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Biological computing systems trade accuracy for efficiency. 
Thus, one solution to reduce energy consumption in artifi-
cial systems is to adopt computational approaches that are 

inherently robust to uncertainty. Hyperdimensional computing 
(HDC) is one such framework and is based on the observation 
that key aspects of human memory, perception and cognition can 
be explained by the mathematical properties of hyperdimensional 
spaces comprising high-dimensional binary vectors known as 
hypervectors. Hypervectors are defined as d-dimensional (where 
d ≥ 1,000) (pseudo)random vectors with independent and identi-
cally distributed (i.i.d.) components1. When the dimensionality is 
in the thousands, a large number of quasi-orthogonal hypervec-
tors exist. This allows HDC to combine such hypervectors into new 
hypervectors using well-defined vector space operations, defined 
such that the resulting hypervector is unique, and with the same 
dimension. A powerful system of computing can be built on the rich 
algebra of hypervectors2. Groups, rings and fields over hypervectors 
become the underlying computing structures with permutations, 
mappings and inverses as primitive computing operations.

In recent years, HDC has been employed in a range of applica-
tions, including machine learning, cognitive computing, robotics 
and traditional computing. It has shown significant promise in 
machine learning applications that involve temporal patterns, such 
as text classification3, biomedical signal processing4,5, multimodal 
sensor fusion6 and distributed sensors7,8. A key advantage is that 
the training algorithm in HDC works in one or few shots: that is, 
object categories are learned from one or few examples, and in a 
single pass over the training data as opposed to many iterations. In 
the highlighted machine learning applications, HDC has achieved 
similar or higher accuracy with fewer training examples compared 
to support vector machines (SVMs)4, extreme gradient boosting9 
and convolutional neural networks (CNNs)10, and lower execu-
tion energy on embedded CPU/GPUs compared to SVMs11, CNNs 
and long short-term memory5. Applications of HDC in cognitive 
computing include solving Raven’s progressive matrices12, func-
tional imitation of concept learning in honey bees13 and analogical  

reasoning14. In the field of robotics, HDC has been employed for 
learning sensorimotor control for active perception in robots10. 
In traditional forms of computing, HDC has been proposed for 
efficient representation of structured information15 as well as the 
synthesis and execution of finite state automata16 and variants of 
recurrent neural networks17.

HDC begins by representing symbols with i.i.d. hypervectors 
that are combined by nearly i.i.d.-preserving operations, namely 
binding, bundling and permutation, and then stored in associative 
memories (AMs) to be recalled, matched, decomposed or reasoned 
about. This chain implies that failure in a component of a hypervec-
tor is not contagious and forms a computational framework that is 
intrinsically robust to defects, variations and noise18. The manipula-
tion of large patterns stored in memory and its inherent robustness 
make HDC particularly well suited to emerging computing para-
digms such as in-memory computing or computational memory 
based on emerging nanoscale resistive memory or memristive 
devices19–23. In one such work, a 3D vertical resistive random access 
memory (ReRAM) device was used to perform individual opera-
tions for HDC24,25. In another work, a carbon-nanotube field-effect 
transistor-based logic layer was integrated with ReRAMs, improv-
ing efficiency further26. However, these architectures offered only 
limited applications such as a single language recognition task24,26 or 
a restricted binary classification version of the same task26, and their 
evaluation is based on simulations and compact models derived 
from small prototypes with only 256 ReRAM cells24 or a small 32 bit 
datapath for hypervector manipulations that results in three orders 
of magnitude higher latency overhead26.

In this Article, we report a complete integrated in-memory HDC 
system in which all the operations of HDC are implemented on two 
planar memristive crossbar engines together with peripheral digital 
CMOS circuits. We devise a way of performing hypervector binding 
entirely within a first memristive crossbar using an in-memory read 
logic operation and hypervector bundling near the crossbar with 
CMOS logic. These key operations of HDC cooperatively encode 
hypervectors with high precision, while eliminating the need to 
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repeatedly program (write) the memristive devices. In contrast, 
previous work on HDC using memristive devices did not employ 
in-memory logic operations for binding; instead, a ReRAM-based 
XOR lookup table24 or digital logic26 was used. Moreover, the pre-
vious in-memory compute primitives for permutation24 and bun-
dling26 resulted in repeated programming of the memristive devices, 
which is prohibitive given the limited cycling endurance.

In our architecture, an AM search is performed using a second 
memristive crossbar for in-memory dot-product operations on the 
encoded output hypervectors from the first crossbar, realizing the full 
HDC system functionality. Our combination of analog in-memory 
computing with CMOS logic allows continual functioning of the 
memristive crossbars with desired accuracy for a wide range of 
multiclass classification tasks. We verify the integrated inference 
functionality of the system through large-scale mixed hardware/
software experiments, in which up to 49 d = 10,000-dimensional 
hypervectors are encoded in 760,000 hardware phase-change mem-
ory (PCM) devices performing analog in-memory computing. Our 
experiments achieve comparable accuracies to the software baselines 
and surpass those reported in previous work on an emulated small 
ReRAM crossbar24. Furthermore, a complete system-level design of 
the in-memory HDC architecture synthesized using 65 nm CMOS 
technology demonstrates >6× end-to-end reductions in energy 
compared with a dedicated digital CMOS implementation. With 
our approach, we map all operations of HDC either in-memory or 
near-memory and demonstrate their integrated functionality for 
three specific machine learning related tasks.

The concept of in-memory HDC
When HDC is used for learning and classification, a set of i.i.d., 
hence quasi-orthogonal hypervectors, referred to as basis hypervec-
tors, are first selected to represent each symbol associated with a 
dataset. For example, if the task is to classify an unknown text into 
the corresponding language, the symbols could be the letters of the 
alphabet. The basis hypervectors stay fixed throughout the compu-
tation. Assuming that there are h symbols, fsigh1

I
, the set of the h, 

d-dimensional basis hypervectors fBigh1
I

 is referred to as the item 
memory (IM) (Fig. 1). Basis hypervectors serve as the basis from 
which further representations are made by applying a well-defined 
set of component-wise operations: addition of binary hypervec-
tors [+] is defined as the component-wise majority, multiplica-
tion (⊕) is defined as the component-wise exclusive-OR (XOR) 
(or equivalently as the component-wise exclusive-NOR (XNOR)) 
and permutation (ρ) is defined as a pseudo-random shuffling of 
the coordinates. Applied on dense binary hypervectors where each 
component has equal probability of being zero or one27, all these 
operations produce a d-bit hypervector resulting in a closed system.

Subsequently, during the learning phase, the basis hypervectors 
in the IM are combined with the component-wise operations inside 
an encoder to compute, for example, a quasi-orthogonal n-gram 
hypervector representing an object of interest28, and to add n-gram 
hypervectors from the same category of objects to produce a pro-
totype hypervector representing the entire class of category. In the 
language example, the encoder would receive input text associated 
with a known language and would generate a prototype hypervec-
tor corresponding to that language. In this case, n determines the 
smallest number of symbols (letters in the example) that are com-
bined while performing an n-gram encoding operation. When the 
encoder receives n consecutive symbols, {s[1], s[2], …, s[n]}, it pro-
duces an n-gram hypervector through a binding operation given by

Gðs½1; s½2;    ; s½nÞ ¼ B½1ρðB½2Þ    ρn�1ðB½nÞ ð1Þ

where B[k] corresponds to the associated basis hypervector for 
symbol s[k]. The operator �

I
 denotes the XNOR and ρ denotes a 

pseudo-random permutation operation, for example, a circular shift 

by 1 bit. The encoder then bundles several such n-gram hypervec-
tors from the training data using component-wise addition followed 
by a binarization (majority function) to produce a prototype hyper-
vector for the given class. The overall encoding operation results in 
c, d-dimensional prototype hypervectors (referred to as associative 
memory (AM)) assuming there are c classes.

When inference or classification is performed, a query hyper-
vector (for example, from a text of unknown language) is gener-
ated identically to the way the prototype hypervectors are generated. 
Subsequently, the query hypervector is compared with the proto-
type hypervectors inside the AM to make the appropriate classifica-
tion. Equation (2) defines how a query hypervector Q is compared 
against each of the prototype hypervector Pi out of c classes to 
find the predicted class with maximum similarity. This AM search 
operation can, for example, be performed by calculating the inverse 
Hamming distance:

ClassPred ¼ argmax
i2f1;:::;cg

Xd

j¼1

QðjÞPiðjÞ ð2Þ

One key observation is that the two main operations presented 
above, namely the encoding and AM search, are about manipu-
lating and comparing large patterns within the memory. Both IM  
and AM (after learning) represent permanent hypervectors stored  
in the memory. As a lookup operation, different input symbols 
activate the corresponding stored patterns in the IM that are then 
combined inside or around memory with simple local opera-
tions to produce another pattern for comparison in AM. These 
component-wise arithmetic operations on patterns allow a high 
degree of parallelism as each hypervector component needs to  
communicate with only a local component or its immediate neigh-
bours. This highly memory-centric aspect of HDC is the key  
motivation for the in-memory computing implementation pro-
posed in this work.

The essential idea of in-memory HDC is to store the compo-
nents of both the IM and the AM as the conductance values of 
nanoscale memristive devices29,30 organized in crossbar arrays and 
enable HDC operations in or near to those devices (Fig. 1). The 
IM of h rows and d columns is stored in the first crossbar, where 
each basis hypervector is stored on a single row. To perform �

I
 

operations between the basis hypervectors for the n-gram encod-
ing, an in-memory read logic primitive is employed. Unlike the 
majority of reported in-memory logic operations31–33, the proposed 
in-memory read logic is non-stateful and this obviates the need for 
high write endurance of the memristive devices. Additional periph-
eral circuitry is used to implement the remaining permutations 
and component-wise additions needed in the encoder. The AM 
of c rows and d columns is implemented in the second crossbar, 
where each prototype hypervector is stored on a single row. During 
supervised learning, each prototype hypervector output from the 
first crossbar is programmed into a certain row of the AM based on 
the provided label. During inference, the query hypervector output 
from the first crossbar is input as voltages on the wordline driver, to 
perform the AM search using an in-memory dot product primitive. 
Because every memristive device in the AM and IM is reprogram-
mable, the representation of hypervectors is not hardcoded, unlike 
refs. 24–26, which used device variability for projection.

This design ideally fits the memory-centric architecture of HDC, 
because it allows us to perform the main computations on the IM 
and AM within the memory units with a high degree of parallel-
ism. Furthermore, the IM and AM are only programmed once while 
training on a specific dataset, and the two types of in-memory com-
putation that are employed involve just read operations. Therefore, 
non-volatile memristive devices are very well suited for implement-
ing the IM and AM, and only binary conductance states are required. 
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In this work, we have used PCM technology34,35, which operates 
by switching a phase-change material between amorphous (high 
resistivity) and crystalline (low resistivity) phases to implement 
binary data storage (see Methods). PCM has also been successfully 
employed in novel computing paradigms such as neuromorphic 
computing36–40 and computational memory20,22,41,42, which makes it a 
good candidate for realizing the in-memory HDC system.

In the remaining part of this Article, we will elaborate the  
detailed designs of the AM, the encoder and finally propose a 
complete in-memory HDC system that achieves a near-optimum 
trade-off between design complexity and output accuracy. The  
functionality of the in-memory HDC system will be validated 
through experiments using a prototype PCM chip fabricated 
in 90 nm CMOS technology (see Methods), and a complete 
system-level design implemented using 65 nm CMOS technology 
will be presented.

The AM search module
Classification involves an AM search between the prototype hyper-
vectors and the query hypervector using a suitable similarity metric, 
such as the inverse Hamming distance (invHamm) computed from 
equation (2). Using associativity of addition operations, the expres-
sion in equation (2) can be decomposed into the addition of two 
dot-product terms as shown in equation (3):

ClassPred ¼ arg max
i2f1;:::;cg

Q  Pi þ Q  Pi

’ arg max
i2f1;:::;cg

Q  Pi
ð3Þ

where Q
I
 denotes the logical complement of Q. Because the opera-

tions associated with HDC ensure that both the query and proto-
type hypervectors have an almost equal number of zeros and ones, 
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Fig. 1 | The concept of in-memory HDC. A schematic of the concept of in-memory HDC showing the essential steps associated with HDC (left) 
and how they are realized using in-memory computing (right). An item memory (IM) stores h, d-dimensional basis hypervectors that correspond 
to the symbols associated with a classification problem. During learning, based on a labelled training dataset, an encoder performs dimensionality, 
preserving mathematical manipulations on the basis hypervectors to produce c, d-dimensional prototype hypervectors that are stored in an AM. During 
classification, the same encoder generates a query hypervector based on a test example. Subsequently, an AM search is performed between the query 
hypervector and the hypervectors stored in the AM to determine the class to which the test example belongs. In in-memory HDC, both the IM and AM 
are mapped onto crossbar arrays of memristive devices. The mathematical operations associated with encoding and AM search are performed in place 
by exploiting in-memory read logic and dot-product operations, respectively. A dimensionality of d = 10,000 is used. SA, sense amplifier; AD converters, 
analog-to-digital converters.
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the dot product (dotp) argmaxi2f1;:::;cgQ  Pi

I
 can also serve as a via-

ble similarity metric.
To compute the invHamm similarity metric, two memristive 

crossbar arrays of c rows and d columns are required, as shown in 
Fig. 2a. The prototype hypervectors, Pi, are programmed into one of 
the crossbar arrays as conductance states. Binary ‘1’ components are 
programmed as crystalline states and binary ‘0’ components are pro-
grammed as amorphous states. The complementary hypervectors Pi

I
 

are programmed in a similar manner into the second crossbar array. 
The query hypervector Q and its complement Q

I
 are applied as volt-

age values along the wordlines of the respective crossbars. In accor-
dance with Kirchoff ’s current law, the total current on the ith bitline 
will be equal to the dot product between the query hypervector 
and the ith prototype hypervector. The results of these in-memory 
dot-product operations from the two arrays are added in a pairwise 
manner using a digital adder circuitry in the periphery and are sub-
sequently input to a winner-take-all (WTA) circuit that outputs a ‘1’ 
only on the bitline corresponding to the class of maximum similarity 
value. When the dotp similarity metric is considered, only the cross-
bar encoding Pi is used and the array of adders in the periphery is 
eliminated, resulting in reduced hardware complexity.

Experiments were performed using a prototype PCM chip 
to evaluate the effectiveness of the proposed implementation on 
three common HDC benchmarks: language classification, news  

classification and hand gesture recognition from electromyogra-
phy (EMG) signals (see Methods). These tasks demand a generic 
programmable architecture to support different numbers of inputs, 
classes and data types (see Methods). In the experiments, the pro-
totype hypervectors (and their complements) are learned before-
hand in software and are then programmed into the PCM devices 
on the chip. Inference is then performed with a software encoder 
and using equation (3) for the AM search, in which all multiplica-
tion operations are performed in the analog domain (by exploiting 
Ohm’s law) on chip and the remaining operations are implemented 
in software (see Methods and Supplementary Note 1). The software 
encoder was employed to precisely assess the performance and 
accuracy of the AM search alone when implemented in hardware. 
The in-memory encoding scheme and its experimental validation 
are presented in sections ‘The n-gram encoding module’ and ‘The 
complete in-memory HDC system’.

Although HDC is remarkably robust to random variability and 
device failures, deterministic spatial variations in the conductance 
values could pose a challenge. Unfortunately, in our prototype PCM 
chip, the conductance values associated with the crystalline state 
do exhibit a deterministic spatial variation (Supplementary Note 
2). However, given the holographic nature of the hypervectors, 
this can be easily addressed by a random partitioning approach.  
We employed a coarse-grained randomization strategy, where the 
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idea is to segment the prototype hypervector and to place the result-
ing segments spatially distributed across the crossbar array (Fig. 
2b). This helps all the components of prototype hypervectors to 
uniformly mitigate long-range variations. The proposed strategy 
involves dividing the crossbar array into f equal sized partitions (r1, 
r2, … rf) and storing a 1/f segment of each of the prototype hyper-
vectors (P1, P2, ..., Pc) per partition. Here, f is called the ‘partition 
factor’ and it controls the granularity associated with the random-
ization. To match the segments of prototype hypervectors, the query 
vector is also split into equally sized subvectors Q1, Q2,..., Qf, which 
are input sequentially to the wordline drivers of the crossbar.

A statistical model that captures the spatiotemporal conduc-
tivity variations was used to evaluate the effectiveness of the 
coarse-grained randomized partitioning method (Supplementary 
Note 2). Simulations were carried out for different partition factors 
1, 2 and 10 for the two similarity metrics dotp and invHamm, as 
shown in Fig. 2c. These results indicate that the classification accu-
racy increases with the number of partitions. For example, for lan-
guage classification, the accuracy improves from 82.5% to 96% with 
dotp by randomizing with a partition factor of 10 instead of 1. The 
experimental on-chip accuracy (performed with a partition factor 
of 10) is close to the 10-partition simulation result and the software 
baseline for both similarity metrics on all three datasets. When the 
two similarity metrics are compared, invHamm provides slightly 
better accuracy for the same partition size, at the expense of almost 
doubled area and energy consumption. Therefore, for low-power 
applications, a good trade-off is the use of the dotp similarity metric 
with a partition factor of 10.

The n-gram encoding module
In this section, we will focus on the design of the n-gram encod-
ing module. As described in the section ‘The concept of in-memory 
HDC’, one of the key operations associated with the encoder is cal-
culation of the n-gram hypervector G given by equation (1). To find 
in-memory hardware-friendly operations, equation (1) is rewrit-
ten as the component-wise summation of 2n − 1 minterms given by  
equation (4):

G ¼
2n�1 � 1

_
j ¼ 0

L1;jðB½1Þ ^ ρðL2;jðB½2ÞÞ ^ ¼ ^ ρn�1ðLn;jðB½nÞÞ

ð4Þ

The operator Lk,j is given by

Lk;jðB½kÞ ¼ B½k if ð�1ÞZðk;jÞ ¼ 1
¼ B½k otherwise

where Zðk; jÞ ¼ 1
2k ð2jþ 2k�1Þ
� �

I
, k ∈ {1, 2, …, n} is the item hyper-

vector index within an n-gram and j ∈ {0, 1, …, 2n − 1 − 1} is used to 
index minterms. The representation given by equation (4) can be 
mapped into memristive crossbar arrays where the bitwise AND (∧) 
function can be realized using an in-memory read logic operation. 
However, the number of minterms (2n − 1 − 1) rises exponentially 
with the size n of the n-gram, making the hardware computations 
costly. It is thus desirable to reduce the number of minterms and to 
use a fixed number of minterms independent of n.

Based on equation (4), we empirically obtained a 2-minterm 
encoding function for calculating the n-gram hypervector given by

Ĝ ¼ ðB½1 ^ ρðB½2Þ ^ ¼ ρn�1ðB½nÞÞ
_ðB½1 ^ ρðB½2Þ ^ ¼ ρn�1ðB½nÞÞ

ð5Þ

Encoding based on Ĝ
I
 shows mostly functional equivalence with 

the ideal XNOR-based encoding scheme in certain key attributes 

such as similarity between the basis and prototype hypervec-
tors (Supplementary Note 3). A schematic illustration of the cor-
responding n-gram encoding system is presented in Fig. 3a. The 
basis hypervectors are programmed on one of the crossbars and 
their complement vectors are programmed on the second. The 
component-wise logical AND operation between two hypervectors 
in equation (5) is realized in-memory by applying one of the hyper-
vectors as the gate control lines of the crossbar, while selecting the 
wordline of the second hypervector. The result of the AND function 
from the crossbar is passed through an array of sense amplifiers to 
convert the analog values to binary values. The binary result is then 
stored in the minterm buffer, whose output is fed back as the gate 
controls by a single component shift to the right (left in the comple-
mentary crossbar). This operation approximates the permutation 
operation in equation (5) as a 1 bit right shift instead of a circular 
1 bit shift. By performing these operations n times, it is possible to 
generate the n-gram. After n-gram encoding, the generated n-grams 
are accumulated and binarized with a threshold that depends on n 
(for details see Methods).

To test the effectiveness of the encoding scheme with in-memory 
computing, simulations were carried out using the PCM statisti-
cal model. The training was performed in software with the same 
encoding technique used thereafter for inference, and both the 
encoder and AM were implemented with modelled PCM cross-
bars for inference. The simulations were performed only on the 
language and news classification datasets, because for the EMG 
dataset the hypervectors used for the n-gram encoding are gener-
ated by a spatial encoding process and cannot be mapped entirely 
into a fixed IM of reasonable size. From the results presented in Fig. 
3b, it is clear that the all-minterm approach to encoding provides 
the best classification accuracy in most configurations of AM, as 
expected. However, the 2-minterm-based encoding method yields 
a stable and, in some cases, particularly in the language dataset, a  
similar accuracy level to that of the all-minterm approach, while  
significantly reducing the hardware complexity. One of the perceived 
drawbacks of the 2-minterm approach is the increasing sparsity  
of the n-gram hypervectors with n. However, it can be shown  
that the dot-product similarity between the prototype hyper-
vectors and hence the classification accuracy remain relatively  
unchanged due to the thresholding operation that depends on n 
(Supplementary Note 4).

The complete in-memory HDC system
In this section, the complete HDC system and the associated experi-
mental results are presented. The proposed architecture comprises 
the 2-minterm encoder and dotp similarity metric with a partition 
factor of 10, as this provides the best trade-off between classifica-
tion accuracy and hardware complexity (Supplementary Note 3). As 
shown in Fig. 4a, the proposed architecture has three PCM crossbar 
arrays—two with h rows and d columns and one with c × f rows and 
d/f columns, with f = 10.

The system includes several peripheral circuits—an index buffer, 
a minterm buffer and a bundler that reside inside the encoder—
while the AM search module contains a sum buffer and a compara-
tor circuit. The index buffer is located at the input of the IM to keep 
the indices of the symbols in the sequence and to feed them into 
the crossbar rows. The bundler accumulates the n-gram hypervec-
tors to produce a sum hypervector. Once the threshold is applied 
on the sum hypervector, the result is a prototype hypervector dur-
ing training or a query hypervector during inference. The controller 
inside the encoder module generates control signals according to 
the n-gram size and the length of the query sequence to allow dif-
ferent configurations of the encoder. During inference, one segment 
of the query hypervector at the output buffer of the encoder is fed at 
a time to the AM through an array of multiplexers so that only the 
corresponding partition is activated in the AM. Depending on the 
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partition that is selected, the relevant gates are activated through a 
controller sitting inside the AM search module. Finally, the results 
in the sum buffer are sent through WTA circuitry to find the maxi-
mum index that provides the prediction.

To experimentally validate the functionality of the complete 
in-memory HDC architecture, we chose to implement the infer-
ence operation, which comprises both encoding (to generate the 
query hypervectors) and AM search (Supplementary Video 1). 
For faster experiments, we trained our HDC model in software 
using the 2-minterm approximate encoding method described in 
the section ‘The n-gram encoding module’, which could be per-
formed as well with our proposed in-memory HDC architecture. 
This software generates the hypervectors for AM from a given data-
set. Subsequently, the components of all hypervectors of both IM 
and AM were programmed on individual hardware PCM devices, 
and the inference operation was implemented leveraging the two 
in-memory computing primitives (for both 2-minterm encoding 
and the AM search) using the prototype PCM chip (see Methods 
and Supplementary Note 1). Figure 4b summarizes the accuracy 
results with software, the PCM statistical model and the on-chip 
experiment for the language and news classification benchmarks. 
Compared with the previous experiment, where only AM was con-
tained on-chip, the full chip experiment results show a similar accu-
racy level, indicating the minimal effect on accuracy when porting 
the IM into PCM devices with in-memory n-gram encoding. 
Furthermore, the accuracy level reported in this experiment is close 
to the accuracy reported with the software for the same parametric 
configuration of the HD inference model.

Finally, to benchmark the performance of the system in terms 
of energy consumption, the digital submodules in the system-level 
architecture (marked with dotted boundaries in Fig. 4a) that fall 
outside the PCM crossbars arrays were synthesized using 65 nm 
CMOS technology. The synthesis results for these modules were 
combined with the performance characteristics of PCM crossbar 
arrays to evaluate the energy, area and throughput of the full system 
(see Methods). Furthermore, PCM crossbar sections were imple-
mented in CMOS distributed standard cell registers with associ-
ated multiplier–adder tree logic and binding logic for AM and IM, 
respectively, to construct a complete CMOS HD processor to com-
pare with the proposed PCM crossbar-based architecture.

A comparison of the performance between the all-CMOS 
approach and the PCM crossbar-based approach is presented in 
Table 1. A 6.01× improvement in total energy efficiency and 3.74× 
reduction in area is obtained with the introduction of the PCM 
crossbar modules. The encoder’s energy expense for processing a 
query reduces by a factor of 3.50 with the PCM crossbar implemen-
tation, whereas that of the AM search module reduces by a factor of 
117.5. However, these efficiency factors are partially masked by the 
CMOS peripheral circuitry that is common to both implementa-
tions, specifically that in the encoder module, which accounts for 
the majority of its energy consumption. When peripheral circuits 
are ignored and only the parts of the design that are exclusive to 
each approach are directly compared to each other, 14.4× and 334× 
energy savings and 24.5× and 31.9× area savings are obtained for 
the encoder and AM search module, respectively. It remains part 
of future work to investigate methods in which peripheral modules 
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are designed more energy efficiently so that the overall system effi-
ciency can be improved further.

Conclusions
HDC is a brain-inspired computational framework that is par-
ticularly well suited for the emerging computational paradigm of 
in-memory computing. We have reported a complete in-memory 
HDC system whose two main components are an encoder and 
an AM search engine. The main computations are performed 

in-memory with logical and dot-product operations on memristive 
devices. Due to the inherent robustness of HDC to errors, it was 
possible to approximate the mathematical operations associated 
with HDC to make it suitable for hardware implementation, and to 
use analog in-memory computing without significantly degrading 
the output accuracy. Our architecture is programmable to support 
different hypervector representations, dimensionality and number 
of input symbols and output classes to accommodate a variety of 
applications.
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Hardware/software experiments using a prototype PCM chip 
delivered accuracies comparable to software baselines on language 
and news classification benchmarks with 10,000-dimensional 
hypervectors. These experiments used hardware PCM devices to 
implement both in-memory encoding and AM search, thus dem-
onstrating the hardware functionality of all the operations involved 
in a generic HDC processor for learning and inference. A compara-
tive study performed against a system-level design implemented 
using 65 nm CMOS technology showed that the in-memory HDC 
approach could result in more than 6× end-to-end savings in energy. 
By designing more energy-efficient peripheral circuits and with the 
potential of scaling PCM devices to nanoscale dimensions43, these 
gains could increase several-fold. The in-memory HDC concept is 
also applicable to other types of memristive device based on ionic 
drift44 and magnetoresistance45. Future work will focus on taking 
in-memory HDC beyond learning and classification to perform 
advanced cognitive tasks alongside data compression and retrieval 
on dense storage devices, as well as building more power-efficient 
peripheral hardware to harness the best of in-memory computing.

Methods
PCM-based hardware platform. The experimental hardware platform is built 
around a prototype PCM chip that contains PCM cells based on doped-Ge2Sb2Te5 
(d-GST) that are integrated into the prototype chip in 90 nm CMOS baseline 
technology. In addition to the PCM cells, the prototype chip integrates the circuitry 
for cell addressing, on-chip ADCs for cell readout and voltage- or current-mode 
cell programming. The experimental platform comprises the following main units:
•	 a high-performance analog-front-end (AFE) board that contains 

digital-to-analog converters (DACs) along with discrete electronics, such as 
power supplies, voltage and current reference sources

•	 a field-programmable gate array (FPGA) board that implements the data 
acquisition and digital logic to interface with the PCM device under test and 
with all the electronics of the AFE board

•	 a second FPGA board with an embedded processor and Ethernet connection 
that implements the overall system control and data management as well as 
the interface with the host computer

The prototype chip46 contains three million PCM cells, as well as the CMOS 
circuitry to address, program and read out any of these three million cells. In the 
PCM devices used for experimentation, two 240-nm-wide access transistors were 
used in parallel per PCM element (cell size of 50 F2). The PCM array is organized 
as a matrix of 512 wordlines and 2,048 bitlines. The PCM cells were integrated 
into the chip in 90 nm CMOS technology using the keyhole process47. The bottom 
electrode had a radius of ~20 nm and length of ~65 nm. The phase-change material 
was ~100 nm thick and extended to the top electrode, whose radius was ~100 nm. 
The selection of one PCM cell was performed by serially addressing a wordline 
and a bitline. The addresses were decoded and drove the wordline driver and 
the bitline multiplexer. The single selected cell could be programmed by forcing 
a current through the bitline with a voltage-controlled current source. It could 
also be read by an 8 bit on-chip ADC. To read a PCM cell, the selected bitline 
was biased to a constant voltage of 300 mV by a voltage regulator via a voltage 

Vread generated via an off-chip DAC. The sensed current, Iread, was integrated by a 
capacitor, and the resulting voltage was then digitized by the on-chip 8 bit cyclic 
ADC. The total time of one read was 1 μs. To program a PCM cell, a voltage Vprog 
generated off chip was converted on chip into a programming current, Iprog. This 
current was then mirrored into the selected bitline for the desired duration of the 
programming pulse. The pulse used to program the PCM to the amorphous state 
(reset) was a box-type rectangular pulse with duration of 400 ns and amplitude 
of 450 μA. The pulse used to program the PCM to the crystalline state (set) was 
a ramp-down pulse with total duration of ~12 μs. The access-device gate voltage 
(wordline voltage) was kept high at 2.75 V during the programming pulses. These 
programming conditions were optimized to achieve the highest on/off ratio and to 
minimize device-to-device variability for binary storage.

Datasets to evaluate in-memory HDC. We targeted three highly relevant learning 
and classification tasks to evaluate the proposed in-memory HDC architecture. 
These tasks demand a generic programmable architecture to support different 
numbers of inputs, classes and data types, as shown in Extended Data Table 1. In 
the following, we describe these tasks that are used to benchmark the performance 
of in-memory HDC in terms of classification accuracy.

	1.	 Language classification: in this task, HDC is applied to classify raw text 
composed of Latin characters into their respective language48. The train-
ing texts are taken from the Wortschatz Corpora49, where large numbers 
of sentences (about a million bytes of text) are available for 22 European 
languages. Another independent dataset, Europarl Parallel Corpus50, with 
1,000 sentences per language, is used as the test dataset for the classification. 
The former database is used for training 22 prototype hypervectors for each 
of the languages while the latter is used to run inference on the trained HDC 
model. For subsequent simulations and experiments with the language data-
set, we use dimensionality d = 10,000 and n-gram size n = 4. We use an IM of 
27 symbols, representing the 26 letters of the Latin alphabet plus a whitespace 
character. Training is performed using the entire training dataset, containing 
a labelled text of 120,000–240,000 words per language. For inference, a query 
is composed of a single sentence of the test dataset, so, in total, 1,000 queries 
per language are used.

	2.	 News classification: the news dataset comprises a database of Reuters news 
articles, subjected to a lightweight pre-processing step, covering eight differ-
ent news genres51. The pre-processing step removes frequent ‘stop’ words and 
words with fewer than three letters. The training set has 5,400+ documents, 
while the testing set contains 2,100+ documents. For subsequent simulations 
and experiments with the news dataset, we use dimensionality d = 10,000 and 
n-gram size n = 5, as suggested in ref. 18. Similar to the language task, we use 
an IM of 27 symbols, representing the 26 letters of the Latin alphabet plus a 
whitespace character. Training is performed using the entire training dataset, 
where all labelled documents pertaining to the same class are merged into 
a single text. This merged text contains 8,000–200,000 words per class. For 
inference, a query is composed of a single document of the test dataset.

	3.	 Hand gesture recognition from EMG signals: in this task, we focus on use 
of HDC in a smart prosthetic application, namely hand gesture recognition 
from a stream of EMG signals. A database52 that provides EMG samples 
recorded from four channels covering the forearm muscles is used for this 
benchmark. Each channel data is quantized into 22 intensity levels of electric 
potential. The sampling frequency of the EMG signal is 500 Hz. 
A label is provided for each time sample. The label varies from one to five cor-
responding to five classes of performed gestures. This dataset is used to train 
an HDC model to detect hand gestures of a single subject. For training on the 

Table 1 | Performance comparison between a dedicated all-CMOS implementation and in-memory HDC with PCM crossbars

All-CMOS PCM crossbar based

Encoder AM search Total Encoder AM search Total

Energy

 Average energy per query (nJ) 1,474 1,110 2,584 420.8 9.44 430.3

 Improvement 3.50× 117.5× 6.01×

 Exclusive modules avg. energy per query (nJ) 1,132 1,104 2,236 78.60 3.30 81.90

Improvement 14.40× 334.6× 27.30×

Area

 Total area (mm2) 4.77 2.99 7.76 1.39 0.68 2.07

 Improvement 3.43× 4.38× 3.74×

 Exclusive modules area (mm2) 3.53 2.38 5.91 0.14 0.075 0.22

 Improvement 24.57× 31.94× 27.09×
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EMG dataset, a spatial encoding scheme is first employed to fuse data from 
the four channels so the IM has four discrete symbols, and it is paired with 
a continuous IM to jointly map the 22 intensity levels per channel (details 
about the encoding procedure for the EMG dataset are provided in Supple-
mentary Note 5). The pairing of IM and continuous IM allows a combination 
of orthogonal mapping with distance proportionality mapping. The spatial 
encoding creates one hypervector per time sample. 
A temporal encoding step is then performed, whereby n consecutive spatially 
encoded hypervectors are combined into an n-gram. For the subsequent 
simulations and experiments with the EMG dataset we use dimensional-
ity d = 10,000 and n-gram size n = 5. Training and inference are performed 
using the same EMG channel signals from the same subject, but on 
non-overlapping sections of recording. The recording used for training con-
tains 1,280 time samples after downsampling by a factor of 175. For inference, 
780 queries are generated from the rest of the recording, where each query 
contains five time samples captured with the same downsampling factor.

For the different tasks, Extended Data Table 1 provides details on the desired 
hypervector representations and different hyperparameters including the dimension 
of hypervectors, the alphabet size, the n-gram size and the number of classes. For 
the EMG dataset, the hypervectors for the encoding operation are drawn by binding 
items from a pair of IM and continuous IM (Supplementary Note 5). In hardware 
implementation of the in-memory HDC, the IM and AM may be distributed into 
multiple narrower crossbars in case electrical/physical limitations arise.

Coarse-grained randomization. The programming methodology followed to 
achieve the coarse-grained randomized partitioning in the memristive crossbar 
for the AM search is explained in the following steps. First, we split all prototype 
hypervectors (P1, P2,..., Pc) into f subvectors of equal length, where f is the partition 
factor. For example, subvectors from the prototype hypervector of the first class 
are denoted as (P1

1
I

, P2
1
I

, ..., Pf
1
I

). The crossbar array is then divided into f equally 
sized partitions (r1, r2, ..., rf). Each partition must contain d/f rows and c columns. 
A random permutation e of numbers 1 to c is then selected. Next, the first 
subvector from each class (P1

1
I

, P1
2
I

, ..., P1
c
I

) is programmed into the first partition r1 
such that each subvector fits to a column in the crossbar partition. The order of 
programming of subvectors into the columns in the partition is determined by the 
previously selected random permutation e. The above steps must be repeated to 
program all the remaining partitions (r2, r3, ..., rf).

The methodology followed in feeding query vectors during inference is 
detailed in the following steps. First, we split query hypervector Q into f subvectors 
(Q1, Q2,...,Qf) of equal length. We then translate Qi component values into voltage 
levels and apply them onto the wordline drivers in the crossbar array. Bitlines 
corresponding to the partition ri are enabled. Depending on the belonging class, 
the partial dot products are then collected onto the respective destination in a 
sum buffer through AD converters at the end of the ri partition of the array. This 
procedure is repeated for each partition ri. Classwise partial dot products are 
accumulated together in each iteration and updated in the sum buffer. After the fth 
iteration, full dot-product values are ready in the sum buffer. The results are then 
compared against each other using a WTA circuit to find the maximum value to 
assign its index as the predicted class.

Experiments on AM search. To obtain the prototype hypervectors used for the 
AM search, training with HDC is first performed in software on the three datasets 
described in the section ‘Datasets to evaluate in-memory HDC’. For the language 
and news datasets, XOR-based encoding (see section ‘The concept of in-memory 
HDC’) is used with an n-gram size of n = 4 and n = 5, respectively. For the EMG 
dataset, an initial spatial encoding step creates one hypervector per time sample. 
A temporal encoding step is then performed, whereby n consecutive spatially 
encoded hypervectors are combined into an n-gram with XOR-based encoding 
and n = 5. The detailed encoding procedure for the EMG dataset is explained in 
Supplementary Note 5.

Once training is performed, the prototype hypervectors are programmed 
on the prototype PCM chip. In the experiment conducted with invHamm as the 
similarity metric, d × c × 2 devices on the PCM prototype chip are allocated. Each 
device in the first half of the address range (from 1 to d × c) is programmed with 
a component of a prototype hypervector Pi, where i = 1, …, c. Devices in the 
second half of the array are programmed with components of the complementary 
prototype hypervectors. The exact programming order is determined by the 
partition factor (f) employed in the coarse-grained randomized partitioning 
scheme. For f = 10 used in the experiment, devices from the first address up to the 
1,000 × cth address are programmed with the content of the first partition, that 
is, the first segment of each prototype hypervector. The second set of 1,000 × c 
addresses is programmed with content of the second partition, and so on. As the 
hypervector components are binary, devices mapped to the logical 1 components 
and devices mapped to logical 0 components are programmed to the maximum 
(~20 μS) and minimum conductance (~0 μS) levels, respectively. The devices are 
programmed in a single shot (no iterative program-and-verify algorithm is used) 
with a single reset/set pulse for minimum/maximum conductance devices.

Once the programming phase is completed, the queries from the testing 
set of a given task are encoded. Only for the experiments in section ‘3The AM 

search module’, the query hypervectors are generated using the same software HD 
encoder used for training. In the experiments of section ‘The complete in-memory 
HDC system’, the query hypervectors are generated with in-memory encoding 
using the prototype PCM chip as described in the section ‘Experiments on the 
complete in-memory HDC system’.

The AM search on a given query hypervector is performed using the prototype 
PCM chip as follows. The components of the query hypervector carrying a value 
1 trigger a read (300 mV applied voltage) on the devices storing the corresponding 
components of prototype hypervectors, thus realizing the analog multiplications 
through Ohm’s law of the in-memory dot-product operation. The same procedure 
is performed with the complementary query hypervector on the devices storing 
complementary prototype hypervectors. The resulting current values are digitized 
via the on-chip ADC, transferred to the host computer and classwise summed up 
in software according to the predetermined partition order to obtain classwise 
similarity values (Supplementary Note 1). The class with the highest similarity 
is assigned as the predicted class for the given query. For experiments with dotp 
as the similarity metric, the devices attributed to complementary prototype 
hypervectors are not read when forming the classwise aggregate.

More details on the 2-minterm encoder. To generate an n-gram hypervector in 
n cycles, the crossbar is operated using the following procedure. During the first 
cycle, n-gram encoding is initiated by asserting the ‘start’ signal while choosing 
the index of the nth symbol s[n]. This enables all the gate lines in both crossbar 
arrays and the wordline corresponding to s[n] to be activated. The current released 
onto the bitlines passed through the sense amplifiers should ideally match the 
logic levels of B[n] in first array and B½n

I
 in the second array. The two ‘minterm 

buffers’ downstream of the sense amplifier arrays register the two hypervectors 
by the end of the first cycle. During subsequent jth (1 < j ≤ n) cycles, the gate lines 
are driven by the right-shifted version of the incumbent values on the minterm 
buffers—effectively implementing permutation—while row decoders are fed with 
symbol s[n − j + 1] (the left shift is used for the second crossbar). This ensures 
that the output currents on the bitlines correspond to the component-wise 
logical AND between the permuted minterm buffer values and the next basis 
hypervector B[n − j] (complement for the second array). The expression for 
the value stored on the left-side minterm buffers at the end of jth cycle is given 
by 

Qj
k¼1 ρ

j�k B½n� kþ 1
I

. The product of the complementary hypervectors Qj
k¼1 ρ

j�k B½n� kþ 1
I

 is stored in the right-side minterm buffers. At the end of 
the nth cycle, the two minterms are available in the minterm buffers. The elements 
in the minterm buffers are passed onto the OR gate array following the minterm 
buffers (shown in Fig. 3a), such that inputs to the array have matching indices from 
the two minterm vectors. At this point, the output of the OR gate array reflects 
the desired n-gram hypervector from 2-minterm n-gram encoding. After n-gram 
encoding, the generated n-grams are accumulated and binarized. In the hardware 
implementation, this step is realized inside the bundler module shown in Fig. 4a. 
The threshold applied to binarize the sum hypervector components is given by

l ´
1

2n�logðmÞ

� �

where l is the length of the sequence, n is the n-gram size and m is the number of 
minterms used for the binding operation in the encoder (for example, m = 2 for 
2-minterm encoder).

Experiments on the complete in-memory HDC system. For the experiments 
concerning the complete in-memory HDC system, training with HDC is first 
performed in software on the language and news datasets. 2-minterm encoding 
(equation (5)) is used with n-gram sizes of n = 4 and n = 5, respectively.

After training is performed, h × d × 2 devices are allocated on the PCM chip for 
storing IM and complementary IM in addition to d × c devices allocated for AM. 
The IM and complementary IM hypervectors are programmed on PCM devices 
in a single shot with reset/set pulses for logical 0/1 components. The prototype 
hypervectors of the AM are programmed as described in the section ‘Experiments 
on AM search’, with the exception that the complementary prototype hypervectors 
are not programmed because dotp is used as the similarity metric.

During inference, for every query to be encoded, the IM and complementary 
IM are read from the prototype PCM chip. In-memory read logic (AND) is 
performed by thresholding the read current values from the on-chip ADC in 
software to emulate the sense amplifiers of the eventual proposed hardware 
at each step of the 2-minterm n-gram encoding process (Supplementary Note 
1). The other operations involved in the encoder that are not supported by the 
prototype PCM chip, such as the 1 bit right-shift permutation, storing of the 
intermediate results in the minterm buffers, ORing the results of the original 
and complementary minterm buffers, and the bundling of n-gram hypervectors 
are implemented in software. Once the encoding of the query hypervector is 
completed, the AM search is carried out on that query hypervector as specified in 
the section ‘Experiments on AM search’ with dotp as the similarity metric.

Performance, energy estimation and comparison. To evaluate and benchmark 
the energy efficiency of the proposed architecture, a cycle-accurate register transfer 
level (RTL) model of a complete CMOS design that has equivalent throughput to 
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that of the proposed in-memory HDC system architecture has been developed 
(Supplementary Note 6). A testbench infrastructure is then built to verify the 
correct behaviour of the model. Once the behaviour is verified, the RTL model is 
synthesized in a UMC 65 nm technology node using a Synopsys Design Compiler. 
Owing to the limitations in the electronic design automation (EDA) tools used for 
synthesizing the CMOS-based HDC, dimensionality d had to be limited to 2,000. 
The post-synthesis netlist is then verified using the same stimulus vectors applied 
during behavioural simulation. During post-synthesis netlist simulation, the design 
is clocked at a frequency of 440 MHz to create a switching activity file in value 
change dump (VCD) format for inference of 100 language classification queries. 
Then, the energy estimation for the CMOS modules is performed by converting 
average power values reported by Synopsys Primetime, which takes the netlist and 
the activity file from the previous steps as the inputs. A typical operating condition 
with voltage 1.2 V and temperature 25 °C is set as the corner for energy estimation 
of the CMOS system. Further energy and area results were obtained for d values 
of 100, 500, 1,000 in addition to 2,000. The results were then extrapolated to 
derive the energy and area estimates for dimensionality d = 10,000 to obtain a fair 
comparison with the in-memory HDC system.

The energy/area of the proposed in-memory HDC system architecture is 
obtained by adding the energy/area of the modules that are common with the full 
CMOS design described above, together with the energy of the PCM crossbars 
and the analog/digital peripheral circuits exclusive to the in-memory HDC 
architecture. Parameters based on the prototype PCM chip in the 90 nm technology 
used in the experiments are taken as the basis for the PCM-exclusive energy/
area estimation. The parameters of the sense amplifiers that are not present in the 
PCM hardware platform but present in the proposed in-memory HD encoder are 
taken from the 65 nm current latched sense amplifier presented by Chandoke and 
others53. The area of the current latched sense amplifier was estimated by scaling 
the area of the six-transistor SRAM cell in IBM 65 nm technology (0.54 μm2) 
according to the number of transistors present in the sense amplifier (19). The 
parameters used for the PCM crossbars energy estimation are shown in Extended 
Data Table 2.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.

Received: 13 November 2019; Accepted: 7 April 2020;  
Published online: 1 June 2020

References
	1.	 Kanerva, P. Sparse Distributed Memory (MIT Press, 1988).
	2.	 Kanerva, P. Hyperdimensional computing: an introduction to computing in 

distributed representation with high-dimensional random vectors. Cogn. 
Comput. 1, 139–159 (2009).

	3.	 Kanerva, P., Kristoferson, J. & Holst, A. Random indexing of text samples for 
latent semantic analysis. In Proceedings of the Annual Meeting of the Cognitive 
Science Society Vol. 22 (Cognitive Science Society, 2000).

	4.	 Rahimi, A., Kanerva, P., Benini, L. & Rabaey, J. M. Efficient biosignal processing 
using hyperdimensional computing: network templates for combined learning 
and classification of ExG signals. Proc. IEEE 107, 123–143 (2019).

	5.	 Burrello, A., Cavigelli, L., Schindler, K., Benini, L. & Rahimi, A. Laelaps: an 
energy-efficient seizure detection algorithm from long-term human iEEG 
recordings without false alarms. In Proceedings of the Design, Automation & 
Test in Europe Conference & Exhibition (DATE) 752–757 (IEEE, 2019).

	6.	 Räsänen, O. J. & Saarinen, J. P. Sequence prediction with sparse distributed 
hyperdimensional coding applied to the analysis of mobile phone use 
patterns. IEEE Trans. Neural Netw. Learn. Syst. 27, 1878–1889 (2015).

	7.	 Kleyko, D. & Osipov, E. Brain-like classifier of temporal patterns. In 
Proceedings of the International Conference on Computer and Information 
Sciences (ICCOINS) 1–6 (IEEE, 2014).

	8.	 Kleyko, D., Osipov, E., Papakonstantinou, N. & Vyatkin, V. Hyperdimensional 
computing in industrial systems: the use-case of distributed fault isolation in 
a power plant. IEEE Access 6, 30766–30777 (2018).

	9.	 Chang, E., Rahimi, A., Benini, L. & Wu, A. A. Hyperdimensional 
computing-based multimodality emotion recognition with physiological 
signals. In Proceedings of the IEEE International Conference on Artificial 
Intelligence Circuits and Systems (AICAS) 137–141 (IEEE, 2019).

	10.	Mitrokhin, A., Sutor, P., Fermüller, C. & Aloimonos, Y. Learning 
sensorimotor control with neuromorphic sensors: toward hyperdimensional 
active perception. Sci. Robot. 4, eaaw6736 (2019).

	11.	Montagna, F., Rahimi, A., Benatti, S., Rossi, D. & Benini, L. PULP-HD: 
accelerating brain-inspired high-dimensional computing on a parallel 
ultra-low power platform. In Proceedings of the 55th Annual Design 
Automation Conference DAC 2018, 111:1–111:6 (ACM, 2018).

	12.	Emruli, B., Gayler, R. W. & Sandin, F. Analogical mapping and inference with 
binary spatter codes and sparse distributed memory. In Proceedings of the 
International Joint Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2013).

	13.	Kleyko, D., Osipov, E., Gayler, R. W., Khan, A. I. & Dyer, A. G. Imitation of 
honey bees’ concept learning processes using vector symbolic architectures. 
Biol. Inspired Cogn. Architectures 14, 57–72 (2015).

	14.	Slipchenko, S. V. & Rachkovskij, D. A. Analogical mapping using similarity of 
binary distributed representations. Inf. Theories Appl. 16, 269–290 (2009).

	15.	Bandaragoda, T. et al. Trajectory clustering of road traffic in urban 
environments using incremental machine learning in combination with 
hyperdimensional computing. In Proceedings of the IEEE Intelligent 
Transportation Systems Conference (ITSC) 1664–1670 (IEEE, 2019).

	16.	Osipov, E., Kleyko, D. & Legalov, A. Associative synthesis of finite state 
automata model of a controlled object with hyperdimensional computing. In 
Proceedings of the Annual Conference of the IEEE Industrial Electronics Society 
3276–3281 (IEEE, 2017).

	17.	Kleyko, D., Frady, E. P. & Osipov, E. Integer echo state networks: 
hyperdimensional reservoir computing. Preprint at https://arxiv.org/
pdf/1706.00280.pdf (2017).

	18.	Rahimi, A. et al. High-dimensional computing as a nanoscalable paradigm. 
IEEE Trans. Circuits Syst. I Regular Papers 64, 2508–2521 (2017).

	19.	Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. 
Nat. Nanotechnol. 8, 13–24 (2013).

	20.	Sebastian, A. et al. Temporal correlation detection using computational 
phase-change memory. Nat. Commun. 8, 1115 (2017).

	21.	Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on 
memristive systems. Nat. Electron. 1, 22–29 (2018).

	22.	Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching 
devices. Nat. Electron. 1, 333–343 (2018).

	23.	Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory 
devices and applications for in-memory computing. Nat. Nanotechnol. https://
doi.org/10.1038/s41565-020-0655-z (2020).

	24.	Li, H. et al. Hyperdimensional computing with 3D VRRAM in-memory 
kernels: device-architecture co-design for energy-efficient, error-resilient 
language recognition. In Proceedings of the IEEE International Electron 
Devices Meeting (IEDM) 16.1.1–16.1.4 (IEEE, 2016).

	25.	Li, H., Wu, T. F., Mitra, S. & Wong, H. S. P. Device-architecture co-design for 
hyperdimensional computing with 3D vertical resistive switching random 
access memory (3D VRRAM). In Proceedings of the International Symposium 
on VLSI Technology, Systems and Application (VLSI-TSA) 1–2 (IEEE, 2017).

	26.	Wu, T. F. et al. Brain-inspired computing exploiting carbon nanotube FETs and 
resistive RAM: hyperdimensional computing case study. In Proceedings of the 
International Solid State Circuits Conference (ISSCC) 492–494 (IEEE, 2018).

	27.	Kanerva, P. Binary spatter-coding of ordered k-tuples. In Proceedings of the 
International Conference on Artificial Neural Networks (ICANN), Vol. 1112, 
869–873 (Lecture Notes in Computer Science, Springer, 1996).

	28.	Joshi, A., Halseth, J. T. & Kanerva, P. Language geometry using random 
indexing. In Proceedings of the International Symposium on Quantum 
Interaction 265–274 (Springer, 2016).

	29.	Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 
765–783 (2011).

	30.	Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. 
Nat. Nanotechnol. 10, 191–194 (2015).

	31.	Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via 
material implication. Nature 464, 873–876 (2010).

	32.	Kvatinsky, S. et al. Magic—memristor-aided logic. IEEE Trans. Circuits Syst II 
Express Briefs 61, 895–899 (2014).

	33.	Shen, W. et al. Stateful logic operations in one-transistor-one-resistor resistive 
random access memory array. Electron Device Lett. 40, 1538–1541 (2019).

	34.	Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).
	35.	Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE 

J. Emerging Selected Topics Circuits Syst. 6, 146–162 (2016).
	36.	Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic 

programmable synapses based on phase change materials for brain-inspired 
computing. Nano Lett. 12, 2179–2186 (2011).

	37.	Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic 
phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

	38.	Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. 
Nat. Commun. 9, 2514 (2018).

	39.	Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change 
memory devices. J. Appl. Phys. 124, 111101 (2018).

	40.	Joshi, V. et al. Accurate deep neural network inference using computational 
phase-change memory. Nat. Commun. https://doi.org/10.1038/s41467-020-
16108-9 (2020).

	41.	Hosseini, P., Sebastian, A., Papandreou, N., Wright, C. D. & Bhaskaran, H. 
Accumulation-based computing using phase-change memories with FET 
access devices. Electron Device Lett. 36, 975–977 (2015).

	42.	Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 
246–253 (2018).

	43.	Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of 
phase-change materials with carbon nanotube electrodes. Science 332, 
568–570 (2011).

Nature Electronics | VOL 3 | June 2020 | 327–337 | www.nature.com/natureelectronics336

https://arxiv.org/pdf/1706.00280.pdf
https://arxiv.org/pdf/1706.00280.pdf
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
http://www.nature.com/natureelectronics


ArticlesNATurE ElECTrOnICS

	44.	Waser, R. & Aono, M. in Nanoscience and Technology: a Collection of Reviews 
from Nature Journals 158–165 (World Scientific, 2010).

	45.	Kent, A. D. & Worledge, D. C. A new spin on magnetic memories.  
Nat. Nanotechnol. 10, 187–191 (2015).

	46.	Close, G. et al. Device, circuit and system-level analysis of noise in multi-bit 
phase-change memory. In Proceedings of the International Electron Devices 
Meeting (IEDM) 29.5.1–29.5.4 (IEEE, 2010).

	47.	 Breitwisch, M. et al. Novel lithography-independent pore phase change memory. 
In Proceedings of the Symposium on VLSI Technology 100–101 (IEEE, 2007).

	48.	Rahimi, A., Kanerva, P. & Rabaey, J. M. A robust and energy-efficient 
classifier using brain-inspired hyperdimensional computing. In Proceedings of 
the 2016 International Symposium on Low Power Electronics and Design 
ISLPED 2016, 64–69 (ACM, 2016).

	49.	Quasthoff, U., Richter, M. & Biemann, C. Corpus portal for search in 
monolingual corpora. In Proceedings of the International Conference on 
Language Resources and Evaluation (LREC) 1799–1802 (ELRA, 2006).

	50.	Koehn, P. Europarl: a parallel corpus for statistical machine translation. In 
Proceedings of the MT Summit Vol. 5, 79–86 (AAMT, 2005).

	51.	Mimaroglu, D. S. Some Text Datasets (Univ. Massachusetts, accessed 9 March 
2018); https://www.cs.umb.edu/smimarog/textmining/datasets/

	52.	Rahimi, A., Benatti, S., Kanerva, P., Benini, L. & Rabaey, J. M. 
Hyperdimensional biosignal processing: a case study for EMG-based hand 
gesture recognition. In Proceedings of the 2016 IEEE International Conference 
on Rebooting Computing (ICRC) 1–8 (IEEE, 2016).

	53.	Chandoke, N., Chitkara, N. & Grover, A. Comparative analysis of sense 
amplifiers for SRAM in 65 nm CMOS technology. In Proceedings of the 
International Conference on Electrical, Computer and Communication 
Technologies (ICECCT), 1–7 (IEEE, 2015).

Acknowledgements
This work was supported in part by the European Research Council through the 
European Union’s Horizon 2020 Research and Innovation Programme under grant no. 
682675 and in part by the European Union’s Horizon 2020 Research and Innovation 
Programme through the project MNEMOSENE under grant no. 780215.

Author contributions
All authors collectively conceived the idea of in-memory hyperdimensional computing. 
G.K. performed the experiments and analysed the results under the supervision of 
M.L.G., A.R. and A.S. G.K., M.L.G., A.R. and A.S. wrote the manuscript with input  
from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41928-020-0410-3.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41928-020-0410-3.

Correspondence and requests for materials should be addressed to A.R. or A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Electronics | VOL 3 | June 2020 | 327–337 | www.nature.com/natureelectronics 337

https://www.cs.umb.edu/smimarog/textmining/datasets/
https://doi.org/10.1038/s41928-020-0410-3
https://doi.org/10.1038/s41928-020-0410-3
https://doi.org/10.1038/s41928-020-0410-3
http://www.nature.com/reprints
http://www.nature.com/natureelectronics


Articles NATurE ElECTrOnICSArticles NATurE ElECTrOnICS

Extended Data Table 1 | Architecture configurations and hyperparameters used for the tree different tasks
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Extended Data Table 2 | Parameters for PCM crossbars energy and area estimation
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