COMPUTING with HIGH-DIMENSIONAL VECTORS

ORIGINS OF THE IDEA

Cognitive Psychology, in reaction to Behaviorism

Cognitive Science: more interdisciplinary

Models of the mind increasingly influenced by computers and computing:

- The brain as a computer
- The computer as an electronic brain
- Artificial Intelligence (AI)

The mind is poorly modeled by conventional computers
Recommended reading:

Wikipedia and Stanford Encyclopedia of Philosophy articles on

- Cognitive Psychology and
- Cognitive Science
Cognitive Science (from Wikipedia)
WHAT DO WE MEAN BY "COMPUTING"?

It's about **math**

- calculating
- arithmetic
- numbers

It's about keeping records and organizing **data**

- memory pointers

It's about **communication**

- world-wide web

It’s about **monitoring** and **control**

- robotics
Math has co-evolved with physics and engineering

Standard math serves their needs

Arithmetic with numbers serves standard math

Computing with numbers serves standard math

Traditional computing is optimized for computing with numbers
Traditional (von Neumann) computing architecture

Central Processing Unit (CPU)

Program control unit

Arithmetic/Logic Unit (ALU) + *

Input -> ---------------------------------- -> Output

von Neumann bottleneck

Random Access Memory (RAM)
Arithmetic operations on numbers

- *addition*: $1 + 2 = 3$
- *multiplication*: $2 \times 3 = 6$

- multiplication *distributes* over addition:

 $2 \times (3 + 4) = 2 \times 7 = 14$

 $2 \times (3 + 4) = (2 \times 3) + (2 \times 4)$

 $= 6 + 8 = 14$
TRADITIONAL MATH AND COMPUTING WITH NUMBERS ARE A POOR MATCH TO WHAT BRAINS DO

What computers are good at, but brains are not

- Raw speed
- Fast and accurate arithmetic
- Following instructions literally

In contrast, brains do amazing things with minimal energy

- Recognize people and things
- Learn from example and reason by analogy
- Learn to use language and reason by logic
- Brains control our interaction with the world
CLAIM:

COMPUTING WITH VECTORS HAS ITS OWN MATH

THAT IS A BETTER MATCH TO WHAT BRAINS DO
HIGH-DIMENSIONAL REPRESENTATION IS COUNTERINTUITIVE AND SUBTLE (e.g., 10,000-bit vectors)

Nearly all pairs of vectors are **dissimilar**. Pairs of random vectors are approximately **orthogonal** -- makes representation noise-tolerant, **robust**

Distant concepts have **similar neighbors**

man $\not\approx$ lake
man \approx fisherman \approx fish \approx lake
man \approx plumber \approx water \approx lake
plumber $\not\approx$ fish

Small cues bring forth complete memories:
“The name starts with T; oh yes, Stephan”

Can explain the **tip-of-the-tongue phenomenon**
Binomial distribution, $N = 15$ and $N = 10,000$
BUT HOW DO YOU COMPUTE WITH THE VECTORS?

Three simple operations make up a surprisingly powerful system of computing

. Fundamentally different from traditional neural nets/deep learning

. Different also from linear algebra

. The organization of computing, however, is traditional
von Neumann-like architecture for high-D vectors

Central Processing Unit (CPU)

Program control unit

Input -> Program control unit | -> Output

Arithmetic/Logic Unit:

(ALU) + * permute

vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
vec vec vec vec vec vec vec vec vec vec vec vec vec vec vec
HIGH-DIMENSIONAL MATH

Common to high-D vectors of many kind
 . NOT a special case

Components

1. Three operations on vectors
 . Addition: A + B
 . Multiplication: A*B
 . Permutation: r(A)

2. Measure of similarity (distance-based)

3. Associative memory
Explained here with 10,000-dimensional vectors of +1s and -1s, called "\textit{bipolar}"

... Bipolar is essentially the same as binary

RANDOM SEED VECTORS

\[
\begin{align*}
\mathbf{A} &= (-1 +1 -1 +1 +1 +1 -1 \ldots +1 -1 -1) \\
\mathbf{B} &= (+1 -1 +1 +1 +1 -1 +1 \ldots -1 -1 +1) \\
\mathbf{C} &= (+1 -1 +1 +1 -1 -1 +1 \ldots +1 -1 -1) \\
& \ldots
\end{align*}
\]

<-------- 10,000 wide -------->
THREE OPERATIONS on VECTORS

1. **Addition** (+) is ordinary vector addition, possibly followed by normalization

 \[
 \begin{align*}
 A &= (-1 +1 -1 +1 +1 +1 -1 \ldots +1 -1 -1) \\
 B &= (+1 -1 +1 +1 -1 +1 \ldots -1 -1 +1) \\
 C &= (+1 -1 +1 -1 -1 +1 \ldots +1 -1 -1) \\
 \end{align*}
 \]

 \[A+B+C = (+1 -1 +1 +3 +1 -1 +1 \ldots +1 -3 -1)\]

2. **Multiplication** (*) happens coordinatewise

 \[
 \begin{align*}
 A &= (-1 +1 -1 +1 +1 +1 -1 \ldots +1 -1 -1) \\
 B &= (+1 -1 +1 +1 -1 +1 \ldots -1 -1 +1) \\
 C &= (+1 -1 +1 +1 -1 -1 +1 \ldots +1 -1 -1) \\
 \end{align*}
 \]

 \[A*B*C = (-1 +1 -1 +1 -1 +1 -1 \ldots -1 -1 +1)\]
3. **Permutation** of Coordinates, "shuffle"

We use rotation \((r)\) as an example of permutation

\[
A = (-1 \; +1 \; -1 \; +1 \; +1 \; +1 \; -1 \; ... \; +1 \; -1 \; -1) : \\
\]

\[
r(A) = (+1 \; -1 \; +1 \; +1 \; +1 \; -1 \; ... \; +1 \; -1 \; -1 \; -1)
\]
Vectors are compared for similarity with dot product (·) (or cosine or Pierson correlation)

\[A.A = 10,000, \text{ maximally similar, same} \]
\[A.X = 0, \text{ maximally dissimilar, orthogonal} \]

In high-dimensional spaces, almost all pairs of vectors are dissimilar, approximately orthogonal:

\[A.B \approx 0 \text{ (small relative to 10,000)} \]

One aim of high-dimensional computing is to represent similarity of meaning in similarity of HD vectors.
EXAMPLE 1. Data record with 3 fields

\[h = \{x = a, y = b, z = c\} \]

TRADITIONAL

\[
\begin{array}{ccc}
 & x & y & z \\
\hline
 & a & b & c \\
\end{array}
\]

bits 1 ... 64 65 .. 128 129 .. 192

HOLOGRAPHIC, SUPERPOSED \(D = 10,000 \), no fields

\[
\begin{array}{cccc}
 & x = a, y = b, z = c \\
\hline
 & 1 & 2 & 3 \ldots & 10,000 \\
\end{array}
\]
Representing $h = \{x = a, y = b, z = c\}$ as a single vector

Step 1. The variables x, y, z and the values a, b, c are represented by random 10K seed vectors of +1s and -1s:

$$X, Y, Z, A, B, C$$
Step 2. **Bind**: Variables are bound to values with coordinatewise *multiplication*

\[
x = a \text{ becomes } X*A \\
y = b \text{ becomes } Y*B \\
z = c \text{ becomes } Z*C
\]

Step 3. **Release**: What is the value of \(X\) in \(X*A\)?

Multiply \(X*A\) with the *inverse* of \(X\)

\[
X*(X*A) = (X*X)*A = A
\]

NOTE: Vectors of +/-1s are their own inverses
Step 4. **Superpose:** Variable-value pairs are superposed with coordinatewise *addition*

\[h = \{x = a, y = b, z = c\} \text{ becomes} \]

\[H = X*A + Y*B + Z*C \]

Step 5. **Release:** What is the value of \(X \) in \(H \)?

Multiply with (the inverse of) \(X \)

\[X*H = X*(X*A + Y*B + Z*C) \]
\[= X*X*A + X*Y*B + X*Z*C \]
\[= A + \text{noise} + \text{noise} \]
\[= A' \]
\[\approx A \]
Step 6. **Clean-up**: Associative memory

- Find nearest neighbor among stored vectors
 \[A' \rightarrow A \] with high probability

NOTE. This example demonstrates

- distributivity: *multiplication distributes over addition* (as it does in math with numbers)
- decoding with the *inverse* operation
SUMMARY of the ALGORITHM:
encoding $h = \{x = a, y = b, z = c\}$ as H

$$X = -1+1+1-1...+1-1$$
$$A = +1+1-1...-1-1$$

$$X*A = -1+1-1+1...-1+1 \rightarrow -1 +1 -1 +1 ... -1 +1 \quad \{x = a\}$$

$$Y = -1+1+1+1...-1+1$$
$$B = -1-1-1+1...-1+1$$

$$Y*B = +1-1-1+1...+1+1 \rightarrow +1 -1 -1 +1 ... +1 +1 \quad \{y = b\}$$

$$Z = +1-1-1+1...+1-1$$
$$C = -1+1+1+1...+1-1$$

$$Z*C = -1-1-1+1...+1+1 \rightarrow -1 -1 -1 +1 ... +1 +1 \quad \{z = c\}$$

\[\text{Sum} = -1 -1 -3 +1 ... +1 +3\]
\[\text{Sign} = -1 -1 -1 +1 ... +1 +1 = H\]
SUMMARY of the ALGORITHM: decoding H for value of x

\[
\text{Sign} = -1 -1 -1 +1 \ldots +1 +1 = \mathbf{H}
\]
\[
\text{Inverse of } \mathbf{X} = -1 +1 +1 -1 \ldots +1 -1 = \mathbf{X}
\]

\[
\text{Release: } \mathbf{X}^*\mathbf{H} = +1 -1 -1 -1 \ldots +1 -1 = \mathbf{A}' \approx \mathbf{A}
\]

\[
+1 +1 -1 -1 \ldots -1 -1 = \mathbf{A}
\]

ASSOCIATIVE MEMORY finds nearest neighbor among stored vectors
ENCODING SEQUENCES WITH PERMUTATION r

Text as an example

The 10K seed vectors A, B, C, ... represent letters of the alphabet a, b, c, ...

The sequence 'ab' can be encoded as follows

Start with the one-letter "sequence" for 'a':

A

and extend it to 'ab' with permute and multiply:

$AB = r(A)*B$
We can further extend it to 'abc' with permute and multiply, and so on ...

\[\text{ABC} = r(AB) \ast C \]
\[= r(r(A) \ast B) \ast C \]
\[= r(r(A)) \ast r(B) \ast C \]

\[\text{ABCD} = r(r(r(A))) \ast r(r(B)) \ast r(C) \ast D \]

...

NOTE. This encoding demonstrates the distributivity of permutation over multiplication; permutations distributes also over addition.

This encoding has been used for N-grams in experiments on language-identification
EXAMPLE 2: Identify the Language

MOTIVATION: People can identify languages by how they sound, without knowing the language.

We emulated it with identifying languages by how they look in print, without knowing any words.

METHOD

. Compute a **10,000-dimensional profile vector** for each language and for each test sentence.

. Compare profiles and **choose the closest** one.
DATA

- 21 European Union languages
- Transcribed in Latin alphabet
- "Trained" with a million bytes of text per language
- Tested with 1,000 sentences per language from an independent source
- Demonstrated online
COMPUTING a PROFILE

Step 1. Choose 27 random seed vectors represent the LETTERS

10K random, equally probable +1s and -1s

\[A = (-1 +1 -1 +1 +1 +1 -1 \ldots +1 -1 -1) \]
\[B = (+1 -1 +1 +1 +1 -1 +1 \ldots -1 -1 +1) \]
\[C = (+1 -1 +1 +1 -1 -1 +1 \ldots +1 -1 -1) \]
\[\ldots \]
\[Z = (-1 -1 -1 -1 +1 +1 +1 \ldots -1 +1 -1) \]
\[# = (+1 +1 +1 +1 -1 -1 +1 \ldots +1 +1 -1) \]

stands for the space

All languages use the same set of letter vectors
Step 2. Encode TRIGRAMS with permute and multiply

Example: "the" is encoded by the 10K-dimensional vector THE

Rotation of coordinates

\[
\begin{array}{cccccccccccc}
\vdots & \vdots \\
T & = & (+1 & -1 & -1 & +1 & -1 & -1 & \ldots & +1 & +1 & -1 & -1) & + & - \\
H & = & (+1 & -1 & +1 & +1 & +1 & +1 & \ldots & +1 & -1 & +1 & -1) & + & - \\
E & = & (+1 & +1 & +1 & -1 & -1 & +1 & \ldots & +1 & -1 & +1 & +1) \\
\hline
\text{THE} & = & (+1 & +1 & -1 & +1 & \ldots & \ldots & +1 & +1 & -1 & -1)
\end{array}
\]
In symbols:

\[\text{THE} = r(r(T)) \ast r(H) \ast E \]

where

- \(r \) is 1-position rotate (it's a permutation)
- \(\ast \) is coordinatewise multiplication

The trigram vector \(\text{THE} \) is approximately orthogonal to all the letter vectors \(A, B, C, \ldots, Z \) and to all the other (19,682) possible trigram vectors. For example, \(\text{HET.THE} \approx 0 \)
Step 3. Accumulate PROFILE VECTORS

Add all trigram vectors of a text into a 10K Profile Vector. For example, the text segment

"the quick brown fox jumped over ..."

gives rise to the following trigram vectors, which are added into the profile for English

\[
\text{Engl} \; += \; \text{THE} \; + \; \text{HE}\# \; + \; \text{E}\#Q \; + \; \text{#QU} \; + \; \text{QUI} \; + \; \text{UIC} \; + \; \ldots
\]

NOTE: Profile is a HD vector that summarizes short letter sequences (trigrams) of the text; it's a histogram of a kind.
Step 4. Test the profiles of 21 EU languages

- Similarity between vectors/profiles: Cosine

\[
\cos(X, X) = 1 \\
\cos(X, Y) = 0 \text{ if } X \text{ and } Y \text{ are orthogonal}
\]
Step 4a. Projected onto a plane, the profiles cluster in language families:

- Italian
- Romanian
- Portuguese
- Spanish
- French
- English
- Greek
- Lithuanian
- Latvian
- Estonian
- Finnish
- Hungarian
- Dutch
- Danish
- German
- Swedish

- Slovene
- Bulgarian
- Czech
- Slovak
- Polish
- Lithuanian
- Latvian
- Estonian
- Finnish
- Hungarian
Step 4b. The language profiles were compared to the profiles of 21,000 test sentences (1,000 per language). The best match agreed with the correct language 97.3% of the time.

The experiment was done in one pass and took less than 8 minutes on a laptop computer.

Step 5. The 10K profile for English, Engl, was queried for the letter most likely to follow "th". It was "e", with space, "a", "i", "r", and "o" the next-most-likely, in that order.

- Form a query vector: \(q = r(r(T)) \times r(H) \)
- Query with multiply: \(x = q \times Engl \)
- Find closest letter vectors:

\[x \approx E, \# , A, I, R, O \]
SUMMARY of the ALGORITHM

. Start with random 10,000-D vectors for letters

. Compute 10,000-D vectors for trigrams with permute (rotate) and multiply

. Add all trigram vectors into a 10,000-D profile for the language or the test sentence

. Compare profiles with the cosine
Note the **simplicity** and **scaling** of the algorithm, in contrast to computing the exact histogram for each test sentence and comparing it to the histograms of the languages.

With 27 letters there are 19,683 possible trigrams to keep track of, for tetragrams the number is 531,441 and for pentagrams it is 14,348,907. The language experiment was done also with tetragrams (they performed the best) and pentagrams with no added complexity (the runtime and memory use were the same).

Reference

SUMMARY

High-dimensional vectors have a math of their own.

It is subtle and counterintuitive.

It can be understood in terms that are familiar to us from math with numbers:

- addition
- multiplication
- inverse
- distributivity

Permutations give it added power.

Computing with high-dimensional vectors has grown out of attempts to model cognition (perception, memory, learning, language, concepts, the mind).
THEEnd

(but really the beginning: Neurosc 299, 1 Sep 2021)