
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021 3777

Density Encoding Enables Resource-Efficient
Randomly Connected Neural Networks

Denis Kleyko , Member, IEEE, Mansour Kheffache , E. Paxon Frady, Urban Wiklund , Member, IEEE,
and Evgeny Osipov , Associate Member, IEEE

Abstract— The deployment of machine learning algorithms on
resource-constrained edge devices is an important challenge from both
theoretical and applied points of view. In this brief, we focus on
resource-efficient randomly connected neural networks known as random
vector functional link (RVFL) networks since their simple design and
extremely fast training time make them very attractive for solving many
applied classification tasks. We propose to represent input features via
the density-based encoding known in the area of stochastic computing
and use the operations of binding and bundling from the area of
hyperdimensional computing for obtaining the activations of the hidden
neurons. Using a collection of 121 real-world data sets from the UCI
machine learning repository, we empirically show that the proposed
approach demonstrates higher average accuracy than the conventional
RVFL. We also demonstrate that it is possible to represent the readout
matrix using only integers in a limited range with minimal loss in the
accuracy. In this case, the proposed approach operates only on small
n-bits integers, which results in a computationally efficient architecture.
Finally, through hardware field-programmable gate array (FPGA) imple-
mentations, we show that such an approach consumes approximately
11 times less energy than that of the conventional RVFL.

Index Terms— Density-based encoding, hyperdimensional
computing, random vector functional link (RVFL) networks.

I. INTRODUCTION

An ability to provide insights and predictive analytics in real
time is the greatest demand from businesses and industries to data-
driven technologies. The vector of the current development targets
enabling machine learning applications on connected devices (edge
computing), such as smartphones, robots, and vehicles. The benefits
of computing at the edge are tremendous: higher reliability of
solutions due to the decoupling from the network connectivity and

Manuscript received February 10, 2020; revised July 2, 2020; accepted
August 8, 2020. Date of publication August 24, 2020; date of current version
August 4, 2021. This work was supported in part by the Swedish Research
Council under Grant 2015-04677. The work of Denis Kleyko was supported
in part by the European Union’s Horizon 2020 Research and Innovation
Programme under the Marie Skłodowska-Curie Individual Fellowship Grant
Agreement 839179 and in part by the DARPA’s VIP Program under Super-HD
Project. (Corresponding author: Denis Kleyko.)

Denis Kleyko is with the Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA 94720 USA, and also with
the Intelligent Systems Lab, Research Institutes of Sweden, 164 40 Kista,
Sweden (e-mail: denis.kleyko@ri.se).

Mansour Kheffache is with Netlight Consulting AB, 111 53 Stockholm,
Sweden (e-mail: mansour.kheffache@netlight.com).

E. Paxon Frady is with the Redwood Center for Theoretical Neuroscience,
University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
epaxon@berkeley.edu).

Urban Wiklund is with the Department of Radiation Sciences, Bio-
medical Engineering, Umeå University, 901 87 Umeå, Sweden (e-mail:
urban.wiklund@umu.se).

Evgeny Osipov is with the Department of Computer Science Electrical and
Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
(e-mail: evgeny.osipov@ltu.se).

This article has supplementary downloadable material available at
https://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.3015971

bandwidth availability; very low latency; and higher security and
privacy as sensitive data are processed locally on a device.

Randomly connected neural networks, such as the recently
proposed class of advanced randomized learning techniques called
stochastic configuration networks [1] and the well-known random
vector functional link (RVFL) [2], have become an increasingly
popular topic of modern theoretical and applied research. On the
theoretical side, the main result is that RFVLs provide a universal
approximation for continuous maps and functional approximations
that converge in the Kullback–Leibler divergence when the target
function is a probability density function [3]. When this is combined
with the simplicity of RVFL’s design and training process, it makes
them a very attractive alternative for solving practical machine
learning problems in edge computing.

The aim of this brief is to present an approach for an order
of magnitude increase of the resource-efficiency (memory footprint,
computational complexity, and energy consumption) of RVFLs oper-
ations. The proposed approach combines techniques from two fields
of computer science: stochastic computing [4] and hyperdimensional
computing [5]. The fundamental idea is in the realization of activa-
tions of the hidden layer with the computationally simple operations
of hyperdimensional computing and the usage of the density-based
encoding of the input features as in stochastic computing. Moreover,
we enhance this approach with the integer-only readout matrix. This
combination allows us to use integer arithmetics end-to-end. The
novel contributions of this brief are given as follows.

1) A resource-efficient approach to RVFLs is proposed, which
uses only integer operations.

2) The empirical evaluation on 121 real-world classification data
sets demonstrates that the accuracy of the proposed approach
is higher than that of the conventional RVFL.

3) Field-programmable gate array (FPGA) implementation of the
proposed approach is an order of magnitude more energy-
efficient and 2.5 times faster than the conventional RVFL.1

This brief is structured as follows. The background of methods
used for the proposed approach is presented in Section II. The
approach itself is described in Section III. The performance evaluation
follows in Section IV. Section V covers related work. Section VI
presents the concluding remarks.

II. BACKGROUND AND METHODS

A. Random Vector Functional Link

This section briefly describes the conventional RVFL. For a
detailed survey of RVFLs, diligent readers are referred to [6]. Fig. 1
depicts the architecture of the conventional RVFL, which includes
three layers of neurons. The input layer with K neurons represents
the current values of input features denoted as x ∈ [K × 1]. The
output layer (L neurons) produces the prediction of the network
(denoted as y) during the operational phase. The layer in the middle

1For a network with 16 features, four classes, and 512 hidden neurons,
which are the median values for the considered 121 data sets.

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6032-6155
https://orcid.org/0000-0001-7243-8069
https://orcid.org/0000-0002-1313-0934
https://orcid.org/0000-0003-0069-640X

3778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Fig. 1. Architecture of the conventional RVFL. In the presented example,
the number of hidden neurons is set to N = 4.

is the hidden layer of the network, which performs a nonlinear
transformation of input features. The hidden layer contains N neu-
rons, and its state is denoted as h.

In general, the connectivity of an RVFL is described by two
matrices and a vector. A matrix Win ∈ [N ×K] describes connections
between the input layer neurons and the hidden layer neurons. This
matrix projects the given input features to the hidden layer. Each
neuron in the hidden layer has a parameter called a bias. Biases of
the hidden layer are stored in a vector and denoted as b ∈ [N × 1].
The other matrix of readout connections Wout ∈ [L × N] between
the hidden and output layers transforms the current activations in the
hidden layer stored in h into the network’s output y.2

The main feature of the RVFL is that matrix Win and vector b
are randomly generated at the network initialization and stay fixed
during the network’s lifetime. There are no strict limitations for the
generation of Win and b. They are usually randomly drawn from
either normal or uniform distributions. Here, both Win and b are
generated from a uniform distribution. Following [8], the range for
Win is [−1, 1], while the range for b is [−0.1, 0.1]. Since Win and
b are fixed, the process of training RVFL is focused on learning the
values of the readout matrix Wout. The main advantage of training
only Wout is that the corresponding optimization problem is strictly
convex; thus, the solution could be found in a single analytical step.

The activations of the network’s hidden layer h are described by
the following equation:

h = g(Winx + b) (1)

where g(x) is a nonlinear activation function applied to each neuron.
Here, the sigmoid function g(x) = (1/1 + e−x) is used. Thus,
the activation function restricts the range of possible activation values
in the hidden layer to the range [0, 1].

The predictions issued by the output layer are calculated as

y = Wouth. (2)

With respect to the training of RVFLs, this brief focuses on
classification tasks3 considering only supervised-learning scenarios
when the network is provided with the ground-truth label for each
training example. The total size of the training data set is denoted
as M . In this setting, the standard way of acquiring weights of the

2Strictly speaking, in the most general case, the readout matrix could also
include connections between the input layer and the output layer. However,
in the scope of this study, we only consider the case when the output
layer predictions are obtained from the activations of the hidden layer. The
interested readers are referred to work [7], which performed a comprehensive
evaluation of different design choices for the RVFL.

3Though the proposed approach is also applicable to regression problems,
one may, however, expect that the quality of predictions might be more
sensitive to the use of the density-based encoding.

Fig. 2. Example of the density-based encoding when the dimensionality of
representation is set to N = 4.

trainable connections between the hidden and the output layers in the
Wout matrix is via solving the ridge regression (which is a special
case of the Tikhonov regularization) problem, which minimizes the
mean square error between predictions (2) and the ground truth.
In particular, the activations of the hidden layer hT for each training
example are collected together in matrix H ∈ [M × N]. Matrix
Y ∈ [M × L] stores the corresponding ground-truth classifications
using one-hot encodings. Given H and Y, Wout is calculated as
follows:

Wout = (HT H + λI)−1HT Y (3)

where I denotes an identity matrix of the suitable dimensionality
(I ∈ [N × N]); λ is a hyperparameter (scalar) determining the weight
of the regularization part.4

B. Density-Based Encoding of Scalars

The idea of representing scalars as vectors is not new. It has
been independently proposed in several areas. The area of stochastic
computing [4] is probably the most notable example since the
whole idea of the stochastic computing is that it is possible to
implement arithmetics on scalars using Boolean operations on vectors
(in general, streams) of bits. The rate coding model of neuronal firing
used, e.g., in spiking neural networks, is another notable example.
Stochastic computing operates with scalars between 0 and 1, which
are represented as random bit vectors where the scalar being encoded
determines the probability of generating ones. Thus, the density of
ones in the obtained bit vector encodes the scalar; hence, such a rep-
resentation method is called the density-based encoding. Generating
random streams is important because the independence of two vectors
is a prerequisite for using the Boolean operations to implement the
arithmetics on them (e.g., AND for multiplication). Note that, for the
proposed approach, no arithmetic operations will be performed with
the density-based encodings of scalars. Therefore, the randomness of
representations for encoding scalars is not compulsory in this study.
In fact, from the simplicity point of view, it is more advantageous
to use a structured version of the density-based encoding, which
does not require a source of randomness. We will use the structured
version of the density-based encoding also known under the name
thermometric encoding [9] for the rest of this brief.

The most intuitive way of presenting the concept of the density-
based encoding is via visualization. Fig. 2 illustrates all possible
values, which could be encoded when the dimensionality of the
representation5 is set to N = 4. Fig. 2 indicates that using the density-
based encoding, it is possible to represent N + 1 different values.

4Note that (3) is computationally simpler compared with, e.g., the backprop
algorithm, and it is implementable efficiently on CPUs as well as on GPUs.

5It will become evident in Section III why the same notation N as for the
number of hidden neurons is used.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021 3779

The most convenient way of denoting these values is by using integers
in the range [0, N] (nodes on the left in the figure). In this case,
in order to obtain the encoding of a given value v , it is necessary to
set v leftmost positions of the vector to “one” (hashed red nodes in
the figure), while the rest of the vector is set to “zero” (filled green
nodes). In the case of bipolar representations used in the following,
“one” corresponds to −1, while “zero” corresponds to 1.

Recall, however, that input features are not integers in the range
[0, N]. Instead, it is assumed that a feature xi is represented by a
real number in the range [0, 1]. The task is to represent the current
value of the feature as a vector f ∈ [N ×1] using the abovementioned
density-based encoding. Since the encoding requires a finite set of
values between 0 and N , real numbers are first discretized using a
fixed quantization step, which is determined by N . Given the current
value of the feature, it is quantized to the closest integer as

v = �xi N� (4)

where �∗� denotes rounding to the closest integer. The obtained v

will determine the density-based encoding f. The presented procedure
allows generating density-based encodings for the whole feature
vector x. Matrix F ∈ [N × K], where K denotes the number
of features, contains the density-based encodings f of the current
values of x.

C. Hyperdimensional Computing

Hyperdimensional computing [10], [11] also known as vector
symbolic architectures is a family of bioinspired methods of rep-
resenting and manipulating concepts for cognitive architectures and
their meanings in a high-dimensional space. Vectors of high (but
fixed) dimensionality (denoted as N) are the basis for representing
information in hyperdimensional computing.6 The information is
distributed across the HD vector’s positions; therefore, HD vectors
use distributed representations. Distributed representations [12] are
contrary to the localist representations since any subset of the
positions can be interpreted. This is very relevant to the density-
based encoding introduced in Section II-B since the encoding in f is
also distributed.

In the scope of this brief paper, columns of Win matrix are inter-
preted as HD vectors, which are generated randomly. These HD vec-
tors are bipolar (Win ∈ {−1,+1}[N×K]) and random with equal prob-
abilities for +1 and −1. It is worth noting that an important property
of high-dimensional spaces is that with an extremely high probability,
all random HD vectors are dissimilar to each other (quasi-orthogonal).
In order to manipulate HD vectors, hyperdimensional computing
defines operations on them. In this brief, we implicitly use only two
key operations: binding and bundling.

The binding operation is used to associate two HD vectors together.
The result of binding is another HD vector. Here, the result of binding
(denoted as z) two vectors x and y is calculated as follows: z = x�y,
where the notation � for the Hadamard product is used to denote the
binding operation since this brief uses positionwise multiplication for
binding. An important property of the binding operation is that the
resultant HD vector z is quasi-orthogonal to the HD vectors being
bound.

The second operation is called bundling. The bundling operation
combines several HD vectors into a single HD vector. Its simplest
realization is a positionwise addition. However, when using the
positionwise addition, the vector space becomes unlimited; therefore,
it is practical to limit the values of the result. This could be achieved

6These vectors are referred to as high-dimensional vectors or HD vectors.

Fig. 3. Architecture of the RVFL that relies on the density-based encoding.
In the presented example, the number of hidden neurons and the dimension-
ality of encoding are set to N = 4.

with, e.g., a clipping function [denoted as fκ(∗)]

fκ (x) =

⎧⎪⎨
⎪⎩

−κ, x ≤ −κ

x, −κ < x < κ

κ, x ≥ κ.

(5)

In the clipping function, κ is a configurable threshold parameter.
Thus, in this brief, the bundling operation is implemented via
positionwise addition limited via the clipping function. For example,
the result (denoted as a) of bundling HD vectors x and y is simply
a = fκ(x + y). In contrast to the binding operation, the resultant
HD vector a is similar to all bundled HD vectors, which allows,
e.g., storing information in HD vectors [13]. For example, we have
demonstrated the usefulness of the clipping function for resource-
efficient implementations of self-organizing maps [14] and echo state
networks [15], [30].

III. RVFL WITH DENSITY-BASED ENCODINGS

This section presents an architecture of the RVFL utilizing the
density-based encoding. The approach is illustrated in Fig. 3. The
architecture is intentionally depicted to be as structurally identical to
the conventional RVFL (see Fig. 1) as possible. The major difference
is that the proposed approach is illustrated with four layers of
neurons: input layer (x, K neurons); density-based representation
layer (F, N × K neurons); hidden layer (h, N neurons); and output
layer (y, L neurons). Thus, in contrast to the conventional RVFL,
the hidden layer is not connected directly to the input layer. Instead,
each input feature is first transformed into a row of neurons storing its
density-based encodings. These vectors constitute the density-based
representation layer, which, in turn, is connected to the hidden layer.
Note also that the input and density-based representation layers are
not fully connected. Each neuron in the input layer is only connected
to N neurons in the corresponding row of the next layer. Moreover,
these connections (blue lines in Fig. 3) are called “feature-dependent”
because the activation of the i th input neuron xi will be quantized to
the closest integer v according to (4); in turn, v determines the number
of the rightmost connections, which transmits −1, the remaining
connections from that neuron transmit +1. Since each neuron in the
density-based representation layer has only one incoming connection,
the input activations are projected in the form of the bipolar matrix F.

It is also important to mention that the density-based representation
and hidden layers are not fully connected. In fact, each neuron in the
density-based representation layer has only one outgoing connection.
Therefore, the matrix Win describing the fixed random connections to
the hidden layer is still Win ∈ [N × K]. Moreover, these connections
have a clear structure. In Fig. 3, the connections are structured in
such a way that each column in F is connected to one of the hidden
layer neurons. It explains why the number of hidden neurons N

3780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Fig. 4. Example of activating the hidden layer with density-based encodings: K = 5 and N = 10. Note that N is set to 10 for visualization purposes only.

also determines the dimensionality of the density-based encoding of
features: each hidden neuron has its corresponding column in F (see
Fig. 4). Note that, in Fig. 4, N is set to 10 only for visualization
purposes. In practice, the values of N are larger.

Similar to the conventional RVFL, the values of Win are also
generated randomly. However, the values are drawn equiprobably
from {−1,+1}. Thus, similar to F, Win is also a bipolar matrix. When
reflecting to the ideas of hyperdimensional computing, Win should be
interpreted as K N-dimensional bipolar HD vectors. In other words,
each feature is assigned with the corresponding HD vector. Thus,
a conceptual intermediate step before getting input values of the
hidden neurons is the binding operation between features’ HD vectors
and their current density-based encoding.

Finally, the proposed approach uses different nonlinear activation
function in the hidden layer; the clipping function (5) is used instead
of the sigmoid function. The clipping function is characterized by the
threshold value κ regulating nonlinear behavior of the neurons and
limiting the range of activation values. Summarizing the aforemen-
tioned differences, activations of the hidden layer h are obtained as
follows:

h = fκ
(∑

F � Win
)

(6)

where
∑

is a columnwise summation. Note that in contrast to (1),
there is no bias term since it has been found empirically that its
presence does not improve classification performance. Once the
activations of the hidden layer h are obtained, the rest of the network
works in the same way as the conventional RVFL. The predictions
in y are calculated according to (2).

In order to make operations of the proposed approach more intu-
itive, Fig. 4 presents a numerical example of acquiring the activations
of the hidden layer. First, the input layer with K = 5 neurons sets
the values of the current feature vector. These values are quantized
to integers in the range [0,10] (since N = 10). The quantized values
determine the neurons of the density-based encoding, which are set to
−1 (the rest is +1). For example, since the third feature is quantized
to v = 10, all values of its density-based encoding are set to −1.
The bottom left figure shows a randomly generated Win. Once F
is obtained, we calculate the Hadamard product F � Win, which is
denoted as “bound representations” in Fig. 4. The rowwise summation
of the resultant matrix represents the input values of the hidden layer.
Finally, the clipping function (κ = 2 in Fig. 4) is used in the hidden
layer to get h.

Note that due to the way of forming F and Win, the input to
the hidden layer neurons is always integers in the range [−K , K].
Moreover, even after the clipping, the activations of neurons are
integers in the range [−κ and κ] (practically, κ < K). Thus, each
hidden neuron can be represented using only 	log2(2κ + 1)� bits of
memory. For example, when κ = 3, there are seven unique activations
of a neuron, which can be stored with just three bits. Last but not
least, it is worth mentioning that, for an efficient implementation,
the explicit calculation of F is redundant. As it could be seen from
Fig. 4, the same result as F � Win could be obtained if, for each
feature, we use v as an indicator of which signs should be changed
in Win. As it will be shown in Section IV, these properties give a
major advantage over the conventional RFVL for resource-efficient
implementation on digital hardware.

Since, in the proposed approach, the part of the network between
the hidden and output layers is not modified, the simplest case is
to train the readout matrix Wout in the same manner as for the
conventional RVFL (see Section II-A). Note that while training the
readout matrix Wout according to (3), there is no need to normalize
the activation values in h. Moreover, since the goal is to obtain a very
simplistic implementation, it is worth considering alternatives where
Wout would contain only integer values in a small limited range.
In particular, we have considered three options: quantizing the
result of regression (3); using a genetic algorithm (GA) initialized
randomly; and using GA initialized with the quantized result of
regression. During the search, GA used the cost function for the
generalized learning vector quantization [16].

IV. PERFORMANCE EVALUATION

In this section, the proposed approach is verified in three
scenarios.7 The first scenario compares it against the conventional
RVFL in the case when the weights of the readout matrix are real
numbers for both approaches. The second scenario compares the
results for the real-valued readout matrix against the considered
strategies of obtaining an integer-valued readout matrix. The final sce-
nario compares FPGA implementations of the proposed approach and
the finite precision RVFL [8] in the case of a limited energy budget.

7The diligent readers are kindly referred to the Supplementary Material that
provides an additional experimental evaluation to further justify the proposed
approach.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021 3781

Fig. 5. Cross-validation accuracy of the conventional RVFL against the
proposed approach. A point corresponds to a data set.

All reported results8 are based on 121 real-world classification data
sets obtained from the UCI machine learning repository9 [17]. The
considered collection of data sets has been initially analyzed in a
large-scale comparison study of different classifiers, and the interested
readers are kindly referred to the original work [18] for more
details. The only preprocessing step was to normalize features in the
range [0, 1]. Finally, the reported accuracies were averaged across
five independent initializations.

A. Comparison With the Conventional RVFL

First, we compare the conventional RVFL with the proposed
approach when computational resources for both approaches are not
limited. The search of the hyperparameters has been done according
to [18] using the grid search over λ and N in the case of the
conventional RVFL and additionally considering κ for the proposed
approach; N varied in the range [50, 1500] with step 50; λ varied in
the range 2[−10,5] with step 1; and κ varied between {1, 3, 7, 15}. The
obtained optimal hyperparameters were used to estimate the cross-
validation accuracy on all data sets. In order to visualize the results,
we rely on the same approach, as reported in [19]. Fig. 5 presents the
accuracy of the conventional RVFL against the proposed approach.
First, it is important to note that, as expected, the correlation
coefficient between the obtained results is high (0.86). Moreover,
the average accuracy for the conventional RVFL is 0.76, while that
for the proposed approach is 0.80.10 The difference in accuracy was
statistically significant using a 5% significance level according to
two-sample hypothesis testing. It is not absolutely intuitive why the
proposed approach demonstrates higher accuracy. Nevertheless, one
hypothesis is that the quantization for the density-based encoding
might provide extra regularization.11

B. Effect of Quantized Readout Weights

Fig. 6 presents the average accuracy of the proposed approach
for three considered strategies of obtaining the readout matrix with

8The implementation of the experiments reported in this brief is
available online via https://github.com/denkle/Density-Encoding-Enables-
Resource-Efficient-Randomly-Connected-Neural-Networks

9Available online: http://persoal.citius.usc.es/manuel.fernandez.delgado/
papers/jmlr/data.tar.gz

10In [18], the highest mean accuracy 0.82 was obtained for the random
forest.

11For the conventional RVFL with quantized inputs, the mean accuracy was
0.753 (0.755 for nonquantized). The correlation coefficient was 0.986. Thus,
the improvement cannot be caused barely by the input quantization. Also,
for the case when the conventional RVFL additionally used the connections
between the input layer and the output layer, there was no significant
improvement in the accuracy as the mean accuracy was 0.762.

Fig. 6. Average cross-validation accuracy of the proposed approach for
different integer readout strategies.

integer values against the average accuracy from the previous exper-
iment. The considered ranges are symmetric, and the figure indicates
only positive boundaries. It is clear that if the result of regression is
quantized (dashed line) to very few levels, the accuracy is affected
significantly. However, with the increased number of levels, the accu-
racy approaches the baseline, and it is concluded that 5 bits per
weight result in a very close approximation. Refining the quantized
result of regression with GA (dash-dotted line) certainly improved
the accuracy for a small number of quantization levels, which is in
line with the results in [8]. However, using GA for the number of
levels larger than six was not beneficial. Random GA initialization
(dotted line) decreased the accuracy.

C. Performance in the Case of Limited Resources

The third experiment compares FPGA hardware implementations
of the proposed approach and the finite precision RVFL in the case
of a fixed energy budget per one classification pass. The idea of
restricting the energy budget could be seen as an intuitive setup
for comparing bounded-optimality [20] of two approaches. Finite
precision RVFL [8] with 8 bits per neuron/weight was used since
it is more efficient than the conventional RVFL.12 Following the
conclusions from the previous experiment, the resolution of the
readout weights of the proposed approach was set to 5 bits. Both
approaches were deployed on ZedBoard FPGA, and the energy
consumption was estimated with the Xilinx Power Estimator tool.
The energy budget was set to 3.2 µJ to reflect a network with
typical parameters.13 Fig. 7 presents the accuracy of the pro-
posed approach (average 0.73) against the finite precision RVFL
(average 0.65). The difference in accuracy was statistically significant
using a 5% significance level according to two-sample hypothesis
testing. Due to the limited resources, values are lower than in the
first experiment; nevertheless, the results are impressive when the
performance of our approach is compared with the fixed point RVFL.

V. RELATED WORK

This section briefly describes the related work. First, the readers
generally interested in neural networks, which rely on randomly
created connections, are kindly referred to the survey in [6].

12When comparing FPGA implementations of the conventional RVFL and
the proposed approach (integer readout) for a network where K = 16,
N = 512, and L = 4 (median values for the 121 UCI data sets), the proposed
approach consumed about 11 times less energy and was 2.5 times faster.

13Since, in each data set, the input and output sizes are fixed, the budget
was enforced by determining the number of hidden layer neurons within the
budget.

3782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Fig. 7. Cross-validation accuracy of the finite precision RVFL against the
proposed approach in case of the fixed energy budget.

A. Paradigms Used for the Proposed Approach

In order to design a resource-efficient RVFL algorithm, the pro-
posed approach combines the ideas from two areas. These are the
density-based encoding from stochastic computing and the binding
and bundling operations from hyperdimensional computing. Since
both are research fields on their own, here, we only indicate the
introductory papers facilitating entrance to the areas. The recent
magazine article [4] is probably the most approachable reading for
stochastic computing. With respect to hyperdimensional computing,
the best starting point is the tutorial-like article by Kanerva [5].

B. Resource-Efficient RVFL

Recall that even the conventional RVFL networks are considered
to be one of the simplest approaches for machine learning. This
fact explains why the efforts on pushing the resource-efficiency of
RVFL networks to the extreme are rather limited. The most relevant
works in this direction are [8] and [21]. Similar to this study, both
works use FPGA for hardware experiments. Moreover, both works
rely on finite precision implementation for improving the resource-
efficiency. The work [21], however, heavily focuses on the process
of obtaining the weights of the readout matrix, which is not the case
here. The work [8], which focuses on the operational phase, is used
here as the baseline for comparison with the proposed approach.
However, none of the previous works in the area of RVFL, to the
best of our knowledge, have been focusing on using the combination
of the density-based encoding with the binding operation. As an
important topic for future research, we see the theoretical charac-
terization of the classification performance improvement obtained
with the proposed approach. As indicated earlier, one hypothesis
is that the quantization and the density-based encoding provide
extra regularization. In order to move in this direction, the rele-
vant works are related to a phenomenon of network generalization
improvement, e.g., via adding a noise [22] or discretizing quantitative
features [23].

C. Simplification of Neural Networks

Finally, it is worth mentioning that, in recent years, the simplifica-
tion of computing architectures for neural networks is an important
research topic. Notable examples are works [24]–[26], which have
been evaluated on convolutional neural networks; work [27] that has
introduced networks with ternary activations and work [28] that has
introduced networks where all parameters are binary. It is worth
mentioning that, in contrast to the bitwise networks [28], the proposed
use of the density-based encoding does not require the binarization
of the input features, which often worsens the accuracy.

VI. CONCLUSION

This article proposed a resource-efficient fully integer approach to
randomly connected neural networks. The key enabler for efficiently
obtaining activations of the hidden neurons is the combination of the
representation of input features via the density-based encoding used
in the stochastic computing and the use of binding and bundling
operations from hyperdimensional computing area. Integer values of
the readout matrix could be obtained with a minimal loss in the accu-
racy, e.g., by simple rounding of the ridge regression solution, which,
in turn, could be fine-tuned by the GA. The empirical evaluation
was performed on 121 real-world data sets. The proposed approach
demonstrated a higher average accuracy than the conventional RVFL
networks while being 2.5 times faster and consuming 11 times less
energy (typical network on FPGA). Finally, the accuracy of the
proposed approach significantly prevailed that of the finite precision
RVFL networks when both networks implemented on hardware were
constrained to a fixed energy budget.

Despite that this work has focused only on classification tasks,
it is worth mentioning that the proposed approach of forming the
activations of the hidden layer should be seen as a generic structured
representation scheme based on high-dimensional random projections
that allow for direct learning of complex nonlinear functions. There-
fore, a promising direction for future work is to develop an analytical
theory similar to the capacity theory of such representations [13] that
would relate the quality of approximations based on the complexity
of a nonlinear function, the number of its inputs and outputs, and a
number hidden neurons and their resolution.

Last but not least, we conjecture that the density-based encoding
will be useful for developing resource-efficient versions of other
neural networks. For example, as it has been recently shown in [29]
that binarizing initial layers of convolutional neural networks could
easily harm their accuracy. We expect that the density-based encoding
of input features will solve this issue.

REFERENCES

[1] D. Wang and M. Li, “Stochastic configuration networks: Fundamentals
and algorithms,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3466–3479,
Oct. 2017.

[2] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE
Trans. Neural Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[3] H. D. Nguyen, D. Wang, and G. J. McLachlan, “Randomized mixture
models for probability density approximation and estimation,” Inf. Sci.,
vol. 467, pp. 135–148, Oct. 2018.

[4] A. Alaghi and J. P. Hayes, “Computing with randomness,” IEEE Spectr.,
vol. 55, no. 3, pp. 46–51, Mar. 2018.

[5] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognit. Comput., vol. 1, no. 2, pp. 139–159, Jun. 2009.

[6] S. Scardapane and D. Wang, “Randomness in neural networks:
An overview,” Data Mining Know. Discovery, vol. 7, pp. 1–18,
2017.

[7] L. Zhang and P. N. Suganthan, “A comprehensive evaluation of
random vector functional link networks,” Inf. Sci., vols. 367–368,
pp. 1094–1105, Nov. 2016.

[8] A. Rosato, R. Altilio, and M. Panella, “Finite precision implementation
of random vector functional-link networks,” in Proc. 22nd Int. Conf.
Digit. Signal Process. (DSP), Aug. 2017, pp. 1–5.

[9] D. A. Rachkovskij, S. V. Slipchenko, E. M. Kussul, and T. N. Baidyk,
“Sparse binary distributed encoding of scalars,” J. Autom. Inf. Sci.,
vol. 37, no. 6, pp. 12–23, 2005.

[10] T. A. Plate, Holographic Reduced Representations: Distributed Rep-
resentation for Cognitive Structures. Stanford, CA, USA: CSLI,
2003.

[11] S. I. Gallant and T. W. Okaywe, “Representing objects, relations,
and sequences,” Neural Comput., vol. 25, no. 8, pp. 2038–2078,
Aug. 2013.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021 3783

[12] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, “Distributed
representations,” in Proc. PDP, 1986, pp. 77–109.

[13] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence
indexing and working memory in recurrent neural networks,” Neural
Comput., vol. 30, no. 6, pp. 1449–1513, Jun. 2018.

[14] D. Kleyko, E. Osipov, D. D. Silva, U. Wiklund, and D. Alahakoon,
“Integer self-organizing maps for digital hardware,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[15] D. Kleyko, E. Paxon Frady, and E. Osipov, “Integer echo state networks:
Hyperdimensional reservoir computing,” 2017, arXiv:1706.00280.
[Online]. Available: http://arxiv.org/abs/1706.00280

[16] A. Sato and K. Yamada, “Generalized learning vector quantization,” in
Proc. NeurIPS, 1996, pp. 423–429.

[17] D. Dua and C. Graff. (2019). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[18] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133–3181, 2014.

[19] M. Olson, A. J. Wyner, and R. Berk, “Modern neural networks generalize
on small data sets,” in Proc. NeurIPS, 2018, pp. 1–10.

[20] S. J. Russell and D. Subramanian, “Provably bounded-optimal agents,”
J. Artif. Intell. Res., vol. 2, pp. 575–609, May 1995.

[21] J. M. Martínez-Villena, A. Rosado-Muñoz, and E. Soria-Olivas, “Hard-
ware implementation methods in random vector functional-link net-
works,” Int. J. Speech Technol., vol. 41, no. 1, pp. 184–195, Jul. 2014.

[22] C. M. Bishop, “Training with noise is equivalent to tikhonov regulariza-
tion,” Neural Comput., vol. 7, no. 1, pp. 108–116, Jan. 1995.

[23] N. A. Zaidi, Y. Du, and G. I. Webb, “On the effectiveness of discretizing
quantitative attributes in linear classifiers,” 2017, arXiv:1701.07114.
[Online]. Available: http://arxiv.org/abs/1701.07114

[24] B. Jacob et al., “Quantization and training of neural networks for
efficient Integer-Arithmetic-Only inference,” 2017, arXiv:1712.05877.
[Online]. Available: http://arxiv.org/abs/1712.05877

[25] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. NeurIPS, 2016, pp. 1–9.

[26] I. Hubara, M. Courbariaux, and D. Soudry, “Quantized neural networks:
Training neural networks with low precision weights and activations,”
J. Mach. Learn. Res., vol. 18, pp. 1–30, Jan. 2018.

[27] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient AI applications,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 2547–2554.

[28] M. Kim and P. Smaragdis, “Bitwise neural networks,” in Proc. ICML,
2015, pp. 1–5.

[29] A. G. Anderson and C. P. Berg, “The high-dimensional geometry of
binary neural networks,” in Proc. ICLR, 2018, pp. 1–13.

[30] O. Nepomnyashchiy, A. Khantimirov, D. Galayko and N. Sirotinina,
“Method of Recurrent Neural Network Hardware Implementation,”
in Computer Science On-line Conference: Artificial Intelligence and
Bioinspired Computational Methods (CSOC), Advances in Intelligent
Systems and Computing, vol. 1225, pp. 429–437, 2020.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

