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In this article we present a method  that allows conditioning of the response of a linear distributed 
memory to a variable context. This method requires a system of two neural networks. The first 
net constructs the Kronecker  product  between the vector input and the vector context, and the 
second net supports a linear associative memory.This system is easily adaptable for different 
goals. We analyse here its capacity for the conditional extraction of features from a complex 
perceptual input, its capacity to perform quasi-logical operations (for instance, of the kind of 
"exclusive-or"), and its capacity to structurate a memory for temporal  sequences which access is 
conditioned by the context.  Finally, we evaluate the potential importance of the capacity to 
establish arbitrary contexts, for the evolution of biological cognitive systems. 

1. Introduction. The establishment of the physiological basis of complex 
cognitive processes is a precise frontier in contemporary research. Some 
promising paths are being opened in this field. Surely, these complex cognitive 
processes are a sequel of the high dimensionality of some biological neural 
networks. The linear models of distributed memories (Anderson, 1970; 1972; 
Cooper, 1973; Kohonen, 1977) are powerful instruments to explore the 
consequences of the high dimensionality. Furthermore, they allow a natural 
contact with biochemistry and physiology, by focusing on synaptic connec- 
tivity. Even some of the most simple linear models display "near-psychobiolo- 
gical" abilities like tolerance to errors, construction of concepts and capacity of 
losing units without destroying the function (Anderson, 1972; 1983; Cooper, 
1973). 

The central nervous system of the humans is the most versatile adaptive 
control system we know. In fact, this extraordinary versatility depends strongly 
on the capacity to recognize contexts. In a human being, the moving image of a 
tiger provokes very different responses whether it is seen on the screen of a TV 
set or in the middle of the jungle. The finding of context-dependent responses is 
a basic goal in some processes of learning. For instance, during an exercise of 
language, given an adjective, the teacher imposes a context asking for 

* Part of this study has been presented in a preliminary version at the XVI Reuni6n Cientifica de la 
Sociedad Argentina de Bioflsica, Tigre, Argentina, December 1987. 
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antonyms or synonyms, and the brain selects only one of two opposite 
responses. 

The purpose of this communication is to describe a procedure that, within 
the framework of the linear formalism, allows for the existence of context 
dependent responses. In this formalism, inputs, contexts and outputs are 
vectors. The procedure that I present here requires a first neural net capable of 
constructing, using the input and the context vectors, the Kronecker product 
operation. The output of this net converges to a second neural net that sustains 
a linear associative memory. This system of nets operates in an extremely 
simple way, and it is adaptable to perform a variety of tasks. We will show its 
capacity to selectively extract features from a complex perception, its capacity 
to perform some quasi-logical operations, and its ability to construct 
"mnemonical gates" able to trigger the activation of associative paths. 

2. Linear Distributed Memories: An Overview. The basic processing device in 
linear theories (Anderson, 1970; 1972; 1983; Cooper, 1973) is a unit 0~ which 
response g, in the time T +  1 is a linear combination of its n inputs f~ 
(fl = 1 . . . .  , n) in the time T: 

g,= Y m,pf,, (1) 

where the coefficients m,p represent the properties of the connections. 
A neural net is built up of a set of N units, and their collective behaviour can 

be described by the equation: 

g = M f ,  (2) 

where the column vectors f and g represent the network input and outputs, 
respectively, and the matrix M = [m,p] represents the pattern of connectivity. 
The vectors f and g do not necessarily have the same dimension. 

Under certain conditions, biological neural networks can be described by 
equation (2) (for a discussion, see Nass and Cooper, 1975). In these cases, the 
elements of vectors f =  [f~] and g = [g,] are deviations of the frequencies of 
action potentials with respect to an average basal value. The coefficients of the 
matrix M are directly linked to the properties of the synaptic connections. 

Several important properties depend on the pattern of connectivity 
represented by M, particularly the capacity to implement a distributed 
memory. Consider the problem of the associated pairs (Anderson, 1970; 1972; 
Kohonen,  1977): given the arbitrary pairs of vectors (f~, g~), i=  1 , . . . ,  K, 
construct the matrix M such that g~ = Mf~. In the case in which the K input 
vectors are orthonormal,  the following correlation matrix is a solution: 
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K 

M= ~ fa" gi i,  (3) 
i = l  

fT being the transpose of f. 
In order to simplify the arguments, we frequently assume in what follows 

that the vectors are normalized. Consequently, the scalar product between fi 
and fj is (f~, fj) = f]f~ = 6~y, where 3~i = 1 if i=j and 6~j = 0 if i # j .  

Given an input fk, the network produces the following output: 

K 

Mfk = Y', g~(f~, fk)=gk" (4) 
i = 1  

Hence, a correlation matrix M like equation (3) represents a distributed 
memory able to associate K arbitrary patterns gi with K orthogonal vectors f~. 

The capacity for pattern recognition displayed by a linear memory in the 
presence of random vectors f can be measured by means of a sort of signal/noise 
ratio that is of the order of N/K (Anderson, 1972). Therefore, high 
dimensionalities can generate an efficient filter. 

3. Context-Dependent Recognition. Within the linear formalism, the context 
problem can be stated as follows: given two pairs of vectors (f, Pl) and (f, P2), 
associate respectively the arbitrary vectors gl and g2, with f~Vm, pi~Vq, 
gi~Vn, Vr being a r-dimensional vector space. 

Suppose the existence of a neural net apt to compose the input vector f and 
the context p, generating a new vector f x p, mq-dimensional, defined by: 

f×  P -  [foP]. (5) 

The operation f × p is the Kroneckerproduct  (Bellman, 1960) defined for 
rectangular matrices and its properties are shown in the Appendix. 

For orthonormal vectors p~ and P2, an exact and simple solution to the 
context problem is given by the matrix: 

m = g ~ ( f  x pl)T + g2(f × p2) T. (6) 

An input represented by the vector f × 112, is processed in the following way: 

M(fx  p2)=gl( f ,  f) (pa, p2) + g2(f, f) (P2, P2) =g2 • (7) 

The preceding example can describe a translation process: vector f could 
represent the pattern of neural activity associated to the English word "cat". 
Vectors p~ and P2 could represent the patterns of neural activity on which the 
contexts "Spanish translation" and "French translation" respectively map, 
with gl representing "gato" and gz, "chat" (Fig. 1). 
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Figure 1. Context sensitive associative memory. 

By means of this procedure, the existence of a multiplicative network capable 
of generating the composite vectors f x p, allows construction of associative 
memories sensible to contexts with the structure: 

M = Z ~ g~i(fi x Dij) T (8) 
i j 

In these memories, the pattern recognition capacities depend on the double 
filtering imposed by the two scalar products: 

M(fl × Plk) = ~, ~ gij(fi, fa) (Pij, Plk)" (9) 
i j 

4. Conditional Feature Selection. The system of nets presented in the last 
section, permits interesting insights concerning possible ways of analysing 
complex perceptual inputs. Imagine a perceptual input that maps on a high 
dimensional vector f. Let us assume that the previous experiences of the system 
have led it to develop a distributed memory structured around a "'conceptual 
basis" {fr}. Each element belonging to a perceptual space can usually be 
expressed as a linear combination of vectors fr: 

f = ~ ~rf,. (10) 
r 

Therefore, given a conceptual basis {f~} and an input f, one objective can be 
to construct a system capable of selecting some conceptual features f, from f. 

A fundamental solution to this issue was obtained by Anderson et al. (1977). 
They have assumed an analyser conformed by a neural network with feedback, 
such that the output in time Tis the input in time T+ 1, having the structure" 

M = ~ #~frf T . (11) 
r 

Let {f,} be an orthonormal basis. Then, if fk~{f¢}: 
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Mfk = pkf k , (12) 

and the f, are the eigenvectors associated to the eigenvalues/~,. 
A n-times iteration shows that: 

M"fk = /~f  k . (13) 

Consequently, if ]A k < 1, fk tends to vanish. In this way, the eigenvalues of the 
matrix M determine which components from the input f are retained. 

Imagine now that we are looking for a network able to select a pattern as a 
function of a variable context. Let Pu represent the different contexts associable 
to vectors fk" Then, a conditional selector could be implemented by a 
multiplicative net that generates the v e c t o r  fk × Pkl, and by an associative 
memory with the structure: 

(14) 

where the outputs are reinjected on the multiplicative net. Notice that in 
equation (14) different contexts Pri are associated with the same pattern ft. 

As a simple illustration imagine that there are two orthogonal basic patterns 
fl and f2, and two contexts Pao and Pzo, with: 

M = f l ( f  1 x plo)a~+ f2(f2 x P2o) T. (15) 

Imagine a perception f that can be expressed as a linear combination of fx 
and f2: 

f =  71fl + ~2f2, (16) 

~ and ~2 being constants. 
If the initial input to the memory is: 

f(1)= f x P2o, (17) 

then: 

Mf(1) = 7 1 ( P l o ,  P2o)fl + 72(P20,  P20)f2  • (18) 

Defining f(")= Mf o'- 1)× P2o, after n iteratiogs we have: 

Mf( ' °  = Yl(Plo, P20)nfl  -t- ) '2(P20,  P20)nf2 • (19) 

Consequently, if the context vectors are normalized, [(plo, P2o)[<l ,  
(020, P2o)= 1, the process can converge quickly: 
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MfC'° '~  72f 2 . (20) 

Notice that orthogonal contexts give this result in one step. 
This device allows, for the same perceptual input, the existence of many 

different ways of enhancing features. In general, for a complex perceptual 
pattern f whose input remains constant during a certain time, to explore a 
region of a context space {Pki} implies to explore the basic composition of the 
pattern. This kind of adaptive emphasis can permit the design of exploratory 
strategies that could be useful in the domain of problem solving. 

5. Quasi-Logical Behaviour. Some quasi-logical performances can be easily 
executed employing the Kronecker product. Suppose that two opposite 
concepts map on two orthogonal vectors a and b. Assume that two opposite 
decisions (eg "yes" and "not") map on two oithogonal vectors s and n. We can 
imagine a system of nets with two entries that responds with a positive decision 
only when both inputs are opposite [(a, b) or (b, a)], and that responds with a 
negative decision when both inputs are identical r(a, a) or (b, b)]. In order to 
construct this system it is first necessary to have a multiplicative network that, 
starting from inputs u and v (with equal dimensions to those of a and b), 
produces a vector u x v. Secondly, that vector u x v must be sent to an 
associative memory with the following structure: 

X = s ( a  × b)T + s(b x a)T+ n(a × a)T + n(b x b) T. (21) 

Then: 

X(a x b)=  X(b × a )=  s, (22) 

X(a x a )=X(b  × b)=n.  (23) 

This behaviour has some similarity with the behaviour of logical (binary) 
nets that display the operation exclusive-or (XOR problem, see Rumelhart  et 
al., 1986). 

6. Gated Associative Pathways. An interesting property of distributed 
memories is their capacity to store temporal sequences. Imagine an arbitrary 
sequence of orthonormal vectors a l ,  a z , . . . ,  a,. A distributed memory A 
"learns" this arbitrary sequence if, given a t, the memory evokes its successor 

at+ 1" 

aj + 1 = Aaj. (24) 

It is easy to see that this happens when A is of the form: 
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A = a l a o  ~ + aza  ~ + "'" T + a n a n -  1" (25) 

Provided that a feedback loop that reinjects the output into the same system (a 
reverberatory net) exists, the input a o generates the sequence a l ,  a z , . . . ,  a . .  In 
this highly simplified situation, the strongest imposition is orthogonality. In all 
other senses, the sequence is arbitrary. Remark that this kind of memory stores 
a temporal sequence superimposing the successive patterns in the same space 
(the matrix hardware). We will call a net with the structure of equation (25) a 
time net, or a time matrix (see also Kohonen, 1977, pp. 6-10). 

The activation of a time matrix can be determined by a context vector. As 
usual, we need two networks: a multiplicative net that associates the pattern ai 
to the context p, generating a~ x p, and an associative memory with matrix: 

M 

Q = ~ aj(aj_ 1 × p)T. (26) 
j = l  

From the properties of the Kronecker product, it follows that: 

Q = A × pT, (27) 

where A is the time matrix [equation (25)]. 
Many temporal sequences can be stored in a distributed memory with the 

structure: 

M = A 1  ×p] '+A 2 × p~+A 3 × pT+ " " ,  (28) 

where A1, A 2 , A 3 , . . .  , are time matrices. In these systems, a pa ticular 
context Pi is a kind of gate able to control the access to an associative pathway 
represented by matrix Ai. 

A complex temporal memory like equation (28) could be a basis for the 
existence of some interesting complex behaviours. Suppose that to each vector 
a i it corresponds another pattern of neural activity b~, being associated by a 
linear net described by matrix B :  

b i = B a l .  (29) 

If the outputs from M project on B, then a context p and an initial state a 
generate two sequences: ( a t 1 , . . . ,  at, ) and ( b t l , . . . ,  bt, ). 

The sequence ( b t l , . . . ,  bt, ) could, for instance, be associated with some kind 
t 

of motor behaviour (Fig. 2). 
In this way, many contexts p, under different conditions a, could generate a 

variety of complex motor behaviours. In spite of the great potential variability 
of the final result, these kinds of complex behaviours are structured using 
elemental actions, governed by the pattern associator B. 
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Figure 2. Context  dependent time net with a motor  effector. 

7. Anatomy of the Multiplicative Nets. The nucleus of the method presented 
here is the existence of a neural network able to construct the Kronecker 
product. In Fig. 3, a very simple multiplicative net is shown. 

The biological implementation of these nets needs a precise anatomical 
design, and synapses apt to multiply frequencies. 

The building up of a multiplicative network could also be achieved via the 
interposition of many interneurons which axons ramify a few times. In this way, 
an extensive parallel iteration of an input frequency could be obtained without 
an enormous ramification of individual axons. 

8. Some Perspectives. The Kronecker product provides a simple and efficient 
procedure to compose inputs and contexts. Nevertheless, it is stringent with 
regard to its anatomical and physiological implementations. 

Real neural nets have, in fact, precise and complex patterns of connectivity. 
A multiplicative network could be the result of processes of"synaptic selection" 
arising from an initially redundantly connected net (following, for instance, the 
mechanism proposed by Changeux and Danchin, 1976; see also Ribchester, 
1986). Another question concerns the existence of multiplicative synapses for 
inputs belonging to the physiological range of frequencies. As far as I know, the 
neuroanatomical and neurophysiological knowledge about these matters is 
still lacking. 

The main strength of the multiplicative method is the following. Once the 
multiplicative net established, it sends a composed pattern f x p towards a 
distributed memory. The procedures for the self-organization of this memory 
could be of the kind of the powerful learning algorithms currently investigated, 
e.g. the 6-rule (Kohonen, 1977; Stone, 1986) or the generalized 6-rule 
(Rumelhart et al., 1986). 

On the other hand, the associations between inputs, outputs and contexts 
are independent and arbitrary, except for the imposition of orthogonalities. 
That is, given an input vector, an arbitrary set of responses {gi}, and an 
orthonormal set of contexts {Pk}, the associations between the gi's and the Pk'S 
are entirely arbitrary (or "gratuitous" using Monod's terminology (Monod, 
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Figure 3. Connectivity of a multiplicative net. 

. f x p  

1967)). In fact, the learning algorithms, like the 6-rule, allow to relax the 
exigencies of orthogonality (Kohonen, 1977; Stone, 1986). 

Finally, let me make a comment about the evolution of cognitive systems. 
Perhaps, pattern recognition in biological (or prebiological) systems began 
when certain macromolecules (ancestors of the present enzymes and receptors) 
recognized other molecules in a more or less specific way, binding them. 
Perhaps, the context-dependent recognition also began at the biochemical level 
of primitive organisms with the emergence of allosteric proteins. The activity of 
these allosteric proteins (catalysis or signal transduction) can be delicately 
tuned up by a variety of molecules, the allosteric ligands (Monod et al., 1963). 
These allosteric ligands represent chemically "gratuitous" molecular contexts 
(Monod, 1967), that is, there is no obligatory chemical similarity between the 
usual input to the allosteric protein (a substrate if the protein is an enzyme, or a 
chemical signal if it is a receptor), and an allosteric ligand. The existence of 
molecular control systems at the cellular level depends strongly on the 
allosteric proteins, that submit the complex metabolic behaviours to some 
strategic chemical contexts. Plausibly, the appearance of allosteric proteins 
was a critical point of departure in the evolution of living organisms in our 
planet. 

On the other extreme of the complexity scale, the emergence of neural 
systems able to process high dimensional patterns, opened the possibility to 
develop very performant cognitive systems. The appearance of neural 
networks able to subject their behaviour to "gratuitous" contexts could have 
been a promoting factor for the construction of a cognitive system with a 
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powerful  capacity of adap ta t ion  to changing environments .  With  this device, 
old perceptions and new contexts,  const i tu te  a total ly new experience, and can 
be stored wi thout  des t roying the m e m o r y  of  previous experiences. The result 
can be a dramat ic  extension of the variety (see Ashby, 1958) of  the neural  
regulator .  

Hence,  neural  nets apt  to modu la t e  associations by means  of  gra tu i tous  
contexts  could have been points of  depar ture  for the complex,  astonishing and  
cont rad ic tory  kind of  cultural  evolut ion travelled by the h u m a n  species. 

I would  like to t hank  Dr.  Julio Hern~mdez and  Dr.  Ricardo Ehrl ich for 
encouragement  and helpful discussions and  Ver6nica E tchar t  for technical help 
in the prepara t ion  of the manuscr ip t .  

A P P E N D I X  

Kronecker Product (Bellman, 1960). Given two rectangular matrices A = [ai j]m n and B = [bi~]pq, 
the Kronecker product (or direct product) is defined by: 

A × B = [aijB], 

and has the following properties: 

(a) A × B× C=(A ×B) × C=A × (B× C), 

(b) (A+B)× (C+D)=A × C+A × D + B x  C+B×D,  

(c) (A x B) (C x D ) =  (AC) x (BD). 

From property (c), it is easy to see that for column vectors a and e of dimension m, and b and d of 
dimension n, we have: 

(a × b)T(e x d) = (a T x b T) (c × d) = (a~e) × (b~d) = (a ,  e ) (b ,  d). 
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