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Abstract—Massive Machine Type Communication (mMTC)
enables novel applications but its dense deployment and short
packet properties lead to new challenges for physical layer
design. This paper investigates hyper-dimensional modulation
(HDM), a recently proposed novel non-orthogonal modulation,
for short packet communications with superior interference
tolerance in mMTC. We propose a new tree-based K-best
decoding algorithm for HDM to improve the packet error rate
performance in both additive white Gaussian noise (AWGN) and
interference-limited scenarios. Simulation results show that the
proposed algorithm can achieve 0.5 – 4 dB gain in AWGN and
interference-limited channels compared to the Polar code with
CRC (cyclic redundancy check)-aided list decoding.

I. INTRODUCTION

The ITU-R categorizes the 5G and beyond technologies into
three classes: enhanced Mobile Broadband (eMBB), massive
Machine Type Communications (mMTC), and Ultra-Reliable
and Low Latency Communications (URLLC) while each
targets different applications [1]. mMTC use-case examples
include transportation, utilities, health, environment, and se-
curity [2]. Packets for these mMTC applications usually carry
very small amount of information such as control commands
or sensor readings. The number of nodes in mMTC networks
can be much greater than that of consumer (non-machine)
mobile cellular networks. Thus it poses new challenges in the
physical layer (PHY) design for reliable communication of
short packets in interference-heavy channels [3].

Up to 4G, the main focus of the development has been to
boost the data rate with high spectral efficiency for human-
oriented communications. However, novel applications in
mMTC usually convey relative short information as small as
a few bytes per packet. The conventional PHY and network
design optimized for large amount of information is no
longer efficient in those applications. First, the overhead of
preamble and pilot symbols is no longer negligible compared
to the small number of information bits. Therefore, the frame
structure needs to be re-designed with consideration of the
overhead [4]. Second, the efficiency of modern codes such as
Turbo and LDPC codes greatly relies on the long block-length.
When the packet size is small, these codes fail to provide reli-
able performance. A new theorem has been studied to provide
the limit of short codes since Shannon’s Theorem assumes
infinite block-length [5]. To approach the limit for short codes,
new coding schemes have been recently investigated [6], [7].

Another challenge in mMTC is the interference especially
when it operates in unlicensed ISM bands. Grant-based

multiple access protocols are inefficient when the number
of nodes is large [3]. The overhead of control signals for
network coordination often offsets the potential benefits of
being synchronous. Moreover, precise synchronization in time
and frequency is impractical for many very narrowband
low power mMTC nodes because of frequency reference
oscillator-accuracy limitations and the energy burden of main-
taining synchronization even when there is no message to
communicate. When an asynchronous mMTC network oper-
ates in unlicensed band shared with heterogeneous systems
such as WiFi, Bluetooth, etc., inter-/intra-network collisions
and interference become inevitable. Therefore, it is a critical
task for mMTC to design a novel PHY for short packets
to deal with overwhelming interference from both intra- and
heterogeneous inter-network traffics.

Hyper-Dimensional Modulation (HDM) is a novel non-
orthogonal modulation proposed recently [8], [9]. It was
shown that HDM can provide excellent reliability when the
packet length is short and it is inherently tolerate to inter-
ference. Therefore, HDM has great potential for adoption
in mMTC systems. Originally HDM was proposed with a
demodulation algorithm using an iterative parallel successive
interference cancellation (SIC) technique [8]. It then be ex-
tended to use the knowledge of intra-network interference
to improve the performance under packet collisions [9]. In
this paper, we proposed a new demodulation algorithm to
further improve the performance of HDM in AWGN and
interference-limited channels outperforming the state-of-the-
art CRC-assisted list-decoding based Polar code [10] applied
to binary phase-shift keying (BPSK) for the same spectral
efficiency and coding rate.

Several prior works have investigated the PHY design for
short packet communications and mMTC. The performance
and complexity comparison for modern codes are provided in
[11]. However, the comparison is only valid in the AWGN
channel (without interference). Grant-free (with interference
collision) NOMA performance for mMTC is analyzed in [12].
However, the system still needs to be synchronized to a time
reference for a slot-based multiple access scheme. A compres-
sive sensing based modulation is proposed for mMTC in [13].
However, the proposed joint multi-user decoding only works
for synchronous systems and can not deal with heterogeneous
interference sources. In contrast, our approach is designed for
asynchronous short packet systems that coexist with interfer-
ence from heterogeneous systems. Three main contributions
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of this paper can be summarized as: 1) a new tree-based
CRC-assisted K-best decoding to significantly improve the
performance of HDM for short packets, 2) formulation of
L1 optimization decoding for enhanced interference tolerance,
and 3) evaluation of the proposed HDM and new algorithms
to outperform the Polar-coded BPSK for the same spectral
efficiency and coding rate under strong interference.

II. SYSTEM MODEL

Hyper-Dimensional Modulation (HDM) is a novel non-
orthogonal modulation recently proposed for short packet
communications [8]. HDM can be viewed as a joint
modulation-coding method and a special case of superposition
codes [14] which construct the modulated (and coded) signal
by combining selected columns of a random codebook. In-
stead of using a random codebook as in typical superposition
codes, HDM uses a fast linear transform and pseudo-random
permutations to transform sparse vectors to non-sparse vectors
for efficient encoding and decoding. The HDM modulation
process can be written as

s =
V∑
i=1

Aixi (1)

where s denotes the complex-valued transmitted vector with
dimension of D × 1 (s ∈ CD), x = [xT

1 xT
2 · · · xT

V ]
T and

A = [A1 A2 · · · AV ] represent the composition of the
sparse information vectors and the codebook, respectively.
The information vectors xi ∈ CD for i = 1, · · · , V are
sparse with only one non-zero element and V is defined as
the number of non-orthogonal layers that are transmitted at
the same time. The sparse vector xi embeds the information
bits in the position of the non-zero element and the value
(phase) of the non-zero element, which can be chosen from
QPSK symbols: {+1,−1,+j,−j}. The matrix Ai ∈ CD×D

represents a fast linear transformation followed by a pseudo-
random permutation. Thus, the transmitted signal is the su-
perposition of V non-sparse vectors Aixi, which can be
obtained by Aixi = PiF{xi} where Pi is a pseudo-random
permutation matrix and F{·} is a fast linear transform with
complexity of O(N logN) (e.g., fast Fourier transform (FFT)
or fast Walsh–Hadamard transform (FWHT)). Note that the
matrix Ai is unitary if normalized, and vectors Aixi are non-
orthogonal although they are transmitted together.

Assuming a narrowband frequency flat channel and perfect
channel estimation, the received signal y can be represented
by (2) assuming the channel is equalized.

y = s+ n =
V∑
i=1

Aixi + n. (2)

In (2), n ∼ CN (0, N0I) is the complex Gaussian noise vector
with element-wise variance N0. The demodulation process in
AWGN can be considered as finding the optimal solution of

the non-convex minimization problem:

P1: argmin
x∈X
∥y −

V∑
i=1

Aixi∥22 (3)

where X represents the set of all possible sparse information
vectors xi (i.e., each xi contains only one non-zero QPSK
symbol encoding log2D + 2 bits by the position and phase).

This problem resembles compressive sensing, which finds
the optimal sparse vector with minimum L1-norm that satis-
fies an L2-norm constraint. However, compressive sensing is
usually a convex problem which has a solution in a convex set
of sparse vectors, whereas the problem in (3) is non-convex
because of the constraint on the discrete and non-convex set
X . Next, we discuss an efficient K-best tree-search method to
solve the problem, which yields lower error rate compared to
our prior parallel-SIC decoding [8], [9].

III. K-BEST DECODING ALGORITHM

A bruteforce method to find the minimum of (3) by trying
all possible combinations of xi, i = 1, · · · , V is practically
infeasible due to excessive complexity. Therefore, in this sec-
tion we propose a tree-based algorithm that finds a suboptimal
solution of (3) through a K-best breath-first search algorithm
similar to a variant in MIMO decoding [15].

First observe that the objective in (3) can be expressed as

∥y−
V∑
i=1

Aixi∥22 = ∥y −
V−1∑
i=1

Aixi∥22 + ∥AV xV ∥22

− 2ℜ{yHAV xV }+ 2ℜ{(
V−1∑
i=1

Aixi)
HAV xV )} (4)

where ℜ{·} denotes the real part of a complex number.
In (4), the norm in right-hand side (RHS) consists of four

terms. The first term ∥y−
∑V−1

i=1 Aixi∥22 has the same form
as LHS except the summation is now from 1 to V − 1. The
second term ∥AV xV ∥22 is a constant regardless of the choice
of xV if the fast linear transformation matrix has columns
with equal norms. The third term is the correlation between y
and AV xV . Finally, the last term is the correlation between
AV xV and an accumulative vector

∑V−1
i=1 Aixi. With the

same process, the first term in RHS can be further decomposed
until only y remains.

Subtract the objective function in (3) by constant terms
∥Aixi∥22 for i = 1, · · · , V and divide the equation by 2, then
the solution of the minimization problem remains identical.
Therefore, we can denote the score metric s(l) = 1

2 (∥y −∑l
i=1 Aixi∥22 −

∑l
i=1 ∥Aixi∥22), which can be expressed in

an iterative form:

s(l) = s(l−1) −ℜ{xH
l AH

l y}+ ℜ{xH
l AH

l u(l−1)} (5)

where u(l) =
∑l

i=1 Aixi.
The objective is to minimize (5) for the last layer V , s(V ).

Thus we find the minimum metric through a tree structure by
evaluating sparse vectors xl for each layer. Note that at each
node of the tree, we calculate the metric (5) for each candidate
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Fig. 1: The tree structure illustration of K-best algorithm. M is the
number of candidates xl at each layer, which equals to 4D when
QPSK symbols are used. The layer indices have been sorted.

of xl with fixed candidates determined by all previous layers
from 1 to l − 1 (i.e., s(l−1) and u(l−1)).

The tree structure is illustrated in Fig. 1. For each parent
node, we calculate its children’s metric based on the parent’s
metric and also its ancestor path. More specifically, we can
rewrite the iterative equation (5) for each node given its parent
and ancestor path as

s
(l)
i,j = s

(l−1)
i −ℜ{xH

l,jA
H
l y}+ ℜ{xH

l,jA
H
l u

(l−1)
i } (6)

where j is the j-th candidate of possible xl, and i =
{i1, i2, · · · , il−1} is the index set of previously chosen paths
of its ancestor nodes. The accumulative vector u

(l−1)
i is the

interference term determined by previously chosen candidates
from parent/ancestor layers.

The demodulation process follows a K-best tree structure
searching algorithm. Without pruning, the number of nodes
to traverse grows exponentially with the size of possible
x candidates as we go deeper into the tree. To maintain
practical complexity, we only preserve for each layer the best
K candidates with lowest metrics and prune all the others.
The iteration continues until there are K surviving nodes at
the last layer eventually.

There are efficient ways to calculate the metric (6). Since
only one element of xl has the non-zero value which can
only be a QPSK symbol, the last two terms of RHS in (6)
is equivalent to simply choosing a single real and imaginary
number from the elements of AH

l y and AH
l u

(l−1)
i , respec-

tively. Furthermore, AH
l y can be computed by a fast linear

transform followed by permutation (matrix–vector multiplica-
tion is not required), and AH

l u
(l−1)
i =

∑l−1
j=1 A

H
l Ajxj,ij can

be obtained by summing columns of look up tables that store
pre-computed AH

l Aj for l = 1, · · · , V and j = 1, · · · , l− 1.
In this way, the computation complexity can be kept as
O(D logD +K).

CRC-assisted error correction: A near-optimal solution
is obtained by choosing the one with the lowest metric
from the final output list. If K is sufficiently large, the
suboptimal solution often gives the correct decoding result.

The error probability can further decrease by checking CRC
to determine whether the selected candidate is valid or not.
Since we have a list of K best candidates, one can try each
of them with the order of ascending metric until the candidate
passes CRC. Even in the event that the set of correct vectors
is not the optimal solution of (5), it is still highly probable to
identify it as long as it is in the final candidate list.

Sorting-based K-best: One potential weakness of the K-
best algorithm is that if a decision is made wrong in an upper
layer, that mistake can not be recovered in lower layers. To
mitigate this issue, we propose a strategy to sort the order
of decoding layers based on the score metric along the tree
traversal. We consider two possible methods for sorting the
decoding layers; the first one is universal sorting and the
second is per-branch sorting. For universal sorting, we first
evaluate minimum metrics of all remaining layers based on
(6) using the up-to-now best candidate as u. Then we pick a
layer with the best possible metric as the layer to be processed
next for all (universal) K surviving nodes. The per-branch
sorting method is similar to the universal method except that
it uses different accumulative vectors u for each surviving
nodes. Then each node can decide the order of next layer to
decode, which may result in a different order from others. This
method has higher complexity but yields better performance.

The entire demodulation algorithm using the per-branch
sorting method is summarized in Algorithm 1. Converting it
to the universal sorting method is straightforward.

Algorithm 1: K-best decoding algorithm with CRC
correction and per-branch sorting method.

Input : y,K,Pi, for i = 1, · · · , V
Output: decodedBits, errFlag

1 for k = 1 to K do
2 u(k)← 0 (zero accumulative vector)
3 s(k)← 0 (zero score metric)
4 idx(k)← [ ] (empty candidate index)
5 L(k)← [ ] (empty decoded layer index)

6 for i = 1 to V do
7 for k = 1 to K do
8 lk ← ChooseLayer(L(k))
9 L(k)← [L(k), lk]

10 stmp(k)←
s(k)−ℜ{F{PH

lk
y}}+ ℜ{F{PH

lk
uk}}

11 [s, idxnew,anc]← SelectNodes(stmp,K)
12 for k = 1 to K do
13 u(k)← u(anc(k)) +Planc(k)

F{xidxnew(k)}
14 idx(k)← [idx(anc(k)), idxnew(k)]

15 outputList ← Reorder(idx,L)
16 while errFlag ̸= 0 and k ≤ K do
17 decodedBits ← IdxToBits(outputList (k))
18 errFlag ← CRCDecode(decodedBits)



IV. DETECTION UNDER STRONG INTERFERENCE

A. Modified formulation to mitigate interference

When there exists strong interference in the environment,
the optimization P1 in (3) does not necessarily yield the
optimal performance because interference may have time-
varying power and does not behave as i.i.d. Gaussian noise
throughout the packet. In our narrowband mMTC scenarios,
interference burst length can be much shorter than the length
of the desired packet, and multiple interference sources can
overlap with each other with random arrival processes. In that
scenario, it is reasonable to assume that the receiver does not
know interference property such as the average/instantaneous
power level and position of interference bursts within a desired
packet. For example, when a narrowband mMTC system oper-
ates in the 2.4GHz ISM band, the gateway may observe heavy
interference coming from WiFi and Bluetooth. A packet from
WiFi or Bluetooth will be much shorter than a narrowband
(e.g., a few kHz) mMTC packet while the interference power
information is unknown and may change quickly.

Applying the decoding algorithm in section II in severe
interference scenarios will result in suboptimal performance.
Degradation comes from the possibility of sporadic interfer-
ence causing some received samples having large Euclidean
distance from the transmitted samples. These events can result
in large L2-norm.

One technique to alleviate this problem is to set a saturation
threshold on the received sample to prevent the large offset
from the transmitted signal caused by the sporadic strong
interference. Another strategy is to use an alternative metric
to replace the L2-norm to handle the problem. We propose
to use L1-norm as the metric because it is less sensitive to
sporadic outlier elements in a large vector. The optimization
in this case changes from L2- to L1-norm objective:

P2: argmin
x∈X

∥y −
V∑
i=1

Aixi∥1. (7)

B. K-best decoding with L1-norm metric

The L1-norm in (7) can not be decomposed in the same
form as the L2-norm in (3) with iterative calculation. Nev-
ertheless, if the vectors and matrices in (7) are real, i.e.,
y,xi ∈ RD for i = 1, 2, · · · , V and Ai ∈ RD×D for i =
1, 2, · · · , V , then (7) can have an iterative additive form.

Lemma 1. If a, b ∈ R, then |a+b| = |a|+ |b|−2 ·1(ab < 0) ·
min(|a|, |b|), where 1(·) is the indicator function that equals
to 1 if the condition in the parentheses is true or 0 otherwise.

Using Lemma 1, we can decompose the L1-norm as

∥a+ b∥1 = ∥a∥1 + ∥b∥1 − 2
D∑
i=1

1(aibi < 0) ·min(|ai|, |bi|)

(8)

where a and b ∈ RD, and ai denotes the i-th element of a.
Now, the objective function (7) is calculated iteratively as

∥y −
V∑
i=1

Aixi∥1 = ∥y −
V−1∑
i=1

Aixi∥1 + ∥AV xV ∥1

− 21T
(
1(rV−1 ◦AV xV > 0) ◦min(|rV−1|, |AV xV |)

)
(9)

where rV−1 = y −
∑V−1

i=1 Aixi and 1 is a vector with all
elements of 1, and ◦ denotes element-wise multiplication.
Note that the term ∥AV xV ∥1 is a constant if AV has constant
L1-norm columns, which is true when FWHT is used instead
of FFT. Hence, the iterative L1 calculation has the form:

s(l) = s(l−1) − 1T
(
1(rl−1 ◦Alxl > 0) ◦min(|rl−1|, |Alxl|)

)
.

(10)

The same K-best algorithm structure can be used with the
L1 metric calculation (10). Note (10) does not involve matrix
multiplications since xl has only one non-zero element and
the other terms are just choosing sign and magnitude values
between two vectors.

C. Separate IQ modulation for L1 K-best

The aforementioned L1 formulation requires real-valued
modulation. To maintain the same spectral efficiency with the
original HDM that uses complex-valued QPSK and FFT, we
use binary (±1) modulation for xi and real-valued FWHT
for Ai independently applied to the in-phase and quadrature
(I and Q) channels. In that case, the K-best demodulation is
performed separately with the I and Q channel of the signal.
The CRC-correction stage needs to be modified because now
we have two candidate lists. We evaluate possible candidate
combinations for CRC using both lists while limiting the
number of CRC trials to be linear with K.

V. EVALUATION

A. Performance in AWGN

The performance of the proposed HDM is evaluated by
Monte-Carlo simulations. We compare the proposed scheme
with BPSK modulation protected by a 3GPP specified CRC-
aided Polar code with a list decoding method [10], [16]. This
Polar code configuration is known to be very robust for short-
length codes [11]. For HDM, we use D = 128, V = 7, which
gives a coding rate of 0.4922. We set K = 128 in our K-best
decoding. With this setting the decoder needs only 5.25 MB
for complex-valued look up tables for algorithm complexity
reduction described in Section III. For Polar code, we set
the coding rate to 0.5 and the decoding list size to 8. The
decoding complexity of list decoder grows with the list size,
and thus cannot be set too large for complexity concern. As a
narrowband mMTC scenario, we assume a short packet that
corresponds to a single D = 128 vector for HDM and a 128-
bit codeword for BPSK-Polar. The coding rate of 0.5 means
64 information bits per packet. Both schemes use a 11-bit
CRC for error correction assistance while the CRC bits are
included in the information bits. Note that both HDM and
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Fig. 2: PER of HDM vs. BPSK-Polar in AWGN.

BPSK-Polar have the same spectral efficiency of 0.5 bit/s/Hz
(0.4922 for HDM to be precise).

Figure 2 shows the packet error rate (PER) of HDM
and Polar coded BPSK. One packet corresponds to a single
transmit vector in HDM and a single codeword in BPSK-
Polar. The HDM with L2 K-best decoding outperforms the
BPSK-Polar by 0.5 dB while the per-branch sorting slightly
outperforms the universal sorting for HDM. HDM with L1 K-
best is expected to have worse performance because L1-norm
is not a proper metric in this case without interference.

B. Performance with Strong Interference

In this subsection we consider a narrowband (1kHz) mMTC
system coexists with wideband systems such as WiFi and
Bluetooth. The interference comes from other systems whose
packets follow a Poisson arrival process. Each interfer-
ence packet is assumed to have a length of 2 ms (typical
WiFi/Bluetooth packet) which is much shorter than the 1kHz-
bandwidth HDM and BPSK-Polar packet length of 128 ms.

To model the random power distribution of interference
packets, we consider an mMTC gateway receiver at the center
of a circle where all interference transmitters are distributed
following a spatial Poisson point process. The interference
power attenuation due to the carrier frequency mismatch can

be modeled as ∼ A
σ
√
2π

e−
∆f2

2σ2 , where ∆f is the carrier
frequency mismatch, and A and σ are system dependent
parameters [9]. In addition to the distance-dependent free-
space pathloss, the interference power loss from shadowing
is modeled as a log-normal distribution. Combining these
models, the interference power (in dB) at the gateway is
expressed as Prx = Ptx − c1 log(U) − c2(U)2 + c3N + c4
where Ptx is the transmit power, c1, c2, c3, c4 are model
constants, and U ,N denote unit variance uniform and normal
random variables following U(0, 1) and N (0, 1), respectively.
For a narrowband system with signal bandwidth of 1kHz, a
reasonable model constants are c1 = 10 and c2 = 11.8541.
Depending on the environment (macrocell / microcell / indoor)
c3 ranges from 4 to 13 [17]. By assuming that Ptx is fixed, the
power distribution of interference packets at the gateway can
be approximated as log-normal dominated by the term c3N .
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Fig. 3: PER of HDM vs. BPSK-Polar for various SIRs.

Figure 3 shows the PER performance of different schemes
for various signal-to-interference power ratio (SIR). The back-
ground noise power is set to be 3 dB lower than the desired
signal power for this simulation to evaluate the interference-
dominant condition. Interference packets have log-normal
distribution with variance of 10 dB while their mean power
is determined by SIR. The interference packets follow a
Poisson arrival process with the mean interval of 5 ms
(each interference packet is 2 ms long). Each sample in
an interference packet is a i.i.d. Gaussian random variable
(emulating OFDM). The desired HDM or BPSK-Polar signal
has 1kHz bandwidth, thus each sample in the packet spans 1
ms. To increase the robustness to the outlier samples caused
by strong short interference packets, HDM with L2-norm
minimization sets a threshold of 2 (for I and Q each) to
saturate the received signal amplitude. For the same reason,
LLR is saturated at ±5 for Polar decoding [18]. HDM does not
use SI(N)R information for decoding while BPSK-Polar uses
SNR information for LLR computation (using SINR degrades
PER since interference is not AWGN).

Figure 3 confirms that HDM with L1-norm minimization
yields the best performance. The HDM with L2-norm mini-
mization also gives significantly (2.5dB SIR @ PER=10−3)
better performance than BPSK-Polar. It is because HDM is
inherently more robust to interference due to sparse signal
(xi) spreading via Ai [9]. Note that the gap between L1 and
L2 minimization reduces as SIR increases, which is expected
when interference no longer dominates.

Figure 4 shows the PER performance when interference
packets have varying Poisson arrival rates. The SIR is set to
-5 dB in this case. For a target PER of 10−2, HDM with L1-
and L2-norm minimization can operate in an environment with
about 2× and 1.5× more frequent interference compared to
BPSK-Polar, respectively.

To evaluate the performance in a realistic scenario, we use
an USRP X310 to capture real interference packets from WiFi
and Bluetooth. Captured spectrogram examples are shown in
Figure 5. WiFi has 20MHz bandwidth while the Bluetooth has
2MHz bandwidth with frequency hopping. From the figure,
one can observe that both WiFi and Bluetooth packets are
about 2 ms long, which justifies our previous assumption.

We use the captured WiFi and Bluetooth traffic as the
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(a) WiFi (b) Bluetooth

Fig. 5: The interference spectrogram capture from ISM band.

interference source to simulate the PER performance under
that scenario. To emulate heavy interference traffic, we overlay
captured interference on top of each other. We collect 50 sec-
onds of wideband data and process them into 105 narrowband
interference frames added to each HDM / BPSK-Polar packet.

Figure 6 shows the PER performance under aforementioned
setting. The SIR in x-axis is the ratio between the desired
signal and the average (including idle time) power of the
entire interference signal. The performance follows what we
observed in simulated interference cases. As the PER is
interference-limited, the HDM with L1 minimization method
exhibits a large gain over the other schemes.
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Fig. 6: PER with captured ISM band interference traffic.

VI. CONCLUSION

In this paper, we proposed a novel K-best CRC-aided
decoding algorithm for HDM. The proposed algorithm has
superior PER performance in AWGN compared to a state-of-
the-art Polar code when packet length is short. Furthermore,
we proposed an L1-norm based modified HDM decoding
algorithm to boost the performance in interference-limited
environments. Simulations with realistic interference show
that the proposed HDM with L2 and L1 minimization provides
superior PER performance in interference-limited scenarios.
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