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Abstract—This paper introduces hyper-dimensional modula-
tion (HDM), a new class of practical modulation scheme for
robust communication among low-power low-complexity de-
vices. Unlike conventional orthogonal modulations, HDM conveys
numerous information bits per symbol by combining hyper-
dimensional vectors that are not strictly orthogonal to each
other. Information bits are spread across many elements in the
hyper-dimensional vector, thus HDM is tolerant of element-wise
failures in high noise channels. Evaluation results confirm that
uncoded HDM with 256-dimension exhibits the bit error rate
(BER) comparable to that of low-density parity check (LDPC)
and Polar codes, while HDM demodulation complexity is lower
than that of LDPC and Polar decoders for the same block length
of 256. Moreover, HDM provides graceful tradeoffs between data-
rate and signal-to-noise ratio for robust short message commu-
nications among power- and complexity-constrained devices.

I. INTRODUCTION

Hyper-dimensional modulation (HDM) is a new class

of practical modulation designed for robust communication

among complexity-/power-constrained devices. The dimen-

sion of modulation determines its information representational

space. Conventional modulation schemes utilize a relatively

low dimensional space per information symbol. On the con-

trary, HDM conveys numerous information bits per symbol

using a hyper-dimensional space represented by combinations

of complex valued components in a hyper-dimensional vector.

HDM is inspired by hyper-dimensional computing [1] where

hyper-dimensional vectors are used to represent information

and perform cognitive computing. The hyper-dimensional pre-

sentation is tolerant of component failure [1]. This robustness

comes from redundant representation, in which information

symbols are spread across many components in the hyper-

dimensional vector. HDM can be considered as a spreading

modulation scheme whose spreading gain linearly improves

with the dimension, allowing higher error tolerance with

increased dimensionality. In low SNR scenarios where each

component of the hyper-dimensional vector cannot be reliably

demodulated, HDM still achieves successful demodulation

of symbols that are spread and superimposed in the hyper-

dimensional vector without explicit error correction encoding.

Uncoded HDM with a modest block size (or dimension of

the vector) achieves the bit error rate (BER) comparable to

that of low-density parity check (LDPC) [2], [3], [4] and Polar

codes [5], [6], [7] applied to conventional modulation schemes.

Demodulation complexity of HDM for a modest block size

(e.g., 256) can be kept lower than that of LDPC and/or Polar

decoders. HDM can support various coding rates by adjusting

modulation parameters without modifying the modulator and

demodulator structure. Thus HDM allows low-power low-

complexity devices to gracefully adapt to various signal-to-

noise ratio (SNR) conditions for dynamic rate − reliability

tradeoffs and link adaptations. These unique properties make

HDM an attractive solution for low-power low-complexity

communication systems that need to exchange relatively short

messages reliably at low SNRs.

Consider a hyper-dimensional vector space CD where D
is the dimension of the hyper-dimensional vector. Similar-

ity between two power-normalized symbols x and y can

be measured by cross-correlation x∗y. Here, x∗ stands for

transpose conjugate of the vector x. Two identical symbols

result in a cross-correlation output that is equal to the symbol

power x∗x = ||x||2. The most critical observation that

motivates HDM is the fact that two hyper-dimensional vectors

whose components are i.i.d. zero-mean random variables have

nearly-orthogonal cross-correlation; x∗y ≈ 0 for a large D
(hyper-dimension). In other words, a hyper-dimensional vector

x in CD is nearly-orthogonal to almost all other vectors

in the hyper-dimensional space CD [1]. Randomly selected

two vectors in the hyper-dimensional space have very small

cross-correlation with high probability. HDM exploits this fact

to superimpose multiple nearly-orthogonal vectors to convey

numerous information bits very reliably at a low SNR using

a single D-dimensional vector. Vector selection in HDM does

not have to be carefully done to satisfy near-orthogonality

among superimposed vectors when the dimension D is large.

Using this property, this paper proposes a frequency-domain

HDM scheme to modulate hyper-dimensional vectors with a

goal to minimize the demodulation complexity.

II. HYPER-DIMENSIONAL MODULATION

A. Modulation

The transmitted vector x is generated by adding V indepen-

dent vectors xv , v = 1, 2, ..., V as in (1) where F stands for

discrete Fourier transform. The dimension of xv is D× 1 and

Pv is a D×D permutation matrix randomly selected for each

v. It is worth noting that HDM does not strictly require Fourier

transform. Other invertible linear transforms can be used but

its complexity is desired to be O(DlogD) to lower modu-

lation/demodulation complexity. Each superimposed transmit

vector xv is obtained by permuting discrete Fourier transform

of the sum of D× 1 dimensional K vectors;
∑K

k=1 sk,vepk,v
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Fig. 1. HDM modulator block diagram. Information sub-symbols are allocated to a set of non-orthogonal vectors. Each sub-symbol is modulated by PSK and
its position in the vector. Sub-symbols are merged to a hyper-dimensional vector that is transformed and permuted before it is combined with other vectors.
Combined hyper-dimensional vectors are serialized and transmitted sequentially element-wise.

where sk,v is a scalar phase-shift keying (PSK) complex

valued symbol from a set S and epk,v
= [e0, ..., eD−1]

T

is a D × 1 unit vector with ep = 0 for ∀p 6= pk,v and

epk,v
= 1. The non-zero position pk,v is selected from a

set Pk whose cardinality is M . Sets Pk, k = 1, 2, ...K , do

not overlap with each other; Pk ∩ Pk′ = ∅ for k 6= k′, and

P1 ∪ P2... ∪ PK ⊂ {1, 2, ..., D − 1}.

x =

V
∑

v=1

xv =

V
∑

v=1

PvF

(

K
∑

k=1

sk,vepk,v

)

(1)

Note that the DC (i.e., zero frequency) position should

be excluded from Pk otherwise Fourier transform output of

xv exhibits a DC offset. The cadinality of S and Pk is

denoted by Q and M , respectively. Each vector xv con-

veys K (log2Q+ log2M) information bits by the combina-

tion of Q-ary PSK and M -ary symbol position modulation.

Consequently, the modulation rate (or coding rate) CR of

HDM is obtained by (2) as the transmit vector x contains

V K (log2Q+ log2M) bits with D channel instances (i.e.,

dimension of the vector).

CR =
V K (log2Q+ log2M)

D
(2)

The proposed HDM process is summarized in Figure 1.

Position based modulation epk,v
for HDM creates vectors that

are sparse before the transform. However, xk becomes a dense

vector after Fourier transform and permutation. This process

has some similarity to compressive sensing and its signal

recovery techniques [8][9] where random basis functions are

used. In HDM, sparse information vectors are transformed

and spread to a dense D dimensional vector for robust com-

munication. Combination of FFT and sparse position based

modulation significantly lowers the demodulation complexity

per information bit as discussed later in Section III.

B. Signal to Interference Ratio (SIR)

Without loss of generality, it is assumed that the signal

power is normalized, satisfying E{x∗x} = D and E {xx∗} =
ID×D. With i.i.d. random information symbols sk,v and epk,v

,

each transmit vector is assumed to be a complex Gaussian ran-

dom vector x ∼ CN (0, ID×D) and xv ∼ CN
(

0, 1
V
ID×D

)

.

This assumption holds by the central limit theorem [10] as

the dimension D and the number of superimposed vectors V
increase. For v 6= v′, xv and xv′ are independent. As each

element of x has a unit power, the PSK symbol power is set

to |sk,v|2 = D
VK

, satisfying ‖xv‖2 = D/V . Cross-correlation

of xv and the interfering signal
∑

j 6=v xj can be approxi-

mated by a zero mean complex Gaussian random variable

x∗
v

∑

j 6=v xj ∼ CN
(

0, D(V−1)
V 2

)

, while x∗
vxv = D/V holds.

Therefore, the post-correlation signal-to-interference ratio

at the transmitter is obtained by (3). Superimposed vector

xv’s are not strictly orthogonal to each other; x∗
vxv′ 6= 0

for v 6= v′. However, (3) indicates the post-correlation SIR

improves with a larger dimension D. In HDM, increasing

V (the number of superimposed vector xv’s) proportionally

degrades SIR. Position based modulation by epk,v
conveys

multiple information bits using a single vector xv (especially

with a large D and M ) so that the post-correlation SIR is

restrained with a relatively small V satisfying the target coding

rate (2). Position based encoding also allows low complexity

decoding at the receiver using the parallelizable maximum

correlation search within symbol position sets Pk, k = 1, ...,K
that do not overlap.



SIRvec =
|x∗

vxv|2

E
{

|x∗
v

∑

j 6=v xj |2
} =

D

V − 1
(3)

Note that epk,v
is orthogonal to other position vectors epk′,v

(Pk ∩ Pk′ = ∅, k 6= k′) given the same vector index v.

Hence the post-correlation SIR for a symbol sk,vepk,v
can

be expressed by

SIRsym =
|s∗k,ve

∗
pk,v

epk,v
sk,v|2

E
{

|s∗k,ve
∗
pk,v

∑

j 6=v xj |2
} =

D

K(V − 1)
. (4)

Given the target modulation rate CR (2), one should strike

a balance between SIRsym (4) and the number of bits per

symbol (i.e., log2(Q) + log2(M)) by selecting the optimal

parameters K , V , Q, and M to enhance the reliability of

HDM while maximizing the data rate. As discussed in Section

IV, adapting to a proper combination of various modulation

parameters provides graceful tradeoffs in the bit error rate

(BER) performance, demodulation complexity, and data rate.

It is shown in Section IV that uncoded HDM without explicit

error correction encoding achieves the BER comparable to

that of LDPC and Polar codes while HDM demodulation

complexity is lower for relatively short length messages.

III. HDM DEMODULATION

An additive white Gaussian noise (AWGN) channel model

is used for HDM performance analysis and evaluation. The

received vector is represented by (5), where n is a complex

Gaussian noise vector with a covariance of E {nn∗} =
N0ID×D. The SNR is 1/N0 as the signal x has the unit

covariance E {xx∗} = ID×D.

y = x+ n (5)

A. Demodulation Algorithm and Architecture

Figure 2 depicts the proposed HDM demodulation process

using successive interference cancellation. Estimation of each

superimposed transmission vector x̂v can be performed in

parallel to enhance overall demodulation throughput. For the

path v, the residual received vector ŷ
(i)
v for iteration i is

obtained by subtracting estimated interference vectors from

the original received signal y as in (6), where ŝ
(i)
k,w and ê

p
(i)
k,w

are the estimated PSK symbol and position vector for the ith
iteration. For the initial iteration, ŝ

(0)
k,w = 0 and ê

p
(0)
k,w

= 0.

ŷ(i)
v = y −

∑

w 6=v

PwF

(

K
∑

k=1

ŝ
(i)
k,w êp(i)

k,w

)

(6)

To obtain x̂
(i)
v , the residual vector ŷ

(i)
v is permuted (multiplied)

by P−1
v , and then inverse Fourier transform is performed on

the permuted vector as in (7).

x̂(i)
v = F−1

(

P−1
v ŷ(i)

v

)

=

K
∑

k=1

sk,vepk,v
+
∑

w 6=v

d(i)
v,w (7)

The residual distortion vector
∑

w 6=v d
(i)
v,w satisfies (8)

where rk,w represents the residual error vector rk,w =
{

sk,wepk,w
− ŝ

(i)
k,wê

(i)
pk,w

}

.

d(i)
v,w = F−1

(

P−1
v

(

PwF

(

K
∑

k=1

rk,w

))

+ n

)

(8)

For the next iteration i+1, the demodulated symbol ŝ
(i+1)
k,v

and ê
p
(i+1)
k,v

is obtained from x̂
(i)
v by (9). Notice that (9) can

be performed in parallel for each symbol and vector index

k and v. Specifically, PSK symbol s
(i)
k,v and position p

(i)
k,v

demodulation is performed by only inspecting vector elements

whose indices belong to the set Pk as Pk ∩ Pk′ = ∅ for

k 6= k′. The element with the maximum cross-correlation as

in (9) provides the estimated (demodulated) PSK symbol and

position vector for the next iteration i+ 1.

ŝ
(i+1)
k,v ê(i+1)

pk,v
= argmax

∀s∈C, p∈Pk

ℜ
{

s∗e∗px̂
(i)
v

}

(9)

Iteration stops when ŝ
(i+1)
k,v = ŝ

(i)
k,v and ê

(i+1)
pk,v = ê

(i)
pk,v for all

k and v. To guarantee a constant demodulation throughput, it

is also possible to terminate the iteration after a predetermined

number of iterations. As discussion in Section IV, the average

number of iterations at a reasonably low BER is < 3 including

the initial iteration with i = 0.

The final step of the HDM demodulation is the cyclic

redundancy check (CRC) based error correction. HDM de-

modulation errors at a relative low BER typically involve only

a small number of PSK position symbol (ŝk,v êpk,v
) errors;

mostly one or two out of KV symbols within a received vector

y. To correct these errors, one can construct a second-trial list

that consists of PSK position symbols whose correlation values

are closest to the solution of (9). Entries in the second-trial

list are sorted by the ratio between their correlation values

over the max correlation value from (9). When CRC fails,

the demodulation process attempts to correct one error by

testing a modest number (e.g., tens) of entries in the second-

trial list replacing the least confident solution of (9) based

on the correlation value ratio. Error correction is confirmed

by CRC validation. If all single error correction trails fail,

double error correction is tried, and so forth. A reasonable

number of entries in the second-trial list is <100. At a low

BER, this single/double/triple error correction scheme does

not incur significant complexity overhead when the maximum

number of trials is limited to <500 because it is only invoked

when CRC error occurs and most errors are resolved during

single error correction trials (≪100 cycles). The SNR gain of

the proposed CRC based error correction is 1.75dB at a BER

of 10−5 for D =256 or 512. Triple error correction is the

practical limit as quadruple error correction rarely succeeds.

B. Signal-to-Interference-Noise Ratio of HDM

With the central limit theorem for a large D and V ,

each element of the distortion vector
∑

w 6=v d
(i)
v,w (8) can

be modeled as a zero-mean complex Gaussian vector with a
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covariance of
(

N0 +
1
D

∑

w 6=v

∑K

k=1 r
∗
k,wrk,w

)

ID×D. At the

initial iteration (i = 0), this covariance is
(

N0 +
V−1
V

)

ID×D,

implying the initial signal-to-interference-noise ratio (SINR)

of D

VK(N0+
V −1
V )

to demodulate each symbol sk,vepk,v
. When

this initial SINR is sufficiently high, the residual error vector

rk,w diminishes as iteration continues via successive interfer-

ence cancellation. The SINR eventually converges to D
VKN0

with successive interference cancellation [11], providing the

HDM SNR gain factor of γSNR (10) compared to the original

channel SNR of 1
N0

.

γSNR =
D

VK
(10)

C. HDM Demodulation Complexity

To estimate the complexity of HDM demodulation, we

count the number of operations involved in the algorithm pro-

posed in Section III.A. The ‘operation’ includes multiplication,

addition, comparison, and memory read/write. Each iteration

of the demodulation process consists of three steps: 1) inter-

ference computation and subtraction, 2) inverse permutation

and FFT, and 3) PSK and position demodulation.

1) Interference computation and subtraction: In this step,

interference is subtracted from the received vector y as in

(6). In fact, this step does not require explicit Fourier trans-

form because ŝ
(i)
k,v êp(i)

k,v

has only one non-zero element, and

F
(

ŝ
(i)
k,v êp(i)

k,v

)

can be obtained by traversing the unit circle in

the complex plane from the initial point ŝ
(i)
k,v with a constant

phase rotation rate given by p
(i)
k,v . The permutation by Pw

requires 2D memory read/write operations. Notice that for

each vector index v in (6), a different interference vector needs

to be computed. This can be simplified by computing the

summation ŷ(i) = y −
∑V

v=1 PvF
(

∑K

k=1 ŝ
(i)
k,vêp(i)

k,v

)

first,

and then compute ŷ
(i)
v = ŷ(i) + PvF

(

∑K

k=1 ŝ
(i)
k,v êp(i)

k,v

)

for

each index v. Therefore, the total number of operations to

process all V vectors in this step is (3KV − 2K − 2)D per

iteration for the iteration index i > 0. This step is omitted for

the initial iteration with i = 0.

2) Inverse permutation and Fourier transform: This step

computes x̂
(i)
v (7). Inverse permutation and Fourier transform

requires 2D memory read/write and 4Dlog2D−6D+8 (real)

arithmetic operations per vector.

3) PSK and position demodulation: Given index v, demod-

ulating symbols ŝ
(i)
k,v êp(i)

k,v

for different k’s can be performed

in parallel using K non-overlapping segments of the vector

(7). For each segment, (9) can be simplified to finding the

maximum power symbol first and then identifying the closest

valid PSK symbol. Therefore, the total number of operations to

compute (9) for all K segments and all V vectors is ≤ 5D+6
per iteration for Q ∈ {1, 2, 4, 8}.

Summarizing all three steps, the complexity of HDM de-

modulation for Iiter iterations (including the initial iteration

with i = 0) can be approximated by (11) in the number of

operations per information bit.

Obit =
Iiter(3KV − 2K + 4log2D − 3)− 3KV + 2K + 2

CR
(11)

The complexity overhead of CRC based single/double/triple

error correction can be ignored because the average number

of error correction trials per information bit is < 10−3 for a

relatively low BER (< 10−4).
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IV. HDM EVALUATION

A. Bit Error Rate Performance

To evaluate HDM performance, simulations were conducted

in the AWGN channel as explained in Section III. With the

unit transmit power E {xx∗} = ID×D , SNR is defined by

1/N0. Figure 3 shows the BER vs. SNR for various HDM

parameters satisfying CR = 0.375, 0.5 and 0.547. The impact

of the dimension D is shown in Figure 3. When modulation

parameters such as M , K and Q are chosen properly, using

a larger D for the same CR generally improves the BER

performance but the gain diminishes when D ≥ 256. This

is predicted by the relationship between the SNR gain factor

(10) and the cording rate (2). That is, when D
VK

in CR (2)

is kept the same to maintain the equal coding rate, using a

larger D does not significantly improve BER as the SNR gain

(10) also stays unchanged. Using D = 128, however, shows

significant degradation.

With a proper selection of HDM parameters that minimize

SINR for CR = 0.5, HDM with a modest D (=256) exhibits

the BER performance matches to that of LDPC and Polar

codes with 1/2 rate and the 256-bit block length (equivalent

to D in HDM). Figure 4 shows the BER comparison between

HDM and LDPC / Polar from [2] [6] [5] using the block length

of 256. Eb stands for the energy per information bit in Figure

4. Hence Eb/N0 is obtained by SNR/CR. It validates that,

for short message communications, the performance of HDM,

LDPC and Polar are similar for the BER range of 10−5−10−7

(or block error rate of 10−3 − 10−5).

B. HDM Receiver Complexity

The number of iterations for HDM demodulation is shown

in Figure 5. At ≥ 1dB SNR, the average number of iterations

including the initial iteration (i = 0) is less than 3. Using a

higher dimension D would require more iterations to converge

but it also provides improved BER as shown in Fig. 3.
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Fig. 4. Bit error rate of HDM vs. LDPC vs. Polar for a short block length of
256 and CR = 0.5. Eb is the energy per information bit. Eb/N0 = SNR/CR .

Fig. 5. Average number of iterations Iiter (including the initial iteration
i = 0) vs. SNR for the setting CR = 0.5; D = 128, 256, and 512.

The average number of operations for HDM with D = 256
is summarized in Table I. Complexity comparison among

HDM, LDPC, and Polar code demodulation/decoding is also

provided in the same table.

TABLE I
AVERAGE NUMBER OF ITERATIONS AND NUMBER OF OPERATIONS PER

INFORMATION BIT FOR CR = 0.5 AND Eb/N0 = 4dB.

HDM LDPC [4] LDPC [2] Polar [7]

D or blk. length 256 256 256 256
Avg. Iiter 2.5 5 2.7 6

Operations per bit 280 518*o 127*+o 336*

* Not including demodulation (soft-decision) complexity.
+ tanh function is counted as a single operation.
o Message passing complexity ignored.



For a relatively small block length of 256, the HDM

operation count is comparable to or lower than that of LDPC or

Polar decoding. It must be noted that the number of operations

is just a first-order indicator of the decoding complexity. It

is well known that LDPC requires a large amount of data

movement via irregular interconnects between ‘check’ and

‘variable’ nodes which typically becomes the bottleneck for

high-performance and low-power hardware implementations

[3]. The interconnect data movement complexity overhead is

not captured by the number of operations in Table I, thus

underestimating the LDPC complexity for practical imple-

mentation. It is well known that LDPC decoders have higher

complexity than Polar decoders with the same block length.

Similar to the proposed HDM demodulator architecture, data

movement patterns for Polar decoders [5] [7] typically have

‘FFT-like’ efficient structures. Thus the operation count in

Table I allows more direct complexity comparison between

HDM and Polar code.

Although Polar codes have advantages over LDPC for

lower complexity implementation, its serialized successive

cancelling (SC) architecture prevents realizing parallelized

hardware implementation for Polar codes. Modified algo-

rithms such as belief propagation (BP) allow efficient parallel

implementation but their efficiency comes at the cost of

degraded BER or increased number of iterations. Although

Polar decoder implementation complexity of [7] in Table I is

comparable to that of HDM, its BP based algorithm with a

block length of 256 has a noticeably worse BER compared to

a SC based decoder [6] and/or HDM with D = 256.

The proposed HDM decoding algorithm is fully paralleliz-

able without performance degradation. The Fourier transform

based architecture allows very efficient software and hardware

implementations. Unlike LDPC, HDM does not require irreg-

ular data movements. Permutation operations in HDM are also

easily implementable in both software and hardware.

C. Rate−SNR Tradeoffs

Fig. 6 summarizes the HDM tradeoff space emperically

obtained by BER vs. SNR simulations for various sets of

modulation parameters. In Fig. 6, the dimension is kept to

D = 256 or 512. HDM can provide graceful tradeoffs between

SNR and coding rate by changing its modulation parameters

such as D, V , K , M , and Q.

D. Applications

HDM can be augmented by various conventional modu-

lation methods such as OFDM [12] [13] and MIMO [14].

That is, each element of an HDM vector can be mapped

to a subcarrier of OFDM or a spatial stream symbol of

MIMO spatial multiplexing. The BER degradation from using

a smaller D (e.g., 512 vs. 256) is negligible as shown in Fig.

3, and in analysis combines (2) and (10). HDM is particularly

useful for short message communications among low power

devices in latency-critical applications where adaptive and

robust communications are required.

*: LDPC [2]

Δ: Polar [5]

Δ: Polar [6]

D=256, V=6, K=2,

M=64, Q=4

D=256, V=8, K=2,

M=64, Q=4

D=512, V=6, K=8,

M=32, Q=4

D=512, V=6, K=2,

M=128, Q=4

Fig. 6. HDM tradeoff space: SNR for 10−5 BER vs. coding rate (CR). Each
point represent a distinct parameter setting. D = 256 or 512.

V. CONCLUSION

This paper introduces HDM for robust communication

among low-power and low-complexity devices. HDM with a

short message length exhibits BER performances comparable

to state-of-the-art LDPC and Polar codes. HDM complexity

is also shown to be similar to or less than that of Polar and

LDPC. HDM provides graceful tradeoffs between data rate

and SNR for robust short message communications.
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