
Journal of Mathematical Psychology 77 (2017) 142–155
Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

The memory tesseract: Mathematical equivalence between
composite and separate storage memory models
Matthew A. Kelly a,∗, D.J.K. Mewhort b, Robert L. West a
a Carleton University, Canada
b Queen’s University, Canada

h i g h l i g h t s

• Comparative analysis points towards a unified mathematical basis for memory models.
• MINERVA 2 is proven to be equivalent to a fourth order tensor associative memory.
• A holographic lateral inhibition network approximates MINERVA 2.
• MINERVA 2 can be implemented as a fully distributed neural model.
• MINERVA 2 can be scaled up arbitrarily assuming an arbitrarily parallel computer.

a r t i c l e i n f o

Article history:
Received 11 March 2016
Received in revised form
25 September 2016
Available online 17 November 2016

Keywords:
Memory
Cognitive modelling
Computational modelling
MINERVA 2
Vectors
Tensors
Holographic reduced representations
HRRs
Associative memory
Neural networks

a b s t r a c t

Computational memory models can explain the behaviour of human memory in diverse experimental
paradigms. But research has produced a profusion of competingmodels, and, as different models focus on
different phenomena, there is no best model. However, by examining commonalities among models, we
canmove towards theoretical unification. Computational memorymodels can be grouped into composite
and separate storage models. We prove that MINERVA 2, a separate storage model of long-termmemory,
is mathematically equivalent to composite storage memory implemented as a fourth order tensor, and
approximately equivalent to a fourth-order tensor compressed into a holographic vector. Building of these
demonstrations, we show that MINERVA 2 and related separate storage models can be implemented in
neurons. Our work clarifies the relationship between composite and separate storage models of memory,
and thereby moves memory models a step closer to theoretical unification.

© 2016 Elsevier Inc. All rights reserved.
Computational memory models can explain the behaviour of
humanmemory in diverse experimental paradigms—whether it be
recall or recognition, short-term or long-term retention, implicit
or explicit learning. But research has produced a profusion of
competing models, and, as different models focus on different
phenomena, there is no best model. However, computational
models of memory share many characteristics indicating wide
agreement about the mathematics of how memory works. These
shared characteristics can lead us towards developing a unified
basis for computational models of human memory.

We argue that the class of memory models that use high di-
mensional vectors can be understood as belonging to a single
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mathematical framework. These memory models include com-
posite vector models (e.g., Anderson, 1973; Johns, Jones, & Me-
whort, 2012; Murdock, 1989), matrix models (e.g., Farrell &
Lewandowsky, 2002; Humphreys, Pike, Bain, & Tehan, 1989b;
Howard & Kahana, 2002; Lewandowsky & Farrell, 2008), tensor
models (e.g., Humphreys, Bain, & Pike, 1989a; Osth & Dennis,
2015; Smolensky, 1990), holographic vectormodels (e.g., Eich, 1982;
Franklin &Mewhort, 2015; Murdock, 1993), andmulti-vector mod-
elssuch as the MINERVA 2 (Hintzman, 1984) model and variants
(e.g., Dougherty, Gettys, & Ogden, 1999; Jamieson, Crump, & Han-
nah, 2012; Jamieson & Mewhort, 2011; Kwantes, 2005; Thomas,
Dougherty, Sprenger, & Harbison, 2008), the Generalized Context
Model of categorization (GCM;Nosofsky, 1986, 1991), and the BEA-
GLEmodel of distributional semantics (Jones &Mewhort, 2007; see
also Jones, Kintsch, & Mewhort, 2006) and variants (Kelly, Kwok, &
West, 2015; Rutledge-Taylor, Kelly, West, & Pyke, 2014).
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We use MINERVA 2 (Hintzman, 1984) as a starting point for
developing our theoretical framework. MINERVA 2 (Hintzman,
1984) is a computational model of long-term memory (both
episodic and semantic). We chooseMINERVA 2 because it captures
a wide variety of human memory phenomena across differing
experimental paradigms and as such seems a good candidate for
a basis for theoretical unification.

MINERVA 2 has been applied to a number of experimental
paradigms, including judgement of frequency tasks (Hintzman,
1984), recognition tasks (Hintzman, 1984), ‘‘schema-abstraction’’
or category learning (Hintzman, 1984, 1986), implicit learning
tasks such as artificial grammar learning (Jamieson & Mewhort,
2009, 2011), the production effect (Jamieson, Mewhort, & Hockley,
2016) as well as speech perception (Goldinger, 1998), and naming
words from print (Kwantes & Mewhort, 1999).

While there are many experimental phenomena that MINERVA
2 cannot account for, our interest is not in MINERVA 2 per se,
but in the broader class of models based on MINERVA 2. We refer
to this broader class as MINERVA models and use MINERVA 2 to
refer specifically to themodel proposedbyHintzman (1984).While
MINERVA 2 has many limitations, the MINERVA framework as a
whole has proved a fruitful research paradigm.

Variations on MINERVA 2 address a broader range of phenom-
ena. MINERVA-AL captures numerous associative learning phe-
nomena from both the animal and human learning literature
(Jamieson et al., 2012). Kwantes (2005) uses a MINERVA variant
as a model of distributional semantics. Johns, Jamieson, Crump,
Jones, and Mewhort (2016) use a MINERVA variant to model the
production of natural language syntax given sentence exemplars.
MINERVA-DM models judgements of likelihood to account for
heuristics and biases in decision-making (Dougherty et al., 1999).
The HyGene model (Thomas et al., 2008) extends MINERVA-DM to
hypothesis generation and accounts for how errors in hypothesis
generation lead to errors in judgement and decision-making.

In this paper, we begin by providing an introduction to
MINERVA 2, followed by a comparison of the various memory
models that use high-dimensional vectors. Thesemodels belong to
two broad classes: composite storage and separate storagemodels.
Composite storagemodels have a clear neural implementation and
are invariant in scale with respect to the number of memories
stored. Conversely, distributed storage models grow with the
number of memories or concepts stored in the model and do not
have an established neural interpretation.

To address concerns about the scalability and neural realization
of separate storage models, and to move towards a unified
theoretical framework for memory models, we present a proof of
exact mathematical equivalence between MINERVA 2 (a separate
storage model) and an auto-associative fourth-order tensor
memory (a composite storage model). We refer to the tensor as a
‘‘memory tesseract’’ as it is a matrix with four equal dimensions.
We also prove that MINERVA is approximately equivalent to a
holographic approximation to the memory tesseract.

To illustrate the behaviour of thememorymodels, we present a
set of simulations on artificial data. We also compare performance
of the holographic approximation to Johns et al.’s (2016) MINERVA
model of a sentence production task. We find that the holographic
approximation provides a means of implementing MINERVA as
a memory system that is invariant in scale with respect to the
number of experiences stored, but does so at the cost of increased
noise from the compression of the memory traces into a smaller
data structure. Also, to be feasibly implemented on very large-scale
tasks, the holographic approximation needs to be simulated on a
massively parallel computer, such as a neuromorphic computer.

This work clarifies the relationship between MINERVA and
other memory models that use high dimensional vectors. This
work serves to demonstrate that MINERVA can potentially be used
as a basis for unifying high dimensional vector memorymodelling,
that MINERVA is scalable to arbitrarily long-term learning if
implemented on amassively parallel computer, and thatMINERVA
can be plausibly realized in neurons.

1. How does MINERVA work?

In MINERVA, each individual experience, or episode, is repre-
sented by a high dimensional vector, a list of features represented
by numerical values. Memory is a table where each row is a vector
representing an episodic trace, a stored experience. New experi-
ences are stored as new rows in the memory table. New experi-
ences do not need to be novel. A repeated experience is also stored
as a new row, separate from previous instances of that experience.

In MINERVA, memory retrieval is not a look-up process, it is a
reconstruction process. In thewords of Tulving andWatkins (1973,
p. 744), a retrieval cue ‘‘combines or interacts with the stored
information to create the memory of a previously experienced
event’’. When a retrieval cue is presented, each vector in the table
‘‘resonates’’ with the cue in proportion to its similarity to the cue
(Hintzman, 1986).

Similarity is computed as a normalized dot-product of the cue’s
vector with the stored vector. Each stored vector is activated
by its cubed similarity to the cue. Information is retrieved from
memory in the form of a new vector, called an echo. The echo is
a weighted sum of the vectors in the table, each vector weighted
by its activation. By computing activation as the cube of similarity,
the contribution of the most similar vectors (or experiences) is
emphasized and that of the least similar (and least relevant) is
minimized. The model uses the echo to respond as appropriate
for the given task. Abstract, conceptual, semantic, and categorical
information reflect aggregate retrieval over many episodic traces
(e.g., Goldinger, 1998; Kwantes, 2005).

Hintzman (1984, p. 96) summarizes MINERVA 2’s key assump-
tions:

(1) only episodic traces are stored in memory,
(2) repetition produces multiple traces of an item,
(3) a retrieval cue contacts all traces simultaneously,
(4) each trace is activated according to similarity to the cue,
(5) all traces respond in parallel, retrieved information reflects

their summed output.

According to Hintzman (1990), MINERVA 2 can be understood
as an artificial neural network (see Fig. 1). A layer of input nodes
represent the cue, a layer of output nodes represent the echo,
and between the two is a hidden layer of nodes. In the hidden
layer, each node corresponds to an episodic trace. It follows that
MINERVA’s hidden layer is a localist network: specific nodes
represent specific pieces of information.

Modellers using MINERVA are generally agnostic as to how the
model is related to the brain. No one claims that for each new
experience the brain grows a new neuron that is forever singly
dedicated to that particular experience. But no other interpretation
of how MINERVA can be implemented in neurons has been
previously proposed, leaving open the question of MINERVA’s
neural plausibility.

2. A comparison of memory models

The memory models discussed here use vector and tensor
representations to simulate the processes of storage and retrieval.
Tensors are a generalization of matrices. A vector is a first order
tensor, a matrix is a second order tensor, a third order tensor is a
‘‘3D matrix’’ or a stack of matrices, and we use the term tesseract
to refer to a fourth order tensor or ‘‘4D matrix’’.
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Fig. 1. MINERVA represented as a neural network that operates on four-
dimensional vectors (n = 4) and has three memory traces stored (m = 3). Given
a cue x, the network retrieves an echo y, a weighted sum of the traces v1 ,
v2 , and v3 . The input and output layers can alternatively be represented by a
single input/output layer with recurrent connections from the hidden layer, as in
Hintzman (1990).

For our purposes, vector-based memory models can be divided
into five categories: composite vector memory, where all memories
are stored in a single vector; matrix memory, where all memories
are stored in a single matrix; tensor memory, where all memories
are stored in a single, higher-order tensor (e.g., a ‘‘3D’’ or ‘‘4D’’
matrix); holographic vector memory, which compress tensors into
a vector; and multi-vector memory, where multiple vectors are
used to store memories. Composite vector, matrix, tensor, and
holographic vector memory are all examples of what Clark and
Gronlund (1996) refer to as composite or distributed storagemodels
because all stored experiences are represented as distributed
across a shared set of units. Conversely, multi-vector memory is
what Clark and Gronlund refer to as a separate storage model
because different experiences are represented in different sets of
units.

Humphreys et al. (1989b) note that their matrix memory, the
multi-vector model MINERVA 2, and the holographic vector model
TODAM (Murdock, 1993) all retrieve information as a sum of all
traces in memory, each trace weighted by its similarity to the cue.
As we will show, these models are not different in kind, and so we
elect to use the term echo, normally reserved forMINERVA, to refer
to the retrieved vector in all of the memory models we discuss in
this paper. We will use the term probe to refer to the vector used
as a retrieval cue.

In vector-based memory models, a to-be-remembered item
is represented as a vector. These vectors are typically high
dimensional with randomly generated values. For example, in the
simulations illustrated in Figs 2, 3, and 4, we use vectors of 64
dimensions. The 64 values for each vector are randomly sampled
from a normal distribution.

Here we compare composite vector, matrix, tensor, holographic
vector, andmulti-vector models of memory (see Table 1).

2.1. Composite vector models

A composite vector memory is simple: it is the sum of the
vectors that represent the to-be-remembered items. To store an
item in memory, the vector representing that item is weighted by
how well it is encoded and then added to the memory vector. The
familiarity of a given item is the dot product of that item with the
memory vector. Anderson (1973), Johns et al. (2012), andMurdock
(1989) use composite vectormodels to account for performance on
recognition tasks.

Composite vector memories do not store associations. Instead,
items are stored individually. Unlike the othermodels, a composite
Fig. 2. Iterative retrieval from five memory models: MINERVA 2, the memory
tesseract, an auto-associative holographic vector, a variant of Levy and Gayler’s
(2009) model that approximates MINERVA 2 / the memory tesseract, and an auto-
associative matrix memory. The 64-dimensional vectors a and b are stored in
memory. On the first iteration, a + 0.8b, normalized to a magnitude of one, is used
to retrieve an echo. On successive iterations, the echo from the previous iteration is
used to retrieve a new echo. Cosine is measured between each echo and the target,
a. Results averaged over 50 runs of each model.

Fig. 3. Iterative retrieval from the holographic approximation to the tesseract. As
the number ofmemory vectors, p, increases from25 to 800, themodelmore reliably
andmore rapidly cleans-up the echo. The 64-dimensional vectors a and b are stored
inmemory, c adds noise to the probe. On the first iteration, a+0.8b+c, normalized
to a magnitude of one, is used to retrieve an echo. On successive iterations, the
echo from the previous iteration is used to retrieve a new echo. Cosine is measured
between each echo and the target, a. Results are from a single run of each model.

vectormemory does not retrieve an echo given a probe. Rather, the
memory vector itself is a linear combination of item vectors, like
the echoes retrieved by the more complicated memory models.

2.2. Matrix and tensor models

A key point of comparison is how vector-based models
represent associations (see Table 1). Using the Hebbian learning
rule, for a pair of items, each represented as a vector, an association
between the pair is represented by the matrix outer-product
of the vectors. Smolensky (1990) notes that the tensor product,
a generalization of the matrix product, can be used to form
associations among an arbitrary number of items (pairs, triples,
quadruples, etc.), though at the cost of producing progressively
larger and more unwieldy tensors.

The order of the tensor used to store memories indicates the
number of vectors the memory model associates together. Items
that are not associated can be represented in a composite vector
memory, which is a first order tensor. An association between a
pair of items is represented as the tensor product of the items’
vectors, which is a second order tensor, or matrix.

Amatrix memory is the sum of such associations between pairs
of vectors. A matrix memory is auto-associative if each item is
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(i) Probe a + c. (ii) Probe a + b.

(iii) Probe a + 2b. (iv) Probe −a.

Fig. 4. A comparison of four memory models: MINERVA, the memory tesseract, the holographic approximation to the memory tesseract, and an auto-associative matrix
memory. Four different vectors (probes) are presented to all models: (i) a + c, (ii) a + b, (iii) a + 2b, (iv) −a. Four corresponding vectors (echoes) are retrieved from each
model. Plotted is the cosine between each echo and the vectors a, b, c, and the probe that elicited the echo.
Table 1
Comparison of memory models.

Model by category Stored associations Trace activation

Composite vector (1st order tensor)
Anderson (1973) item (no association) Dot product
Murdock (1989) item Dot product
Johns et al. (2012) item Dot product

Matrix (2nd order tensor)
Humphreys et al. (1989b) item a × item b Dot product
Howard and Kahana (2002) context × item Dot product
SOB (Farrell & Lewandowsky, 2002) item a × item a Dot product
C-SOB (Lewandowsky & Farrell, 2008) item a × item a; context × item Dot product

3rd order tensor
Humphreys et al. (1989a) context × item a × item b Dot product

2nd/3rd order tensor
Osth and Dennis (2015) context × item; context × item a × item b Dot product

Holographic vector (compressed tensor)
Eich (1982) item a × item b Dot product
TODAM (Murdock, 1993) item; item a × item b Dot product
Franklin and Mewhort (2015) item; item a × item b Dot product

Multi-vector (separate storage)
GCM (Nosofsky, 1986, 1991) item × category Exponential weighted distance
MINERVA tracea Cubed normalized dot product
REM (Shiffrin & Steyvers, 1997) item Likelihood ratio
BEAGLE (Jones & Mewhort, 2007) word a × word b × word c . . . Vector cosine
DSHM (Rutledge-Taylor et al., 2014) item a × item b × item c . . . Vector cosine
HDM (Kelly et al., 2015) item a × item b × item c . . . Vector cosine

a Traces are not associated to each other, but each trace may represent a set of associated items and contexts.
associated with itself (e.g., SOB; Farrell & Lewandowsky, 2002). A
matrix memory is hetero-associative if each item is associated with
a different item (e.g., Humphreys et al., 1989b) or a contextual cue
(e.g., Howard & Kahana, 2002).

Associating three vectors results in a ‘‘3Dmatrix’’, or third order
tensor (e.g., Humphreys et al., 1989a; Osth & Dennis, 2015). Osth
and Dennis’s (2015) model uses two tensors: a matrix for items
with a context and a third-order tensor for pairs of items with a
context. The two tensors are separate strictly due to mathematical
necessity. Osth and Dennis note that they are not committed to
singletons and pairs of items having distinct neural substrates or
memory systems.

There is a problem here. Across these models, the architecture
of memory is being modified to suit the particulars of the tasks
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being modelled. If we are testing for the familiarity of an item, we
can use a composite vector memory. If we need a cue (be it an item
or context), we use a matrix memory. If we use two cues (be it an
item and context, or two items) we use a third order tensor. But
what if we need to use three cues? Dowe then need to use a fourth
order tensor?What about four cues? Using this approach, not only
does the architecture of memory need to be changed depending
on the particulars of the task, but also the architecture becomes
increasingly unwieldy as the task becomes more complex.

2.3. Holographic vector models

Given k vectors, each of n dimensions, an association of those
vectors can be represented as the tensor product of the vectors,
which is a tensor of nk values (Smolensky, 1990). A tensor is
a potentially unwieldy representation if k is large. Furthermore,
using tensors necessitates a separate memory store for each value
of k because tensors of different orders cannot be added together
(e.g., one cannot add together a vector and a matrix).

In a holographic vector memory, the association of a set of
vectors is the convolution of those vectors. If circular convolution
is used instead of the tensor product, the association of k vectors
of n dimensions is itself a vector of n dimensions, irrespective of k
(Plate, 1995).

Holographic vectors can represent arbitrarily complex associ-
ations of items and context. Using holographic vectors makes it
unnecessary to use matrices or higher order tensors to represent
associations and allows modellers to adopt a memory architecture
that is compact and invariant with respect to the complexity of the
associations.

Holographic vectors are part of a family of related compu-
tational memory systems called vector-symbolic architectures
(Gayler, 2003) that also includes MAP codes (Gayler, 2003), square
matrix representations (Kelly, 2010) and binary spatter codes
(Kanerva, 1996; see Kelly, Blostein, & Mewhort, 2013, for a re-
view). Vector-symbolic architectures are so named because they
provide a means of representing symbolic expressions of arbitrary
complexity using vectors. Vector-symbolic architectures address
the question of how the complex data structures necessary for
reasoning and language can be realized in neural networks (for dis-
cussion, see Gayler, 2003; Plate, 1995). All vector-symbolic archi-
tectures can be understood as compressing the tensor product of a
set of vectors into a single vector.

As holographic vectors are the most common vector-symbolic
architecture in the literature, we restrict our discussion to
holographic vectors, and in particular, holographic reduced
representations (Plate, 1995), which use circular convolution to
encode associations. As vector-symbolic architectures all have
similar properties, our discussion pertains to all memory models
that use vector-symbolic architectures.

Cognitive models of memory that use holographic vectors can
explain and predict a variety of human memory phenomena
(e.g., Eich, 1982; Franklin & Mewhort, 2015; Murdock, 1993). The
majority of models that use holographic vectors are purely
cognitive and, as such, do not concern themselves with the
question of how the models could be implemented in the brain.
However, the Neural Engineering Framework (Eliasmith, 2013)
uses holographic vectors as the representation scheme for their
neurocognitive model of the brain Eliasmith et al. (2012). Thagard
and Stewart (2011) suggest that holographic vectors are the neural
underpinning of creativity. Holographic vectors present a plausible
means by which the brain could recursively combine patterns of
neural activations representing simple concepts to generate new
patterns of activation that represent novel, complicated concepts.

However, circular convolution is a lossy compression of the
tensor-product (Plate, 1995; for discussion see Kelly et al., 2013).
Information is lost in the act of compressing a tensor of size nk

down to a vector of size n. Information loss is the only1 reason one
might prefer matrix or tensor memories to a holographic memory.
However, combining holographic vectors with MINERVA creates a
system that can store arbitrarily complex associations of items and
contexts, and retrieve them with fidelity (Jamieson & Mewhort,
2011).

2.4. MINERVA versus vector and matrix models

Raising similarity to an exponent of 3 sets theMINERVAmodels
apart from the vector and matrix models, as Hintzman explains
(1990, p. 116):

This model escapes being just a less efficient version of the
vector model by using nonlinearity. In particular, the activation
of each hidden unit is a positively accelerated function of its
match to the input vector, limiting the number of units that will
respond significantly to any input, and thereby reducing noise.

By weighting each episodic trace by the cube of its similarity,
the traces that are most similar to the cue contribute much more
to the echo than traces that have only partial similarity to the cue,
or traces that have tiny, incidental similarity to the cue.

Raising the similarity to any exponent larger than 1 introduces
non-linearity. However, when using even-numbered exponents,
the sign of the similarity is lost. MINERVA 2 uses a normalized dot
product to measure similarity, which ranges from +1 to −1. To
preserve the sign of the similarity, MINERVA 2 uses an exponent
3 rather than 2. Larger odd-numbered exponents (5, 7, 9, . . . ) also
preserve the sign of the similarity and can be used to further reduce
the amount of noise in the echo (e.g., Johns et al., 2016).

Non-linearity also allows MINERVA to ‘‘clean-up’’ the echo
by iteratively using the echo as a cue to produce a new echo
(Hintzman, 1986).With each pass throughMINERVA, the contribu-
tions of the most similar traces grow. This process can be repeated
until the echo reaches a steady state where it no longer changes, at
which point the echo will closely resemble the trace most similar
to the initial cue (see Fig. 2).

The clean-up process serves as a possible explanation for why
we are faster to remember some things than others: echoes formed
from frequently occurring and distinctive episodic traces reach
a steady state more quickly. The number of iterations until the
echo reaches a steady state is used to produce response latency
predictions in the SOB (Farrell & Lewandowsky, 2002) and C-SOB
(Lewandowsky & Farrell, 2008) models of memory.

Linear systems require an external clean-up memory. Unless
some form of non-linearity is introduced, the echo from a
holographic vector memory (e.g., TODAM; Murdock, 1993) or,
to a lesser extent, a matrix memory (e.g., Humphreys et al.,
1989b) is noisy (see figure) and requires an external memory for
items in order to identify which item the echo most resembles
(Murdock, 1993). Raising similarity to an exponent is not the
only way to introduce non-linearity. For example, restricting the
output of a model to binary or bipolar values can introduce the
necessary non-linearity to iteratively clean up the echo (e.g., Farrell
& Lewandowsky, 2002).

MINERVA needs to be nonlinear, as it cannot rely on an external
clean-up memory. MINERVA is a model of both episodic and
semanticmemory and thus it would ‘‘violate the spirit ofMINERVA
2’’ (Hintzman, 1986, p. 416) to have an external store of items (i.e., a
separate semantic memory) to clean up the echo.

1 Another difference is that convolution is commutative whereas the matrix
product and tensor product are non-commutative. A non-commutative variant of
convolution can be used if required (Plate, 1995, p. 12).
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2.5. MINERVA and other multi-vector models

In multi-vector memory models, memories are stored as a
collection of vectors in a table. Multi-vector models include
MINERVA models, the Retrieving Effectively from Memory model
(REM; Shiffrin & Steyvers, 1997) the Generalized Context Model of
categorization (GCM; Nosofsky, 1986, 1991), the BEAGLE model of
distributional semantics (Jones & Mewhort, 2007), and variants of
BEAGLE, such as the DSHM (Rutledge-Taylor et al., 2014) and HDM
(Kelly et al., 2015) models of memory.

MINERVA and GCM store each experience as a separate vector,
such that the number of vectors grows with each additional
memory trace stored. DSHM, HDM, and BEAGLE store each distinct
concept as a separate vector, such that the number of vectors
grows only with the addition of new concepts. REM takes a hybrid
approach and stores vectors for both individual experiences and
individual concepts. REM makes the argument that concepts are
frequently revisited experiences, such that vectors inmemory exist
on a continuum from experience to concept. Conversely, MINERVA
holds that concepts or categories are emergent from aggregate
retrieval across experiences and so do not require a distinct storage
mechanism.

In both MINERVA and GCM, when a probe is presented to
memory, each vector in memory is activated according to its
similarity to the probe raised to some power. The GCM calculates
similarity as e to the power of the negative Euclidean distance,
which is 1 when the vectors are identical and asymptotically
approaches 0 as the vectors move further apart. As similarity
in the GCM is always positive, the GCM can raise similarity to
even-numbered powers without losing the sign of the similarity.
In the GCM, similarity is raised to the power of c , where c is a
sensitivity parameter set by themodeller. Conversely, inMINERVA
2, the exponent is always 3, though some variants of MINERVA
dynamically vary the exponent (e.g., Mewhort & Johns, 2005) or
use a larger exponent to minimize noise (e.g., Johns et al., 2016).

The GCM differs from MINERVA in that the GCM is a model of
categorization judgements whereas MINERVA is a more general
model of memory. MINERVA retrieves from memory an echo, a
vector representing an inexact recollection. Conversely, the GCM
retrieves from memory the amount of evidence for each possible
categorization, computed as the sum of the activations of the
exemplars of each category.

However, the GCM can be used to model recognition judge-
ments by computing a familiarity score for a probe as a sum of the
activations of each category (Nosofsky, 1991). Likewise, MINERVA
2 can model category learning (e.g., Hintzman, 1986) and can be
made to imitate the GCM.MINERVA 2 can store exemplar-category
pairs by concatenating a vector representing an exemplar with a
vector representing the corresponding category. Given an exem-
plar as a probe, MINERVA 2 retrieves an echo where the latter half
of the echo will be a weighted sum of category vectors. The cosine
between the latter half of the echo and each category vector will
be the amount of evidence for each categorization, as in the GCM.

The REM model (Shiffrin & Steyvers, 1997) differs from
MINERVA in that the activation of a vector is computed as a
likelihood ratio: the probability of the observed similarity given
the probe and trace are a match is divided by the probability of the
similarity given the probe and trace are a mismatch. Computing
activation using Bayesian probability allows REM to model a
number of list strength effects (Shiffrin & Steyvers, 1997) that
are problematic for MINERA and composite memory models (see
Shiffrin, Ratcliff, & Clark, 1990 for a discussion), though more
recent work has suggested alternate approaches to accounting for
list strength effects in composite (Johns et al., 2012) and MINERVA
models (Jamieson et al., 2016).

BEAGLE (Jones & Mewhort, 2007) and variants (Kelly et al.,
2015; Rutledge-Taylor et al., 2014) are collections of holographic
vectors. BEAGLE and variants differ from MINERVA in that each
item is represented in memory by a single vector that is sum of all
experiences with that item. Thememory vectors stored in BEAGLE,
DSHM and HDM can be thought of as analogous to the echoes
retrieved frommemory by MINERVA. A MINERVA model that uses
theMINERVA2 architecture and the representation assumptions of
BEAGLE can generate echoes that closely approximate thememory
vectors in BEAGLE (Kelly, 2016, p. 61, p. 203).

Thus, the GCM model of categorization, the BEAGLE model of
distributional semantics, and the DSHM and HDMmemorymodels
based on BEAGLE, can all be instantiated within the MINERVA
architecture and are compatible with MINERVA theory. However,
in practical terms, the BEAGLE model cannot be implemented as
a MINERVA model as described, as it would require storing one
vector in the memory table for each word in the corpus. The
size of a corpus may range from a few million words, to 100
million words (e.g., the British National Corpus), to 1.9 billion
words (e.g., Global Web-Based English). Thus, a strict MINERVA
instantiation of BEAGLE is not feasibly computable.

3. Scalability of MINERVA

Applying MINERVA to large scale tasks, such as learning the
meaning of words (Kwantes, 2005) or learning how to sound-out
written words (Kwantes &Mewhort, 1999), requires abandoning a
key assumption of MINERVA for computational efficiency, namely,
that repetition of an item produces multiple traces of that item.

This might seem like an assumption that can be abandoned
without affecting the model. If an item is repeated exactly,
adding another row to MINERVA’s table to represent the second
occurrence of the item is mathematically equivalent to storing
only one trace for that item and doubling that trace’s weighting.
Instead of adding additional traces, exact repetition of an item can
be simulated by increasing the weight of the item’s trace. While
this approach suffices for modelling many experimental tasks, for
real world tasks, exact repetition is an unrealistic assumption. In
the words of Heraclitus, you cannot step twice into the same river.

For example, Kwantes and Mewhort’s (1999) MINERVA model
of sounding-out written words has one vector per word. Each
vector stores a prototypical pronunciation of the word, rather than
any particular experience of having heard the word pronounced,
which would vary depending on context and speaker. BEAGLE
(Jones & Mewhort, 2007) and Kwantes’ (2005) MINERVA model,
bothmodels of learning themeaning ofwords, also have one vector
perword, such that each experience of aword’s use in the language
is summed into a single vector.

For the sake of computational feasibility, as MINERVA models
are scaled up, the models shift from storing experiences to
concepts. Thus, there are two kinds of MINERVA model: models
that store episodes (i.e., episodic memory), and models that store
generic knowledge (i.e., semantic memory). Modelling episodic
and semantic memory using different assumptions violates the
spirit of MINERVA 2, as the model is intended as an account
of semantic and episodic memory as a single, integrated system
(Hintzman, 1986).

4. MINERVA as a fourth order tensor

In what follows, we prove equivalence between theMINERVA 2
model and an auto-associative fourth order tensor memory. To do
so,we first prove that a variant ofMINERVA that raises similarity to
an exponent of 1 is equivalent to an auto-associative second order
tensor (i.e., amatrix)memory. Then,we prove that aMINERVA that
uses an exponent of 2 is equivalent to a third order tensor. Finally,
we prove that the MINERVA 2model, which uses an exponent of 3,
is equivalent to a fourth order tensor.
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4.1. MINERVA with an exponent of 1

Consider a variant on theMINERVAmodel that uses dot product
(denoted by •)2 to measure similarity and weights each trace by
its similarity raised to the exponent of 1. Each trace in memory is
represented by a vector vi where i = 1 . . .m and m is the number
of traces in memory. When the model is presented with a cue x,
the echo y is:

y = (x • v1)v1 + · · · + (x • vm)vm.

This is equivalent to an auto-associative matrix memory (e.g.,
Farrell & Lewandowsky, 2002).

In an auto-associativematrixmemory, each trace is represented
by a vector vi. To store a trace in memory, the trace is associated
with itself (hence auto-associative) by taking the outer-product of
the vector with itself, vivTi , then taking the sum of all the outer-
product matrices to create the memory matrix,M:

M = v1vT1 + · · · + vmvTm.

The echo, y, is the inner-product of the cue and the matrix:

y = Mx
y = (v1vT1 + · · · + vmvTm)x
y = v1vT1x + · · · + vmvTmx.

Because vTi x is the dot-product of vi and x:

y = (x • v1)v1 + · · · + (x • vm)vm

which is identical to the echo from a MINERVA with an exponent
of 1.

We note that on a recognition task, the behaviour of aMINERVA
with an exponent of 1 is equivalent to the behaviour of a composite
vector memory, depending on how familiarity is computed. A
composite vector memorym is a sum of item vectors:

m = v1 + · · · + vm.

Whether or not an item x is recognized by m is a function of the
familiarity, f , computed as the dot product of xwith m,

f = x • m = (x • v1) + · · · + (x • vm).

In MINERVA 2, familiarity can be computed in one of two ways.
These two methods for computing familiarity are common across
vector-based models of memory and are referred to as local match
and global match (Kahana, Rizzuto, & Schneider, 2005).When using
a global match, familiarity is computed as the similarity between
the probe and all of memory. When using local match, familiarity
is computed as the similarity between the probe and the echo.

When using global match, Hintzman (1986) computes familiar-
ity as the sum of similarities between the probe and each trace in
memory. In MINERVA 2, the familiarity f would be as follows:

f = (x • v1)3 + · · · + (x • vm)3.

However, when using a MINERVA with an exponent of 1, the
familiaritywould equal to the familiarity computed by a composite
vector model:

f = (x • v1) + · · · + (x • vm).

2 To simplify the proof, we assume that MINERVA uses the dot product to
measure similarity. Using the dot product is equivalent to using the cosine (i.e., a
normalized dot product) to measure similarity if all vectors, the cue and traces, are
normalized to a magnitude of one. This assumption merely moves normalization
from being part of running the model to part of generating the vectors before
running the model, and so has no effect on the model’s behaviour.
Thus, on recognition tasks, when computing familiarity as in
Hintzman (1986), a MINERVA with an exponent of 1 is equivalent
to a composite vector model.

Alternatively, Hintzman (1988, p. 546) suggests that familiarity
can be computed using the local matchmethod as the similarity
between the echo and the probe. Local match is used in some
MINERVA 2 models (e.g., Jamieson & Mewhort, 2009). Because
computing familiarity as the similarity between the probe and the
echo allows for easier comparison to other memory models, it is
the approach we adopt in our simulations (see Figs. 2, 3, and 4).

For either MINERVA with an exponent of 1 or, equivalently, an
auto-associative matrix memory, given an echo,

y = (x • v1)v1 + · · · + (x • vm)vm
we can compute the familiarity of x as x • y,

f = x • y = x • ((x • v1)v1 + · · · + (x • vm)vm)

f = x • (x • v1)v1 + · · · + x • (x • vm)vm
f = (x • v1)(x • v1) + · · · + (x • vm)(x • vm)

f = (x • v1)2 + · · · + (x • vm)2

which differs from the familiarity in a composite vector model as
each term is squared. For MINERVA 2, i.e., a MINERVA with an
exponent of 3, computing familiarity in this manner results in each
term being raised to the power of four:

f = (x • v1)4 + · · · + (x • vm)4.

In general, it seems that the difference between the local match and
global matchmethods for computing familiarity is that if the global
match method for the model in question computes familiarity as,

f = (x • v1)n + · · · + (x • vm)n

then the local match model computes familiarity as

f = (x • v1)n+1
+ · · · + (x • vm)n+1.

Thus, these two methods for computing familiarity, the global
match between the probe andmemory or the localmatch between
probe and the echo, are not as different as they might seem from
their initial description. However, the localmatch can be calculated
as a cosine of the probe and the echo (i.e., a normalized dot
product), as in Jamieson and Mewhort (2009). Normalizing either
the global or local match may produce substantively different
behavioural predictions than using the un-normalized match
values.

4.2. MINERVA with an exponent of 2

Consider a MINERVA that raises similarity to the exponent of 2:

y = (x • v1)2v1 + · · · + (x • vm)2vm.

This variant of MINERVA, as we shall demonstrate, is mathemati-
cally equivalent to an auto-associative third order tensor memory.
Using the tensor product, denoted by⊗, we can store each trace as
vi ⊗ vi ⊗ vi, which is a third order tensor. The memory tensorM is
the sum of the third order tensor outer-products of each trace:

M = v1 ⊗ v1 ⊗ v1 + · · · + vm ⊗ vm ⊗ vm.

The echo, y, can be computed from the cue, x, by taking the inner
product twice:

y = (M x)x.

If each vi is a vector of n dimensions, thenM is an n× n× n tensor.
M can be thought of as n matrices of n × n dimensions. When we
compute the inner-product of M with the cue x, we compute the
inner product of x with each of those n matrices. This results in n
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vectors that can be rearranged into a new n×nmatrix. The second
inner product with x then produces a vector, the echo y.

To illustrate, let us breakM into its components:

y = (Mx)x
y = ((v1 ⊗ v1 ⊗ v1 + · · · + vm ⊗ vm ⊗ vm)x)x
y = (v1 ⊗ v1 ⊗ v1x + · · · + vm ⊗ vm ⊗ vmx)x.
The tensor product vi ⊗ vi ⊗ vi can be understood as n matrices,
where each matrix is the outer-product vivTi weighted by a
different element j of vi, for all j = 1 . . . n.

vi ⊗ vi ⊗ vi = {vi1vivTi , . . . , vinvivTi }.
Taking the inner-product of the cue x with vi ⊗ vi ⊗ vi, we get n
vectors, each weighted by the dot-product of xwith vi:
vi ⊗ vi ⊗ vix = {vi1vivTi x, . . . , vinvivTi x}
vi ⊗ vi ⊗ vix = {vi1(x • vi)vi, . . . , vin(x • vi)vi}.
If we factor out the dot-product of x and vi, the result is n vectors,
or rather, the outer-product matrix of vivTi :
vi ⊗ vi ⊗ vix = (x • vi){vi1vi, . . . , vinvi}
vi ⊗ vi ⊗ vix = (x • vi)vivTi .
Thus, when we take the outer-product of x with M, the result is a
sum of m matrices vivTi , each matrix weighted by the dot-product
of xwith vi.
y = (v1 ⊗ v1 ⊗ v1x + · · · + vm ⊗ vm ⊗ vmx)x
y = ((x • v1)v1vT1 + · · · + (x • vm)vmvTm)x.
By then taking the second inner-product with x, we reduce each
matrix to a vector weighted by the squared similarity to x,
producing an echo like MINERVA with an exponent of 2:

y = (x • v1)v1vT1x + · · · + (x • vm)vmvTmx
y = (x • v1)(x • v1)v1 + · · · + (x • vm)(x • vm)vm
y = (x • v1)2v1 + · · · + (x • vm)2vm.

Thus, an auto-associative third order tensor memory or ‘‘memory
cube’’ is equivalent to a MINERVA with an exponent of 2.
Humphreys et al. (1989a) use a hetero-associative third-order
tensor memory that associates two different items with a context:
item1 × item2 × context . By contrast, the MINERVA third-order
tensormemory associates an itemwith itself twice: item1×item1×
item1.

4.3. MINERVA with an exponent of 3 (i.e., MINERVA 2)

Given a pair of vectors that both have a magnitude of one, the
dot product of those vectors is in the range of +1 to −1. The
dot product is +1 if the vectors are identical, 0 if the vectors are
orthogonal, and −1 if one vector is the negation of the other. Thus,
it is important to preserve the sign of the dot product. By taking the
square of the dot product, the sign is lost. For this reason,MINERVA
2 uses an exponent of 3.

MINERVA 2 is equivalent to an auto-associative memory
implemented as a fourth order tensor. Memory is constructed as
a sum of fourth order tensors:

M = v1 ⊗ v1 ⊗ v1 ⊗ v1 + · · · + vm ⊗ vm ⊗ vm ⊗ vm.

Given a cue x, an echo y is computed by taking the inner product
three times:

y = ((Mx)x)x
y = (((v1 ⊗ v1 ⊗ v1 ⊗ v1 + · · · + vm ⊗ vm ⊗ vm ⊗ vm)x)x)x
y = (((x • v1)v1 ⊗ v1 ⊗ v1 + · · · + (x • v1)vm ⊗ vm ⊗ vm)x)x
y = ((x • v1)2v1vT1 + · · · + (xvm)2vmvTm)x
y = (x • v1)3v1 + · · · + (x • vm)3vm.
5. Implications of the memory tesseract

MINERVA is equivalent to a distributed memory system
implemented as an auto-associative fourth order tensor, or
memory tesseract. Re-interpretingMINERVA as amemory tesseract
changes our understanding of the MINERVA model, and in turn,
changes our understanding ofwhatmanipulations of themodel are
permissible.

If MINERVA is understood as a fourth-order tensor, cubing
the similarity is not a parameter but a structural feature of the
model. Understood as such, it is less permissible to change the
value of the exponent. If we understand the GCM (Nosofsky, 1986,
1991) as a MINERVA model restricted to category judgements,
then the GCM’s c exponent in its activation function must also be
understood as a structural feature of the GCM rather than a value
that can be changed at whim.

Clark and Gronlund (1996) propose a MINERVA model where
information about items and associations is cubed, but information
about environmental context is not cubed. Implementing Clark
and Gronlund’s MINERVA model as a tensor would require two
separate data structures: a fourth-order tensor for items and
associations, and a matrix memory for contexts. Implemented in
this manner, the Clark and Gronlund MINERVA would resemble
(Lewandowsky & Farrell, 2008) C-SOB model, which also has
an auto-associative memory for items and a separate matrix
memory for context information. Note, though, that the C-SOB
auto-associativememory for items is amatrixwhereas in the Clark
and Gronlund MINERVA it would be a fourth-order tensor.

The Iterative Resonance Model (IRM; Mewhort & Johns, 2005)
is a variant of MINERVA that models retrieval from memory as
an iterative process. On the first iteration, an echo is constructed
as a sum of traces, each trace weighted by their similarity to the
probe raised to an exponent of one. On each successive iteration,
the same probe is used, but the exponent is incremented by
0.5. By increasing the exponent with each iteration, the echo is
increasingly dominated by the trace most similar to the probe. If
MINERVA is understood as a tensor, increasing the exponent at
each time-step during retrieval corresponds to increasing the order
of the tensor, which implies changing the structure of the model
during retrieval. As the exponent grows with each time-step, the
tensor grows exponentially in size. Thus, the memory tesseract
cannot implement the IRM as described.

We suggest that IRM could be implemented using the memory
tesseract, but it would need to use a different iterative retrieval
mechanism. As shown in Fig. 2, iterative retrieval can be imple-
mented in MINERVA with a fixed exponent of 3. On the first iter-
ation, the probe is used to retrieve an echo. On the iterations that
follow, the echo from the previous iteration is used as a new probe
to retrieve a new echo. Across iterations, the echo increasingly
approximates the vector in memory most similar to the original
probe. This form of iterative retrieval has been used to predict re-
action times in othermemorymodels (e.g., Farrell & Lewandowsky,
2002; Lewandowsky & Farrell, 2008).

Just as re-interpretingMINERVAas amemory tesseract suggests
that certain operations, such as changing the exponent, are
impermissible, it also suggests other operations are permissible.
The equivalence shows that MINERVA is not different in kind from
vector, matrix, tensor, and holographic vector models. Thus, some
of the techniques used in these other models to capture memory
phenomenamay be successfully applied toMINERVA. For example,
MINERVA is not typically used to simulate primacy and recency
effects. However, some of the other vector-based models capture
one or both of these effects (e.g., Farrell & Lewandowsky, 2002;
Franklin & Mewhort, 2015; Murdock, 1993). These models do so
by applying weights to the information stored in memory.

To give a concrete example, we can adopt TODAM’s (Murdock,
1993) forgetting parameter α and apply it to MINERVA. For each
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time t when memory is updated with a new trace vt , we weight
the memory tensorM by α, where 0 < α < 1:

Mt = αMt−1 + vt .

If the forgetting parameter α is less than one, newer memories
are weighted more strongly during retrieval, allowing the model
to simulate a recency effect. While this technique can be used
regardless of whether MINERVA is implemented as a tensor or a
table, the equivalence of the table to a tensor shows that these
kinds of operations are permissible by MINERVA’s theory.

6. Is the memory tesseract practical?

Unfortunately, fourth order tensors are very large. For most
applications ofMINERVA to experimental tasks, the dimensionality
n of a vector will be larger than the number of memories m stored
in the model. MINERVA, as standardly implemented, is an m ×

n table, whereas a memory tesseract is an n4 data structure. A
typical MINERVA 2 has 10 ≤ n ≤ 200. In general, the number
of memories stored is smaller than n and much smaller than n3.
For applications where m <n3, the implementation of MINERVA
as a table is more efficient. However, for large scale applications,
such as modelling the lifetime learning of an agent (e.g., Jones &
Mewhort, 2007), where m > n3, the fourth order tensor is more
space efficient. However, when implemented on a serial computer,
the fourth order tensor computes storage in memory n3 times
more slowly than a memory table. This is because storage in the
tensor is a matter of computing a new fourth order tensor to
represent the trace and adding it to thememory tensor. The storage
computation for a tensor memory is prohibitively slow for large
data sets processed on a serial computer.

If negative similarities have no meaning in the model, one
could use a third-order tensor instead, equivalent to MINERVA
with an exponent of 2. In many MINERVA models, negative
similarities occur only when two vectors have approximately
zero similarity, but by chance this approximate value is negative.
When squaring these small, negative similarities, the sign is lost,
but the sign of these approximately zero values is unimportant
to the model. Such models could be reimplemented with an
exponent of 2 or, equivalently, as a third-order tensor. For large-
scale applications of these models, where m > n2, the tensor
implementation would be more space efficient, though storage
is n2 times slower on a serial computer. However, for some
MINERVA models, negative similarities play an important role
in the behaviour of the model, such as MINERVA-AL (Jamieson
et al., 2012), which stores the differences between expected and
observed values for the purposes of modelling learning.

Alternatively, a holographic approximation to the memory
tesseract can be implemented as an n × p data structure for the
p of your choice, as is discussed in the next section.

7. Using holographic vectors rather than tensors

In a holographic vector memory, trying to clean-up the echo
by iteratively using the echo as a cue to retrieve a new echo is
like trying to clean a pair of glasses with an oily cloth: the more
you try to clean it, the worse it becomes. Holographic vectors
use lossy compression. With each pass through the holographic
vector memory, the amount of loss, or noise, increases (see the
holographic vector model in Fig. 2).

Yet Levy and Gayler (2009) have shown that it is possible to
use a holographic vector system as a clean-up memory (see Levy
and Gayler model in Fig. 2). Levy and Gayler use a lateral inhibition
network implemented as a fully-distributed vector architecture.
Gayler and Levy (2009) use their architecture to model analogical
mapping, but we note that it can also be used as a memory system.
Indeed, their network is approximately equivalent to MINERVA 2.

To store a trace vi in Levy and Gayler’s model, the trace is
associatedwith itself twice, then each trace is added to thememory
vectorm:

m = v1 ∗ v1 ∗ v1 + · · · + vm ∗ vm ∗ vm

where ∗ is a binding operation used to form associations.
Levy and Gayler (2009) use MAP codes (Gayler, 2003), which
use element-wise multiplication as a binding operation. We
choose to use holographic reduced representations instead. In
holographic reduced representations (Plate, 1995), binding uses
circular convolution and unbinding uses circular correlation. Given
a cue, x, we can unbind, denoted by #, to recover an echo:

y = x#(x#m)

y = x#(x#(v1 ∗ v1 ∗ v1 + · · · + vm ∗ vm ∗ vm)).

Unbinding is such that given a bound pair, vi ∗ vj,

x#vi ∗ vj = (x • vi)vj + η

where η is a vector of noise with a mean of zero and a normal
distribution (Plate, 1995). Thus,

y = x#(x#(v1 ∗ v1 ∗ v1 + · · · + vm ∗ vm ∗ vm))

y = x#((x • v1)v1 ∗ v1 + · · · + (x • vm)vm ∗ vm + η)

y = (x • v1)2v1 + · · · + (x • vm)2vm + η.

However, if we wish to imitate MINERVA 2 as closely as possible
(and preserve the sign of the similarity) we need to add another
association to Levy and Gayler’s model. We compute the memory
vector, m, and unbind the echo, y, as follows:

m = v1 ∗ v1 ∗ v1 ∗ v1 + · · · + vm ∗ vm ∗ vm ∗ vm
y = x#(x#(x#m))

y = x#(x#(x#(v1 ∗ v1 ∗ v1 ∗ v1 + · · · + vm ∗ vm ∗ vm ∗ vm)))

y = (x • v1)3v1 + · · · + (x • vm)3vm + η.

While this allows themost similar traces to the cue to dominate the
echo, the noise term threatens to overwhelm the signal. Because
holographic vectors use lossy compression, by iterating, the noise
will only grow.

Levy and Gayler solve this problem by using random permuta-
tions. A random permutation is a random re-ordering of the ele-
ments in a vector, like shuffling the cards in a deck. A permutation
can be represented by a permutation matrix, a square matrix with
an entry of 1 exactly once in each row and column and 0 s in all
other entries. When a vector v is multiplied by a permutation ma-
trix P, the matrix product P v is the permuted vector.

Given three random permutation matrices P1, P2, P3, we can
permute the vectors as follows:

m = (P1v1) ∗ (P2v1) ∗ (P3v1) ∗ v1
+ · · · + (P1vm) ∗ (P2vm) ∗ (P3vm) ∗ vm.

To recover an echo, we use the permutations again:

y = ((P1x) ∗ (P2x) ∗ (P3x))#m.

To eliminate the noise, Levy and Gayler use hundreds of such
memory vectors in parallel, each of which uses its own pair, or in
our variant, triple, of permutations. Let p be the number ofmemory
vectors being used. The echo y is the sum of echoes for each p:

y = y1 + · · · + yp

where for each yj, j = 1 . . . p,

yj = ((Pj,1x) ∗ (Pj,2x) ∗ (Pj,3x))#mj
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such that:

y = ((P1,1x) ∗ (P1,2x) ∗ (P1,3x))#m1

+ · · · + ((Pp,1x) ∗ (Pp,2x) ∗ (Pp,3x))#mp.

Because each echo yj is produced using a different triple of
permutations, each echo’s noise term will be different. Because
the noise in each echo is different, a different part of the signal is
preserved in each echo. By taking the sum of all these echoes, we
average across them to get a close approximation to the true signal.

When averaging across a set of measurements with uncorre-
lated error, as the number of measurements approaches infinity,
the statistical error on the mean approaches zero and the mean
approaches the true value. In this case, as the number of memory
vectors p increases to infinity, the mean echo approaches the ex-
act value of the echo from a standard MINERVA 2. The parameter p
thus gives the modeller the ability to control the reliability of the
model as an approximation to MINERVA 2.

With large enough p, weminimize the noise sufficiently thatwe
can clean up the echo by iterating (see Fig. 3).We divide the sum of
all the echoes, y, by its magnitude to normalize, and then use it as
the new cue. By varying the number of memory vectors operating
in parallel p, we can manipulate how quickly and how reliably the
echo is cleaned up by iterating.

The number of iterations to clean up the echo is a measure of
the time the model takes to perform a memory retrieval. For this
reason, the number of iterations is an ideal candidate as a predictor
for human reaction time. Iterations-to-clean-up-the-echo is used to
predict reaction times in the SOB (Farrell & Lewandowsky, 2002)
and C-SOB (Lewandowsky & Farrell, 2008) models of serial recall.

The number of iterations to clean up the echo in MINERVA 2
may be too few to provide sufficient granularity to map well onto
human reaction times. As Hintzman (1986, p. 416), notes, for a
typical experimental task, after three to four iterations, the echo
will reach a steady state where it is identical to a trace in memory
(see Fig. 2). If we instead use Levy and Gayler’s model, by adjusting
pwecanvary thenumber of iterations that themodel takes to clean
up the echo (see Fig. 3). Using smaller p, the model takes, typically,
longer to converge to a steady state than an iterated MINERVA 2,
such that the iterations map onto smaller units of human reaction
time. Thus, the lateral inhibition network, when coupled with a
suitable decision mechanism to end retrieval, may provide more
fine-grained reaction timepredictions than an iteratedMINERVA2.

The lateral inhibition network is also more tractable than a
fourth order tensor for large n (i.e., more space efficient for p < n3

and more time efficient for p log n < n3). The lateral inhibition
network is alsomore space efficient than the table implementation
for p < m and more time efficient on retrieval for p log n < m but
is p log n times slower at storing information inmemory on a serial
computer.

8. Neural implementation of the holographic model

As we have shown, MINERVA 2 is approximately equivalent
to a modified version of the Levy and Gayler (2009) model. The
naïve neural implementation of MINERVA commits us to the claim
that a new neuron is grown for each new episodic trace (Fig. 1).
However, MINERVA 2, implemented as the Levy and Gayler model,
can be constructed as a biologically plausible neural model where
the number of neurons is constant with respect to the number
of episodic traces. That such a model can be constructed serves
as a proof that MINERVA 2 is not committed to the existence
of the infamous grandmother cell—a neuron singly dedicated to
representing a particular experience of one’s grandmother.
Eliasmith’s (2013) Neural Engineering Framework3 provides a
system for implementing linear algebra computations (e.g., cir-
cular convolution, vector addition, and permutation) in networks
of biologically realistic model neurons. The Neural Engineering
Framework is the basis for what is currently the largest functional
brain model, the Semantic Pointer Architecture Unified Network
(SPAUN; Eliasmith et al., 2012). By functional, wemean that SPAUN
is the largest brain model that can perform cognitive tasks. For ex-
ample, SPAUN can complete Raven’s progressive matrices, a sim-
ple pattern recognition task used as a test of IQ (Rasmussen &
Eliasmith, 2011). Knowledge in SPAUN is represented using holo-
graphic vectors.

Implementing a holographic vector model requires three linear
algebra operations: circular convolution, permutation, and vector
addition. Permutation and vector addition are trivial to implement
in neural networks. Using the Neural Engineering Framework,
circular convolution can be computed in a two-layer feed-forward
neural network constructed from biologically realistic model
neurons (Eliasmith, 2013, p. 128).

Plate (2000) notes that in a neural network, implementing cir-
cular convolution and its approximate inverse, circular correlation,
requires intricate and precise patterns of neural connectivity. It
seems difficult to explain how such patterns could arise naturally
in the brain. However, circular convolution is just one, highly or-
dered, way of compressing tensors into vectors. Random compres-
sion schemes are an effective substitute for circular convolution
(Plate, 1994, p. 154). Plate (2000) finds that a network of randomly
connected sigma–pi neurons can bind two vectors in an associ-
ation and that a second network can be trained to unbind that
association. Thus, though the brain may not implement circular
convolution per se, the brain could discover functionally equiva-
lent compressions of the tensor product for the purposes of form-
ing associations among memories.

9. Simulations

To illustrate the behaviour of the models, we perform a series
of simulations. In these simulations, we see that MINERVA 2 and
the memory tesseract behave exactly identically, and the Levy
and Gayler model (2009) closely approximates the behaviour of
MINERVA 2 and the tesseract. These simulations also illustrate
how these models differ from the holographic vector and matrix
memory models.

All simulations for Figs. 2, 3, and 4 were conducted using 64
dimensional vectors with values sampled randomly from a normal
distribution with a mean of zero and a variance of 1/64. For the
purpose of comparison, all models used the same three vectors:
a, b, and c. All models had vectors a and b stored in memory,
whereas c was used as a source of noise.

The MINERVA model used in all simulations is identical
to Hintzman’s (1984) MINERVA 2 except that it operates on
vectors of normally distributed rather than binary values and
correspondingly uses the cosine to measure similarity. The
memory tesseract is an auto-associative fourth order tensor.
Referred to as Levy and Gayler in Figs. 2 and 4, the holographic
approximation to the memory tesseract is a variant of Levy and
Gayler’s (2009) lateral inhibition network which, as described in
the previous section, differs from Levy and Gayler’s original model
in that it uses holographic reduced representations (Plate, 1995)
and convolves items stored in memory with themselves three
times (rather than twice) in order to imitate the behaviour of

3 Models that use the Neural Engineering Framework can be constructed using
the NENGO software package. For download instructions, see http://www.nengo.
ca/download.

http://www.nengo.ca/download
http://www.nengo.ca/download
http://www.nengo.ca/download
http://www.nengo.ca/download
http://www.nengo.ca/download
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MINERVA 2 and the memory tesseract. In Figs. 2 and 4, the model
uses p = 400 memory vectors in parallel and averages across
the 400 retrieved vectors to produce an echo. The matrix memory
in Figs. 2 and 4 is an auto-associative second order tensor. The
holographic vector model in Fig. 2 is a compressed version of
the matrix memory that uses convolution rather than the outer
product to form associations.

Fig. 2 illustrates iterative retrieval from five memory models:
MINERVA 2, the memory tesseract (behaviour is identical to
MINERVA 2), the holographic approximation to the memory
tesseract, and a matrix memory. On the first iteration, the probe
a + 0.8b, normalized to a magnitude of one, is used to retrieve an
echo. On successive iterations, the echo from the previous iteration
is used to retrieve a new echo. Cosine is measured between each
echo and the target, a. Results are averaged over 50 runs of each
model. For each run of the five models, a different a, b, and c are
randomly generated. All models use the same 50 a, b, and c.

In Fig. 2, we can see thatMINERVA 2, thememory tesseract, and
the Levy and Gayler model all rapidly clean up the probe a + 0.8b,
nearly perfectly reproducing a by iteration 3 or 4. The matrix
memory grows to resemble a slightly more across successive
iterations. Conversely, the echo of the holographic vector memory
degrades across iterations. Fig. 2 illustrates that MINERVA 2 and
equivalent (or approximately equivalent) models, do not require
an external clean-up memory, whereas a holographic vector
memory does.

Fig. 3 illustrates iterative retrieval from the holographic
approximation to the tesseract with a varying number of memory
vectors p. As the number of memory vectors, p, increases from 25
to 800, the model more reliably and more rapidly cleans-up the
echo. On the first iteration, the probe a + 0.8b + c, normalized
to a magnitude of one, is used to retrieve an echo. On successive
iterations, the echo from the previous iteration is used to retrieve
a new echo. Cosine is measured between each echo and the target,
a. Results are from a single run of each model, with all models run
on the same set of vectors a, b, and c. We chose not to average
across runs because the average behaviour of the model is not
representative of the actual behaviour of the model, particularly
for small values of p (see p = 25 and p = 50 in Fig. 3).

In Fig. 4, we present the results of a simulation of four memory
models alongside each other:MINERVA, thememory tesseract, the
holographic approximation to the memory tesseract, and a matrix
memory. In Fig. 4, all models were presented with four probes:
a + c, a + b, a + 2b, and −a, with results shown in Fig. 4 (i), (ii),
(iii), and (iv), respectively. Given a probe, each model retrieved an
echo. Fig. 4 shows the cosine similarity that each echo has with
the vectors a, b, c, and the probe that elicited the echo. Results
are averaged across 10 different randomly generated vectors a, b,
and c.

In Fig. 4, we see that the behaviour of MINERVA and the
memory tesseract model is exactly identical, as expected given
the previously presented proof of mathematical equivalence. The
behaviour of all four models is approximately the same for probes
(i), (ii), and (iv). In Fig. 4 (i), given the probe a + c, the models
return an echo that is nearly identical to a and does not contain the
unstudied item c. In Fig. 4 (ii), given a probe a + b, that is an equal
mix of two studied items, allmodels return an echo nearly identical
to a + b. The echoes are caught between the two attractors, a and
b. In Fig. 4 (iv), we see that given the probe −a all models produce
an echo identical to −a. This demonstrates that all of the models
preserve the sign of the cosine, as we would expect given that the
models use an odd-numbered exponent (an exponent of 1 for the
matrix memory and an exponent of 3 for the other models).

Fig. 4 (iii) demonstrates the difference in behaviour between the
(linear) matrix memory and the other (non-linear) models. Given
the probe a + 2b, the matrix memory produces an echo nearly
identical to the probe (cosine = 1.00). Conversely, MINERVA 2 and
the memory tesseract produce an echo which is nearly identical
to b (cosine = 0.99) and only weakly similar to a (cosine = 0.16).
The behaviour of the Levy and Gayler model closely approximates
MINERVA 2 and the memory tesseract, but with added noise.

10. Approximating the exemplar production model

To provide a larger-scale demonstration of the memory
tesseract, we replicate a simulation result from Johns et al. (2016).
Johns et al. demonstrate that a MINERVA model trained on
exemplar sentences can infer the syntactic structure of novel
sentences. For example, given the unordered set of words {be, deep,
in, she, seemed, thought, to}, the model can infer from the example
sentences stored in memory that the words can be re-ordered into
the grammatical sentence ‘‘she seemed to be deep in thought ’’, even
though the model has never seen that sentence before. Johns et al.
name their model the Exemplar Production Model (EPM).

EPM represents each sentence as a pair of vectors. One vector
represents the sentences as an unordered set of words. The other
vector represents the words as an ordered sequence. EPM stores
pairs of these n dimensional vectors as concatenated vectors of
2n dimensions. Given a probe that represents an unordered set of
words, EPM can retrieve an echo, the latter half of which indicates
the order of the words according to themodel’s experience. EPM is
trained on a study set of 1000–125000 sentences and then tested
on 200 novel sentences. Johns et al. use sentences of three to seven
words.

Johns et al. represent eachword as a vector of 1024 dimensions.
An unordered representation of a sentence is a sum of the
vectors that represent the words in the sentence. An ordered
representation of a sentence is a holographic vector, a sum of
convolutions and permutations of vectors representing words
and positions in the sentence. Each trace stored in EPM is a
2048 dimensional concatenation of an ordered and unordered
representation. In the largest case, when EPM is trained on 125000
sentences, EPM’smemory is a 125000× 2048 dimensionalmatrix.

Using the holographic approximation to the memory tesseract,
we replicate Johns et al.’s simulation of syntactic inference from
125 000 sevenword sentences. To create the study set, we sampled
125 000 seven word sentences from a corpus of novels selected
from Project Gutenberg.4 The test sets from Johns et al. can be
downloaded from Johns’ website.5 Due to differences in how
contractions are represented in the corpus versus the test set
(e.g., is haven’t twowords or one?), we removed 40 sentences with
contractions from the test set. We used the remaining 160 seven
word sentences as the test set.

For seven word sentences and a study set of 125000 sentences,
Johns et al. report that EPM finds the correct ordering of words
for 52% of the sentences in the test set. Notably, EPM uses an
exponent of 9 instead of 3. Running EPMonour 125000word study
set and the 160 sentence test set, we get 65% correct using 1024
dimensional vectors for words (2048 for traces) and an exponent
of 9 (the same parameters used by Johns et al.).

We find that after 10 iterations to clean up the echo,
performance decreases to 53% correct, which suggests that with
this data set and parameters, iterating is introducing noise into the
echo rather than cleaning up. If we decrease the exponent to 3,
EPM gets only 16% correct, which decreases to 5% correct after 10
iterations. This suggests that MINERVA 2’s canonical exponent of 3
is insufficient when realistically large quantities of data are stored
in memory.

4 http://www.gutenberg.org.
5 http://btjohns.com/experience_sents.zip.

http://www.gutenberg.org
http://btjohns.com/experience_sents.zip
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Fig. 5. Percentage of test sentences ordered correctly by the holographic
approximation to EPM as a function of the number of memory vectors, p.

Fig. 6. Mean ranking of the correct ordering of words in test sentences.
Performance of the holographic approximation to EPM as a function of the number
of memory vectors, p.

EPM is equivalent to a tenth order tensor, a data structure of
204810 values. A holographic vector implementation approximates
that tensor, compressing 204810 values into a vector of 2048
values. We use a variant of EPM with an exponent of 5 instead
of 9 to reduce the amount of compression. With an exponent of
5, the holographic vectors compress 20485 into 2048. With an
exponent of 5, EPM gets 42% correct. Simulating the holographic
approximation to EPM with up to p = 50 000 vectors yields, at
best, 24% correct on the test items (see Fig. 5).

Themodel is judged to have selected the correct ordering when
the vector representing the correct ordering is more similar to the
echo than the vectors representing any other possible ordering. For
a seven-word sentence, there are 7! = 5040 different orderings
of the words in the sentence. These 5040 orderings are ranked
from most similar to the echo to least. If the correct ordering is
assigned a rank of one, then the model is judged to be correct
on that test item. The mean and median ranks provide a more
sensitive measure of the model’s performance. With a power of
5, EPM’s echoes have a mean rank of 35.4 and a median rank of
2. For the holographic approximation to EPM, at 50000 vectors,
the mean rank is 224.5 and the median rank is 9. Performance
of the holographic model seems to approach an asymptote as
the number of memory vectors p increases, such that there is
diminishing improvement in performance as more vectors are
added (see Fig. 6).

This simulation demonstrates that larger scale MINERVA
models can be re-implemented as the holographic approximation.
However, representing memory traces as distributed across a set
of memory vectors introduces additional noise, particularly when
compressing and storing thememory traces across a set ofmemory
vectors fewer than the number of memory traces. For applications
where fine discrimination is critical (such as discriminating among
5040 highly similar alternatives), this added noise might not be
inconsequential to performance of the model.

Additionally, the holographic approximation is impractical to
implement on a serial computer. On a serial computer, storing a
memory trace across 50000 memory vectors takes 50000 times
longer than storing a memory trace in MINERVA. MINERVA’s
implementation as a table is preferable assuming a serial computer
with unlimited storage.

This simulation does, however, demonstrate that MINERVA can
be re-implemented as a massively parallel memory system with a
fixed amount of storage. As the brain is also a massively parallel
computer with limited storage, this demonstration lends support
to MINERVA’s validity as a theory of the memory algorithms
implemented in the brain.

The holographic approximation may also be a practical imple-
mentation of MINERVA for large-scale modelling applications that
use neuromorphic computers. Neuromorphic computers include
the SpiNNaker architecture (Furber, Galluppi, Temple, & Plana,
2014), which has been used for simulating neural models of learn-
ing and memory (Knight, Voelker, Mundy, Eliasmith, & Furber,
2016).

11. Discussion

This work contributes to developing a unified mathematical
and computational basis for modelling memory. At the heart of
memory theory is the Hebbian learning rule: neurons that fire
together wire together. If the activation patterns of two groups
of connected neurons can be represented by a pair of vectors,
then the outer-product of those vectors describes the connections
that will form between the neurons, represented as a matrix of
connection weights. Abstracting away from the neural details,
Smolensky (1990) notes that, in general, an association of k items
can be represented as a tensor of order k. We see this observation
reflected in the memory models in the literature. Composite
vector memories are tensors of order one that store single items.
Matrix memories are tensors of order two that store pairs of
representations. ‘3D’ matrix memories are tensors of order three
that store triples of representations. Collectively, we can refer to
these memory models as tensor memories.

Holographic vectors (Plate, 1995) and the related vector-
symbolic architectures (see Kelly et al., 2013 for review) are ten-
sors compressed into vectors. A holographic vector of fixed dimen-
sionality can encode associations of k representations for arbitrary
k. Holographic vectors thus provide a computationally efficient
basis for modelling memory for arbitrarily complex associations.
Collectively, we can refer to vector-symbolic/holographic vector
models and tensor models as composite memorymodels. All share
the same Hebbian learning underpinning, although abstracted
away from the details of biological neurons.

In the literature, multi-vector (or separate storage) memory
models have been regarded as distinct from composite memory
models (e.g., Clark & Gronlund, 1996). By proving that MINERVA
is equivalent to a fourth order tensor memory, we show that these
two classes of models are not different in kind. Additionally, we
show that large-scale ‘semantic’ memory models such as BEAGLE
and smaller-scale ‘episodic’ memory models such as MINERVA are
also not different in kind. Thus, the models discussed in this paper
can be understood as part of a single mathematical framework.
We would expect that, for the most part, advances made for any
particular one of these memorymodels could be translated into an
advance for any other of thesememorymodels. Thus, the profusion
ofmemorymodels in the literaturemay not pose asmuch difficulty
for developing a unified model of human memory as it might
initially seem.
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An important question in the development of a unified model
of human memory will be settling the issue of representation.
We have noted that different (tensor) models of memory adopt
different structures (different orders of tensor) to model different
tasks. Holographic vectors provide a way of building a memory
model with an efficiently computable structure that is invariant
with respect to changes in the task demands. But this does
not solve the problem that the representation scheme used
changes from task to task. Memory models do not explain how
these representations arise, which allows the modeller to assume
whatever representations are most convenient for modelling the
given experimental task.

To some extent the ad hoc approach to modelling representa-
tion is justifiable, as humans encode information in different tasks
differently so as to best meet the demands of the task (Hintzman,
2016). But to advance closer to a complete theoretical understand-
ing of humanmemory, memorymodels need to be integratedwith
a theory of representation, and hence, perception. Some work has
been done towards this goal – the SPAUN brain model (Eliasmith
et al., 2012) incorporates both perception andmemory – but much
morework needs to be done in integrating perception andmemory
if we are to achieve a full understanding of either.

12. Conclusion

We demonstrate that the influential MINERVA 2 (Hintzman,
1984) model is mathematically equivalent to an auto-associative
fourth order tensor memory system, or memory tesseract. We
further show that this is approximately equivalent to a variant
of the holographic lateral inhibition network proposed by Levy
and Gayler (2009). These demonstrations have three theoretical
implications:

(1) Viewing MINERVA 2 and its variants (collectively, MINERVA
models) as a fourth order tensor clarifies the relationship
among MINERVA and third order, second order (i.e., matrix),
first order (i.e., composite vector), and compressed tensor
(i.e., holographic vector) memory models, allowing us to move
towards a unified basis for models of memory.

(2) As MINERVA can be implemented as a fully distributed
memory system that is invariant in scale with respect to the
number of experiences stored, MINERVA can, in principle, be
scaled to arbitrarily long-term learning. However, simulating
MINERVA re-implemented as a tensor or holographic vector is
most feasible on a massively parallel computer.

(3) A nave neural interpretation of MINERVA might suggest that a
new neuron is grown for each new experience, corresponding
to the addition of row toMINERVA’smemory table. Understood
as a memory tesseract, MINERVA is fully distributed across
neural connectivity, and memories can be added by changing
the connectivitywithout requiring additional neural resources.
Eliasmith’s (2013) Neural Engineering Framework provides a
system for translating linear algebra computations (e.g., con-
volution, permutation) into spiking neuron models. MINERVA
can be implemented as a neuralmodel using Eliasmith’s frame-
work.
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