different levels in the plexiform layer, but the pat-
terns of branching are different. Other ganglion cells, not shown here, have multiple arbors spreading out like a plane tree at two or three
levels. If the terminals of the bipolar cells are systematically arranged in depth, making a laminar operational map of the rods and cones
in terms of very local contrast, color, ON, OFF, etc., then the different shapes of the ganglion cells would correspond to different combina-
tions of the local operations done by the bipolars. Thus would arise the more complex operations of the ganglion cells as described in the
text. (b) This is Ramon y Cajal's diagram of the total decussation or crossing of the optic nerve fibers in the frog [9]. He made this picture
to explain the value of the crossing as preserving continuity in the map of the visual world. 0 is the optic nerve and C is the superior collicu-
lus or optic tectum (the names are synonymous). (c) This is Ariens-Kapper's picture of the cross section of the brain of a frog through the
collicUIus, which is the upper or dorsal part above the enclosed space. (d) This is Pedro Ramon Cajal's diagram of the nervous organization
of the tectum of a frog. The terminal bushes of the optic nerve fibers are labelled a, b, and c. A, B, C, D and E are tectal cells receiving from
the optic nerve fibers. Note that the axons of these cells come off the dendrites in stratum 7, which we call the palisade layer. The endings
discussed in this paper lie between the surface and that stratum.
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Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt
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“LeNet”
(Yann LeCun et al., 1989) 



‘Deep learning’
(Hinton, Ng, Bengio, Lecun, Google brain, etc.)

image feature extraction and pooling classification

0



A brief history of neural networks

1960’s
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A brief history of neural networks

1980’s
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A brief history of neural networks

2000’s
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(Bair & Olshausen, 1991)

1 mm

NERSC (Lawrence Berkeley Lab) ~ 5 MW Jumping spider ~ 1 fly/day



Correct label:  Afghan hound

What is this?
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Holographic Reduced 
Representations

Vector Symbolic 
Architectures

Hyperdimensional 
Computing

• Everything represented as a high-dimensional vector.
• Algebra over vectors (instead of numbers).



Hyperdimensional Computing

• The brain’s circuits are high-dimensional. 

• Computing elements are stochastic, not 
deterministic. 

• No two brains are alike, yet they exhibit the 
same behavior. 

• Learns from data/example, learns by 
analogy, or even “one-shot.” 

• Integrates signals from disparate senses. 

• Allows high degree of parallelism.

Pentti Kanerva



䎭

䎭�

contentposition

Visual working memory as a superposition of 
‘what’ and ‘where’ bindings

(Eric Weiss, Ph.D. thesis)



t=0 t=1 t=2

Example encoding

. . .

m  =    v6 ⨀ rt=0      +      v5 ⨀ rt=1       +      v4 ⨀ rt=2      +    …



Example queries

Where is the ‘5’? 

answer =  v5* ⨀ m
             =  v5* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                noise      +       rt=1        +     noise     +  ...

What object is in the center? 

answer =  rcenter* ⨀ m
             =  rcenter* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                       v6        +     noise     +     noise     +  ...



Workshop track - ICLR 2016

(a) Example image (b) ”below a 2” (c) ”to the left of a 1” (d) Combined

Figure 1: Query constraint satisfaction maps visualized for a training example. For this image, the
query is ”below a 2 and to the left of a 1”. The correct answer is therefore ”7”.

through multiplication of the Inverse DFT matrix corresponding to the chosen location encoding
parameters. Figure 1b shows the resulting map for ”below a 2”, and figure 1c shows the map for
”to the left of a 1”. We then take the point-wise product of these two maps and normalize, resulting
in the map visualized in figure 1d. As hoped, the majority of the weight is located at the position
of the 7 in the image, which is the correct answer for this example. The final step is to retrieve the
object identity information contained in the scene vector at the location specified by this map. To
do this we convert this final map into a complex vector encoding location. This is achieved through
multiplication by the DFT matrix. Then we multiply the scene vector by the inverse of this location
vector (for location vectors this happens to be its complex conjugate). The resulting vector should
then contain an ”unbound” vector representing ”7”, plus other vectors which will have a near-zero
dot product with any of the ten vectors that represent digit identities. We use the cross-entropy cost
function. The algorithm achieves about 95 percent accuracy on the artificial multi-MNIST dataset
described in this experiment.

3 PATH PLANNING

Our framework can also be used to solve a simple navigation problem. In this experiment, a map
of obstacles and a reward function is stored as a complex vector. Actions, also represented as
complex vectors, act on these maps to produce translations. It is possible to map the concepts
discussed previously onto the value iteration algorithm from reinforcement learning, providing a
way to calculate the optimal action given the current state and reward function. The operations
are very similar to those outlined in the first experiment, making use of the convolution theorem
to reduce computational cost. The only difference is that instead of reducing over spatial positions
using a product, we reduce using a max function. The maze, reward function, and computed value
function are shown in figure 2.

(a) Environment map (b) Value function

Figure 2: Obstacle/reward map and calculated value function described in the path planning experi-
ment. In (a), black indicates walls and green indicates high reward. In (b), red indicates high reward,
while blue indicates low reward.

3

What is below a ‘2’ and to the left of a ‘1’?

Spatial reasoning

answer = f(a1 ⨀ a2) ⨀ m

a1 = f-1(rdown (v2* ⨀ m))
a2 = f-1(rleft (v1* ⨀ m))

a1 ⨀ a2



Traditional 
computing/AI Neural nets HD computing

Symbolic computing with
variables and binding

Distributed representation

Learn from data

✓

✗

✗

✓

✓

✗ ✓

✓

✓

Robust
(error-correcting)

Transparent

✗ ? ✓

✓ ✗ ✓



Other efforts

• Berkeley/Stanford EE (Rabaey, Salahuddin, Mitra, Wong) - 
hardware implementation, cnFET’s, PCM/RRAM

• Waterloo (Eliasmith) - SPAUN

• U Maryland (Fernmuller, Aloimonos) - event-based camera 
robot navigation 

• BMW (Mirus, Blouw, Stewart, Conradt) - vehicle position 
monitoring and prediction.

• VSA online seminar series:  https://sites.google.com/ltu.se/
vsaonline/winter-2021

• Website:  https://www.hd-computing.com

https://sites.google.com/ltu.se/vsaonline/winter-2021
https://sites.google.com/ltu.se/vsaonline/winter-2021
https://www.hd-computing.com

