
	 1	

COMPUTING with HIGH-DIMENSIONAL VECTORS

ORIGINS OF THE IDEA

 Cognitive Psychology, in reaction to Behaviorism

 Cognitive Science: more interdisciplinary

 Models of the mind increasingly influenced by
 computers and computing:

 . The brain as a computer
 . The computer as an electronic brain
 . Artificial Intelligence (AI)

 The mind is poorly modeled by conventional
 computers

	 2	

Recommended reading:

 Wikipedia and
 Stanford Encyclopedia of Philosophy articles on

 . Cognitive Psychology and

 . Cognitive Science

	 3	

Cognitive Science (from Wikipedia)

`

	 4	

WHAT DO WE MEAN BY "COMPUTING"?

 It's about math

 . calculating
 . arithmetic
 . numbers

 It's about keeping records and organizing data

 . memory pointers

 It's about communication

 . world-wide web

 It’s about monitoring and control

 . robotics

	 5	

Math has co-evolved with physics and engineering

 Standard math serves their needs

 Arithmetic with numbers serves standard math

 Computing with numbers serves standard math

Traditional computing is optimized for computing
with numbers

	 6	

Traditional (von Neumann) computing architecture

 Central Processing Unit (CPU)
 .-----------------------.
 | Program control unit |
 Input -> |-----------------------| -> Output
 | Arithmetic/Logic Unit |
 | (ALU) + * |
 '-----------------------'
 | ^ von Neumann
 v | bottleneck
 .---.
 | # |
 | # |
 | # # # # # # |
 | # # # Random Access Memory (RAM) # # # |
 | # # # # # # |
 | # |
 | # |
 '---'

	 7	

Arithmetic operations on numbers

 . addition: 1 + 2 = 3
 . multiplication: 2 * 3 = 6

 . multiplication distributes over addition:

 2 * (3 + 4) = 2 * 7 = 14

 2 * (3 + 4) = (2 * 3) + (2 * 4)
 = 6 + 8 = 14

	 8	

TRADITIONAL MATH AND COMPUTING WITH NUMBERS ARE A
POOR MATCH TO WHAT BRAINS DO

What computers are good at, but brains are not

 . Raw speed
 . Fast and accurate arithmetic
 . Following instructions literally

In contrast, brains do amazing things with minimal
energy

 . Recognize people and things
 . Learn from example and reason by analogy
 . Learn to use language and reason by logic
 . Brains control our interaction with the world

	 9	

CLAIM:

COMPUTING WITH VECTORS HAS ITS OWN MATH

THAT IS A BETTER MATCH TO WHAT BRAINS DO

	 10	

HIGH-DIMENSIONAL REPRESENTATION IS COUNTERINTUITIVE
AND SUBTLE (e.g., 10,000-bit vecors)

Nearly all pairs of vectors are dissimilar
 . pairs of random vectors are approximately
 orthogonal
 -- makes representation noise-tolerant, robust

Distant concepts have similar neighbors

 man ≉ lake
 man ≈ fisherman ≈ fish ≈ lake
 man ≈ plumber ≈ water ≈ lake
 plumber ≉ fish

Small cues bring forth complete memories:
 “The name starts with T; oh yes, Stephan”

Can explain the tip-of-the-tongue phenomenon

	 11	

Binomial distribution, N = 15 and N = 10,000

	 12	

BUT HOW DO YOU COMPUTE WITH THE VECTORS?

Three simple operations make up a surprisingly
powerful system of computing

 . Fundamentally different from traditional
 neural nets/deep learning

 . Different also from linear algebra

 . The organization of computing, however, is
 traditional

	 13	

von Neumann-like architecture for high-D vectors

 Central Processing Unit (CPU)
 .-----------------------.
 | Program control unit |
 Input -> |-----------------------| -> Output
 /: Arithmetic/Logic Unit :\
 / : (ALU) + * permute : \
 / '- - - - - - - - - - - -' \
 / \
 / \
 . - .
 | vec vec vec vec vec vec vec vec vec vec vec |
 | vec vec vec vec vec vec vec vec vec vec vec |
 | vec vec vec vec |
 | vec vec Associative Memory vec vec |
 | vec vec vec vec |
 | vec vec vec vec vec vec vec vec vec vec vec |
 | vec vec vec vec vec vec vec vec vec vec vec |
 '---'

	 14	

HIGH-DIMENSIONAL MATH

Common to high-D vectors of many kind
 . NOT a special case

Components

 1. Three operations on vectors
 . Addition: A + B
 . Multiplication: A*B
 . Permutation: r(A)

 2. Measure of similarity (distance-based)

 3. Associative memory

	 15	

Explained here with 10,000-dimensional vectors of
+1s and -1s, called "bipolar"

 . Bipolar is essentially the same as binary

RANDOM SEED VECTORS

 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1)
 B = (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1)
 C = (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1)
 ...
 <--------- 10,000 wide --------->

	 16	

THREE OPERATIONS on VECTORS

1. Addition (+) is ordinary vector addition,
possibly followed by normalization

 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1)
 B = (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1)
 C = (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1)

 A+B+C = (+1 -1 +1 +3 +1 -1 +1 ... +1 -3 -1)

2. Multiplication (*) happens coordinatewise

 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1)
 B = (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1)
 C = (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1)

 A*B*C = (-1 +1 -1 +1 -1 +1 -1 ... -1 -1 +1)

	 17	

3. Permutation of Coordinates, "shuffle"

We use rotation (r) as an example of permutation

 >..................
 : :
 : :
 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) :
 : : : : : : : : : :
 r(A) = (+1 -1 +1 +1 +1 -1 ... +1 -1 -1 -1)

	 18	

Vectors are compared for similarity with dot
product (.) (or cosine or Pierson correlation)

 A.A = 10,000, maximally similar, same
 A.X = 0, maximally dissimilar, orthogonal

In high-dimensional spaces, almost all pairs of
vectors are dissimilar, approximately orthogonal:

 A.B ≈ 0 (small relative to 10,000)

One aim of high-dimensional computing is to
represent similarity of meaning in similarity
of HD vectors.

	 19	

EXAMPLE 1. Data record with 3 fields

 h = {x = a, y = b, z = c}

 TRADITIONAL
 x y z
 .---------.---------.---------.
 | a | b | c |
 '---------'---------'---------'
bits 1 ... 64 65 .. 128 129 .. 192

 HOLOGRAPHIC, SUPERPOSED D = 10,000, no fields
 .---.
 | x = a, y = b, z = c |
 '---'
 1 2 3 ... 10,000

	 20	

Representing h = {x = a, y = b, z = c} as a
single vector

Step 1. The variables x, y, z and the values
 a, b, c are represented by random 10K seed
 vectors of +1s and -1s:

 X, Y, Z, A, B, C

	 21	

Step 2. Bind: Variables are bound to values with
 coordinatewise multiplication

 x = a becomes X*A
 y = b becomes Y*B
 z = c becomes Z*C

Step 3. Release: What is the value of X in X*A?

 Multiply X*A with the inverse of X

 X*(X*A) = (X*X)*A = A

 NOTE: Vectors of +/-1s are their own inverses

	 22	

Step 4. Superpose: Variable-value pairs are
 superposed with coordinatewise addition

 h = {x = a, y = b, z = c} becomes
 H = X*A + Y*B + Z*C

Step 5. Release: What is the value of X in H?

 Multiply with (the inverse of) X

 X*H = X*(X*A + Y*B + Z*C)
 = X*X*A + X*Y*B + X*Z*C
 = A + noise + noise
 = A'
 ≈ A

	 23	

Step 6. Clean-up: Associative memory

 . Find nearest neighbor among stored vectors

 A' -> A with high probability

NOTE. This example demonstrates

 . distributivity: multiplication distributes over
 addition (as it does in math with numbers)

 . decoding with the inverse operation

	 24	

SUMMARY of the ALGORITHM:
encoding h = {x = a, y = b, z = c} as H

 X = -1+1+1-1...+1-1
 A = +1+1-1-1...-1-1

X*A = -1+1-1+1...-1+1 -> -1 +1 -1 +1 ... -1 +1 {x = a}

 Y = -1+1+1+1...-1+1
 B = -1-1-1+1...-1+1

Y*B = +1-1-1+1...+1+1 -> +1 -1 -1 +1 ... +1 +1 {y = b}

 Z = +1-1-1+1...+1-1
 C = -1+1+1+1...+1-1

Z*C = -1-1-1+1...+1+1 -> -1 -1 -1 +1 ... +1 +1 {z = c}

 Sum = -1 -1 -3 +1 ... +1 +3

 Sign = -1 -1 -1 +1 ... +1 +1 = H

	 25	

SUMMARY of the ALGORITHM: decoding H for value of x

 Sign = -1 -1 -1 +1 ... +1 +1 = H
 Inverse of X = -1 +1 +1 -1 ... +1 -1 = X

 Release: X*H = +1 -1 -1 -1 ... +1 -1 = A' ≈ A
 |
 v
 .------------------------.
 | ASSOCIATIVE MEMORY |
 | finds nearest neighbor |
 | among stored vectors |
 '------------------------'
 |
 v
 +1 +1 -1 -1 ... -1 -1 = A

	 26	

ENCODING SEQUENCES WITH PERMUTATION r

 Text as an example

 The 10K seed vectors A, B, C, ... represent
 letters of the alphabet a, b, c, ...

 The sequence 'ab' can be encoded as follows

 Start with the one-letter "sequence" for 'a':
 A
 and extend it to 'ab' with permute and multiply:

 AB = r(A)*B

	 27	

 We can further extend it to 'abc' with permute
 and multiply, and so on ...

 ABC = r(AB)*C
 = r(r(A)*B)*C
 = r(r(A)) * r(B) * C

 ABCD = r(r(r(A))) * r(r(B)) * r(C) * D

 ...

NOTE. This encoding demonstrates the
distributivity of permutation over multiplication;
permutations distributes also over addition.

This encoding has been used for N-grams in
experiments on language-identification

	 28	

EXAMPLE 2: Identify the Language

MOTIVATION: People can identify languages by how
they sound, without knowing the language

We emulated it with identifying languages by how
they look in print, without knowing any words

METHOD

 . Compute a 10,000-dimensional profile vector for
 each language and for each test sentence

 . Compare profiles and choose the closest one

	 29	

DATA

 . 21 European Union languages

 . Transcribed in Latin alphabet

 . "Trained" with a million bytes of text
 per language

 . Tested with 1,000 sentences per language from
 an independent source

 . Demonstrated online

	 30	

COMPUTING a PROFILE

Step 1. Choose 27 random seed vectors represent
the LETERS

 10K random, equally probable +1s and -1s

 A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1)
 B = (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1)
 C = (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1)
 ...
 Z = (-1 -1 -1 -1 +1 +1 +1 ... -1 +1 -1)
 # = (+1 +1 +1 +1 -1 -1 +1 ... +1 +1 -1)

 # stands for the space

All languages use the same set of letter vectors

	 31	

Step 2. Encode TRIGRAMS with permute and multiply

 Example: "the" is encoded by the 10K-dimensional
 vector THE

 Rotation of coordinates
 >....................
 : : : :
 : : : :
 T = (+1 -1 -1 +1 -1 -1 . . . +1 +1 -1 -1) + -
 H = (+1 -1 +1 +1 +1 +1 . . . +1 -1 +1 -1) +
 E = (+1 +1 +1 -1 -1 +1 . . . +1 -1 +1 +1)

 THE = (+1 +1 -1 +1 +1 +1 -1 -1)

	 32	

In symbols:

 THE = r(r(T)) * r(H) * E

where

 r is 1-position rotate (it's a permutation)
 * is coordinatewise multiplication

The trigram vector THE is approximately orthogonal
to all the letter vectors A, B, C, ..., Z and to
all the other (19,682) possible trigram vectors.
For example, HET.THE ≈ 0

	 33	

Step 3. Accumulate PROFILE VECTORS

Add all trigram vectors of a text into a 10K
Profile Vector. For example, the text segment

 "the quick brown fox jumped over ..."

gives rise to the following trigram vectors,
which are added into the profile for English

 Engl += THE + HE# + E#Q + #QU + QUI + UIC + ...

NOTE: Profile is a HD vector that summarizes
short letter sequences (trigrams) of the text;
it's a histogram of a kind

	 34	

Step 4. Test the profiles of 21 EU languages

 . Similarity between vectors/profiles: Cosine

 cos(X,X) = 1
 cos(X,Y) = 0 if X and Y are orthogonal

	 35	

Step 4a. Projected onto a plane, the profiles
cluster in language families

 Italian
 * *Romanian
 Portuguese
 * *Spanish
 *Slovene *French
*Bulgari *Czech
 *Slovak *English
 *Greek
 *Polish *Lithuanian
 *Latvian
 *Estonian
 * *Finnish
 Hungarian

 *Dutch
 *Danish *German
 *Swedish

	 36	

Step 4b. The language profiles were compared to
 the profiles of 21,000 test sentences (1,000
 per language). The best match agreed with the
 correct language 97.3% of the time

 The experiment was done in one pass and took
 less than 8 minutes on a laptop computer

Step 5. The 10K profile for English, Engl, was
 QUERIED for the letter most likely to follow
 "th". It was "e", with space, "a", "i", "r",
 and "o" the next-most-likely, in that order

 . Form a query vector: q = r(r(T)) * r(H)
 . Query with multiply: x = q*Engl
 . Find closest letter vectors:

 x ≈ E, #, A, I, R, O

	 37	

 `
SUMMARY of the ALGORITHM

 . Start with random 10,000-D vectors for letters

 . Compute 10,000-D vectors for trigrams with
 permute (rotate) and multiply

 . Add all trigram vectors into a 10,000-D profile
 for the language or the test sentence

 . Compare profiles with the cosine

	 38	

Note the simplicity and scaling of the algorithm, in
contrast to computing the exact histogram for each
test sentence and comparing it to the histograms of
the languages.

With 27 letters there are 19,683 possible trigrams to
keep track of, for tetragrams the number is 531,441
and for pentagrams it is 14,348,907. The language
experiment was done also with tetragrams (they
performed the best) and pentagrams with no added
complexity (the runtime and memory use were the same).

Reference

Joshi, A., Halseth, J., and Kanerva, P. (2017).
 Language geometry using random indexing. In
 J. A. de Barros, B. Coecke & E. Pothos (eds.)
 Quantum Interaction, 10th International
 Conference, QI 2016, pp. 265-274. Springer.

	 39	

SUMMARY

High-dimensional vectors have a math of their own

It is subtle and counterintuitive

It can be understood in terms that are familiar to us
from math with numbers:
 . addition
 . multiplication
 . inverse
 . distributivity

Permutations give it added power

Computing with high-dimensional vectors has grown
out of attempts to model cognition (perception,
memory, learning, language, concepts, the mind)

	 40	

THEnd

(but really the beginning: Neurosc 299, 1 Sep 2021)

