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COMPUTING with HIGH-DIMENSIONAL VECTORS 
 

 
ORIGINS OF THE IDEA 
 
  Cognitive Psychology, in reaction to Behaviorism 
 
  Cognitive Science: more interdisciplinary 
 
    Models of the mind increasingly influenced by 
    computers and computing: 
 
     . The brain as a computer 
     . The computer as an electronic brain 
     . Artificial Intelligence (AI) 
 
    The mind is poorly modeled by conventional 
    computers                               
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Recommended reading: 
 
 Wikipedia and 
 Stanford Encyclopedia of Philosophy articles on   
  
  . Cognitive Psychology and 
 
  . Cognitive Science 
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Cognitive Science (from Wikipedia) 

` 



	 4	

 
 
WHAT DO WE MEAN BY "COMPUTING"? 
 
  It's about math 
 
   . calculating 
   . arithmetic 
   . numbers 
 
  It's about keeping records and organizing data 
 
   . memory pointers 
 
  It's about communication 
 
   . world-wide web 
 
  It’s about monitoring and control 
 
   . robotics 
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Math has co-evolved with physics and engineering 
 
  Standard math serves their needs 
 
  Arithmetic with numbers serves standard math 
 
  Computing with numbers serves standard math 
 
Traditional computing is optimized for computing 
with numbers 
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Traditional (von Neumann) computing architecture 
 
 
          Central Processing Unit (CPU) 
            .-----------------------. 
            | Program control unit  | 
   Input -> |-----------------------| -> Output 
            | Arithmetic/Logic Unit | 
            |   (ALU)   + *         | 
            '-----------------------' 
                     |     ^     von Neumann 
                     v     |     bottleneck 
 .---------------------------------------------. 
 | # # # # # # # # # # # # # # # # # # # # # # | 
 | # # # # # # # # # # # # # # # # # # # # # # | 
 | # # #                                 # # # | 
 | # # #    Random Access Memory (RAM)   # # # | 
 | # # #                                 # # # | 
 | # # # # # # # # # # # # # # # # # # # # # # | 
 | # # # # # # # # # # # # # # # # # # # # # # | 
 '---------------------------------------------'  
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Arithmetic operations on numbers 
 
 . addition: 1 + 2 = 3 
 . multiplication: 2 * 3 = 6 
 
 . multiplication distributes over addition: 
 
   2 * (3 + 4) = 2 * 7 = 14 
 
   2 * (3 + 4) = (2 * 3) + (2 * 4) 
               = 6 + 8 = 14 
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TRADITIONAL MATH AND COMPUTING WITH NUMBERS ARE A 
POOR MATCH TO WHAT BRAINS DO 
 
What computers are good at, but brains are not 
 
 . Raw speed 
 . Fast and accurate arithmetic 
 . Following instructions literally 
 
In contrast, brains do amazing things with minimal 
energy 
 
 . Recognize people and things 
 . Learn from example and reason by analogy 
 . Learn to use language and reason by logic 
 . Brains control our interaction with the world 
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CLAIM: 
 

COMPUTING WITH VECTORS HAS ITS OWN MATH 
 

THAT IS A BETTER MATCH TO WHAT BRAINS DO 
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HIGH-DIMENSIONAL REPRESENTATION IS COUNTERINTUITIVE 
AND SUBTLE (e.g., 10,000-bit vecors) 
 
Nearly all pairs of vectors are dissimilar 
 . pairs of random vectors are approximately 
   orthogonal 
   -- makes representation noise-tolerant, robust 
 
Distant concepts have similar neighbors 
 
    man ≉ lake 
    man ≈ fisherman ≈ fish ≈ lake 
    man ≈ plumber ≈ water ≈ lake 
    plumber ≉ fish 
 
Small cues bring forth complete memories: 
  “The name starts with T; oh yes, Stephan” 
 
Can explain the tip-of-the-tongue phenomenon 
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Binomial distribution, N = 15 and N = 10,000  
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BUT HOW DO YOU COMPUTE WITH THE VECTORS? 
 
Three simple operations make up a surprisingly 
powerful system of computing 
 
 . Fundamentally different from traditional 
   neural nets/deep learning 
 
 . Different also from linear algebra   
 
 . The organization of computing, however, is 
   traditional 
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von Neumann-like architecture for high-D vectors 
 
 
          Central Processing Unit (CPU) 
            .-----------------------. 
            | Program control unit  | 
   Input -> |-----------------------| -> Output 
           /: Arithmetic/Logic Unit :\ 
         /  :   (ALU)   + * permute :  \ 
       /    '- - - - - - - - - - - -'    \ 
     /                                     \ 
   /                                         \ 
 . - - - - - - - - - - - - - - - - - - - - - - . 
 | vec vec vec vec vec vec vec vec vec vec vec | 
 | vec vec vec vec vec vec vec vec vec vec vec | 
 | vec vec                             vec vec | 
 | vec vec      Associative Memory     vec vec | 
 | vec vec                             vec vec | 
 | vec vec vec vec vec vec vec vec vec vec vec | 
 | vec vec vec vec vec vec vec vec vec vec vec | 
 '---------------------------------------------'  
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HIGH-DIMENSIONAL MATH 
 
Common to high-D vectors of many kind 
 . NOT a special case 
 
Components 
 
  1. Three operations on vectors  
      . Addition: A + B 
      . Multiplication: A*B 
      . Permutation: r(A) 
 
  2. Measure of similarity (distance-based) 
 
  3. Associative memory 
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Explained here with 10,000-dimensional vectors of 
+1s and -1s, called "bipolar" 
 
 . Bipolar is essentially the same as binary 
 
RANDOM SEED VECTORS 
 
   A  =  (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) 
   B  =  (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1) 
   C  =  (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1) 
     ...  
          <--------- 10,000 wide ---------> 
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THREE OPERATIONS on VECTORS 
 
1. Addition (+) is ordinary vector addition, 
possibly followed by normalization 
 
   A  =  (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) 
   B  =  (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1) 
   C  =  (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1) 
 ------------------------------------------- 
 A+B+C = (+1 -1 +1 +3 +1 -1 +1 ... +1 -3 -1) 
 
 
2. Multiplication (*) happens coordinatewise 
 
   A  =  (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) 
   B  =  (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1) 
   C  =  (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1) 
 ------------------------------------------- 
 A*B*C = (-1 +1 -1 +1 -1 +1 -1 ... -1 -1 +1) 
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3. Permutation of Coordinates, "shuffle" 
 
We use rotation (r) as an example of permutation 
 
        ................>.................. 
        :                                 : 
        :                                 : 
  A = (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) : 
           :  :  :  :  :  :      :  :  :  : 
  r(A) = (+1 -1 +1 +1 +1 -1 ... +1 -1 -1 -1) 
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Vectors are compared for similarity with dot 
product (.) (or cosine or Pierson correlation) 
 
  A.A = 10,000, maximally similar, same 
  A.X = 0, maximally dissimilar, orthogonal 
 
In high-dimensional spaces, almost all pairs of 
vectors are dissimilar, approximately orthogonal: 
 
  A.B ≈ 0 (small relative to 10,000) 
 
  
One aim of high-dimensional computing is to 
represent similarity of meaning in similarity 
of HD vectors. 
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EXAMPLE 1. Data record with 3 fields 
 
  h = {x = a, y = b, z = c} 
 
 
  TRADITIONAL 
     x         y         z 
    .---------.---------.---------. 
    |    a    |    b    |    c    | 
    '---------'---------'---------' 
bits 1  ... 64 65 .. 128 129 .. 192 
 
 
  HOLOGRAPHIC, SUPERPOSED  D = 10,000, no fields 
    .-----------------------------------------. 
    |           x = a, y = b, z = c           | 
    '-----------------------------------------' 
     1 2 3 ...                           10,000 
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Representing h = {x = a, y = b, z = c} as a 
single vector  
 
Step 1. The variables x, y, z and the values 
  a, b, c are represented by random 10K seed 
  vectors of +1s and -1s: 
 
     X, Y, Z, A, B, C 
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Step 2. Bind: Variables are bound to values with 
   coordinatewise multiplication 
 
   x = a becomes X*A 
   y = b becomes Y*B 
   z = c becomes Z*C 
 
Step 3. Release: What is the value of X in X*A? 
    
  Multiply X*A with the inverse of X 
 
      X*(X*A) = (X*X)*A = A 
 
   NOTE: Vectors of +/-1s are their own inverses 
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Step 4. Superpose: Variable-value pairs are 
   superposed with coordinatewise addition 
 
   h = {x = a, y = b, z = c} becomes 
   H = X*A + Y*B + Z*C  
 
Step 5. Release: What is the value of X in H? 
 
  Multiply with (the inverse of) X 
 
    X*H = X*(X*A + Y*B + Z*C) 
        = X*X*A + X*Y*B + X*Z*C 
        =     A + noise + noise 
        = A' 
        ≈ A 
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Step 6. Clean-up:  Associative memory 
 
 . Find nearest neighbor among stored vectors 
 
    A' -> A with high probability 
 
 
NOTE. This example demonstrates 
 
 . distributivity: multiplication distributes over 
   addition (as it does in math with numbers) 
 
 . decoding with the inverse operation 
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SUMMARY of the ALGORITHM: 
encoding h = {x = a, y = b, z = c} as H 
   
  X = -1+1+1-1...+1-1 
  A = +1+1-1-1...-1-1 
--------------------- 
X*A = -1+1-1+1...-1+1 -> -1 +1 -1 +1 ... -1 +1   {x = a} 
 
  Y = -1+1+1+1...-1+1 
  B = -1-1-1+1...-1+1 
--------------------- 
Y*B = +1-1-1+1...+1+1 -> +1 -1 -1 +1 ... +1 +1   {y = b} 
 
  Z = +1-1-1+1...+1-1 
  C = -1+1+1+1...+1-1 
--------------------- 
Z*C = -1-1-1+1...+1+1 -> -1 -1 -1 +1 ... +1 +1   {z = c} 
                         --------------------- 
                   Sum = -1 -1 -3 +1 ... +1 +3 
  
                  Sign = -1 -1 -1 +1 ... +1 +1  = H 
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SUMMARY of the ALGORITHM: decoding H for value of x 
  
 
                  Sign = -1 -1 -1 +1 ... +1 +1  = H 
          Inverse of X = -1 +1 +1 -1 ... +1 -1  = X 
                         --------------------- 
          Release: X*H = +1 -1 -1 -1 ... +1 -1  = A' ≈ A 
                                  | 
                                  v 
                      .------------------------. 
                      |   ASSOCIATIVE MEMORY   | 
                      | finds nearest neighbor | 
                      |  among stored vectors  | 
                      '------------------------' 
                                  | 
                                  v 
                         +1 +1 -1 -1 ... -1 -1  = A 
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ENCODING SEQUENCES WITH PERMUTATION r 
 
  Text as an example 
 
  The 10K seed vectors A, B, C, ... represent 
  letters of the alphabet a, b, c, ... 
 
  The sequence 'ab' can be encoded as follows 
 
  Start with the one-letter "sequence" for 'a': 
    A 
  and extend it to 'ab' with permute and multiply: 
 
    AB = r(A)*B 
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  We can further extend it to 'abc' with permute 
  and multiply, and so on ...  
 
    ABC = r(AB)*C  
        = r(r(A)*B)*C 
        = r(r(A)) * r(B) * C 
 
   ABCD = r(r(r(A))) * r(r(B)) * r(C) * D 
 
       ...  
 
 
NOTE. This encoding demonstrates the 
distributivity of permutation over multiplication; 
permutations distributes also over addition. 
 
This encoding has been used for N-grams in 
experiments on language-identification 
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EXAMPLE 2: Identify the Language 
 
MOTIVATION: People can identify languages by how 
they sound, without knowing the language 
 
We emulated it with identifying languages by how 
they look in print, without knowing any words 
 
METHOD 
 
 . Compute a 10,000-dimensional profile vector for 
   each language and for each test sentence 
 
 . Compare profiles and choose the closest one 
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DATA 
 
 . 21 European Union languages 
 
 . Transcribed in Latin alphabet 
 
 . "Trained" with a million bytes of text 
   per language 
 
 . Tested with 1,000 sentences per language from 
   an independent source 
 
 . Demonstrated online 
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COMPUTING a PROFILE 
 
Step 1. Choose 27 random seed vectors represent 
the LETERS 
 
  10K random, equally probable +1s and -1s 
 
  A  =  (-1 +1 -1 +1 +1 +1 -1 ... +1 -1 -1) 
  B  =  (+1 -1 +1 +1 +1 -1 +1 ... -1 -1 +1) 
  C  =  (+1 -1 +1 +1 -1 -1 +1 ... +1 -1 -1) 
    ... 
  Z  =  (-1 -1 -1 -1 +1 +1 +1 ... -1 +1 -1) 
  #  =  (+1 +1 +1 +1 -1 -1 +1 ... +1 +1 -1) 
 
  # stands for the space 
 
All languages use the same set of letter vectors 
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Step 2. Encode TRIGRAMS with permute and multiply 
 
  Example: "the" is encoded by the 10K-dimensional 
  vector THE 
 
 
                 Rotation of coordinates 
        ...................>.................... 
        :  :                                :  : 
        :  :                                :  : 
 T =  (+1 -1 -1 +1 -1 -1 . . . +1 +1 -1 -1) +  -  
    H =  (+1 -1 +1 +1 +1 +1 . . . +1 -1 +1 -1) + 
       E =  (+1 +1 +1 -1 -1 +1 . . . +1 -1 +1 +1) 
------------------------------------------------- 
 THE   =    (+1 +1 -1 +1 . . . . . . +1 +1 -1 -1) 
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In symbols: 
 
  THE = r(r(T)) * r(H) * E 
 
where 
 
  r is 1-position rotate (it's a permutation) 
  * is coordinatewise multiplication 
 
 
The trigram vector THE is approximately orthogonal 
to all the letter vectors A, B, C, ..., Z and to 
all the other (19,682) possible trigram vectors. 
For example, HET.THE ≈ 0 
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Step 3. Accumulate PROFILE VECTORS 
 
Add all trigram vectors of a text into a 10K 
Profile Vector.  For example, the text segment 
 
  "the quick brown fox jumped over ..." 
 
gives rise to the following trigram vectors, 
which are added into the profile for English 
 
  Engl += THE + HE# + E#Q + #QU + QUI + UIC + ... 
 
 
NOTE: Profile is a HD vector that summarizes  
short letter sequences (trigrams) of the text;  
it's a histogram of a kind 
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Step 4. Test the profiles of 21 EU languages 
 
 . Similarity between vectors/profiles: Cosine 
 
     cos(X,X) = 1 
     cos(X,Y) = 0 if X and Y are orthogonal 
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Step 4a. Projected onto a plane, the profiles 
cluster in language families 
 
                                      Italian 
                                       *    *Romanian 
                                      Portuguese 
                                       *    *Spanish 
     *Slovene                                   *French 
*Bulgari *Czech 
      *Slovak                                    *English 
                           *Greek 
   *Polish                      *Lithuanian 
                                 *Latvian 
                           *Estonian 
                    *       *Finnish 
                   Hungarian 
 
 
                                                *Dutch 
                                        *Danish  *German 
                                           *Swedish 
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Step 4b. The language profiles were compared to 
    the profiles of 21,000 test sentences (1,000 
    per language).  The best match agreed with the 
    correct language 97.3% of the time 
 
    The experiment was done in one pass and took 
    less than 8 minutes on a laptop computer 
 
 
Step 5. The 10K profile for English, Engl, was 
    QUERIED for the letter most likely to follow 
    "th".  It was "e", with space, "a", "i", "r", 
    and "o" the next-most-likely, in that order 
 
     . Form a query vector:  q = r(r(T)) * r(H) 
     . Query with multiply:  x = q*Engl 
     . Find closest letter vectors: 
 
         x ≈ E, #, A, I, R, O 
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     `                                          
SUMMARY of the ALGORITHM 
 
 . Start with random 10,000-D vectors for letters 
 
 . Compute 10,000-D vectors for trigrams with 
   permute (rotate) and multiply 
 
 . Add all trigram vectors into a 10,000-D profile 
   for the language or the test sentence 
 
 . Compare profiles with the cosine 
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Note the simplicity and scaling of the algorithm, in 
contrast to computing the exact histogram for each 
test sentence and comparing it to the histograms of 
the languages. 
  
With 27 letters there are 19,683 possible trigrams to 
keep track of, for tetragrams the number is 531,441 
and for pentagrams it is 14,348,907. The language 
experiment was done also with tetragrams (they 
performed the best) and pentagrams with no added 
complexity (the runtime and memory use were the same). 
 
Reference 
 
Joshi, A., Halseth, J., and Kanerva, P. (2017). 
   Language geometry using random indexing. In 
   J. A. de Barros, B. Coecke & E. Pothos (eds.) 
   Quantum Interaction, 10th International 
   Conference, QI 2016, pp. 265-274. Springer. 
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SUMMARY 
 
High-dimensional vectors have a math of their own 
 
It is subtle and counterintuitive 
 
It can be understood in terms that are familiar to us 
from math with numbers: 
 . addition 
 . multiplication 
 . inverse 
 . distributivity 
 
Permutations give it added power 
 
Computing with high-dimensional vectors has grown 
out of attempts to model cognition (perception, 
memory, learning, language, concepts, the mind) 
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(but really the beginning: Neurosc 299, 1 Sep 2021) 


