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Abstract 

Brain-inspired high-dimensional (HD) computing represents and manipulates data using very long, random vectors 
with dimensionality in the thousands. This representation provides great robustness for various classification tasks 
where classifiers operate at low signal-to-noise ratio (SNR) conditions. Similarly, hyperdimensional modulation (HDM) 
leverages the robustness of complex-valued HD representations to reliably transmit information over a wireless 
channel, achieving a similar SNR gain compared to state-of-the-art codes. Here, we first propose methods to improve 
HDM in two ways: (1) reducing the complexity of encoding and decoding operations by generating, manipulating, 
and transmitting bipolar or integer vectors instead of complex vectors; (2) increasing the SNR gain by 0.2 dB using 
a new soft-feedback decoder; it can also increase the additive superposition capacity of HD vectors up to 1.7× in 
noise-free cases. Secondly, we propose to combine encoding/decoding aspects of communication with classifica-
tion into a single framework by relying on multifaceted HD representations. This leads to a near-channel classification 
(NCC) approach that avoids transformations between different representations and the overhead of multiple layers 
of encoding/decoding, hence reducing latency and complexity of a wireless smart distributed system while provid-
ing robustness against noise and interference from other nodes. We provide a use-case for wearable hand gesture 
recognition with 5 classes from 64 EMG sensors, where the encoded vectors are transmitted to a remote node for 
either performing NCC, or reconstruction of the encoded data. In NCC mode, the original classification accuracy of 
94% is maintained, even in the channel at SNR of 0 dB, by transmitting 10,000-bit vectors. We remove the redundancy 
by reducing the vector dimensionality to 2048-bit that still exhibits a graceful degradation: less than 6% accuracy 
loss is occurred in the channel at − 5 dB, and with the interference from 6 nodes that simultaneously transmit their 
encoded vectors. In the reconstruction mode, it improves the mean-squared error by up to 20 dB, compared to stand-
ard decoding, when transmitting 2048-dimensional vectors.
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1 Introduction
With the rapid growth in the number of deployed sens-
ing nodes in the physical world [1–3] and their intercon-
nection with sensor networks, Swarms, or the Internet 
of Things [4], the world around us has become notice-
ably smarter [5]. Machine learning (ML), either being 

deployed in the cloud or at the edge near the sensor [6–
9], plays a crucial role in extracting relevant information 
from the sensors and data spread in space. The standard 
approach is to create a layered system that separates the 
communication, including source and channel coding, 
from the ML. Such a layered approach imposes unneces-
sary transitions between the layers which adds to latency 
and complexity. Hence, there is a need for a representa-
tional system that effectively merges communication and 
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ML layers into a single framework for wireless distrib-
uted smart sensing systems, as shown in Fig. 1.

One viable option is to exploit novel representations in 
high-dimensional (HD) computing [10–13], where data 
are represented by very long, random vectors (dimension 
D = 1000  –  10,000). Inspired by the size of the brain’s 
circuits, these vectors are holographic and (pseudo)ran-
dom with independent and identically distributed (i.i.d.) 
components [10]. As the vectors are composed through 
a set of well-defined mathematical operations, they can 
be queried, decomposed [14], and reasoned about [15, 
16]. For learning and classification tasks, HD computing 
was initially applied to text analytics, where each discrete 
symbol can be readily mapped to a random vector to be 
combined across text [17–20]. More recently, HD com-
puting has been extended to operate with a set of analog 
inputs [21–25], mainly in several biosignal processing 
applications, or with event-driven inputs from neuro-
morphic dynamic vision sensors [26].

HD vectors are very tolerant to noise, variations, or 
faulty computations due to their redundant i.i.d. rep-
resentation, in which information symbols are spread 
holographically across many components [10, 20, 27]. 
This makes HD computing a prime candidate for imple-
mentation on emerging nanoscale hardware operating 
at low signal-to-noise (SNR) conditions [28–30]. In a 
similar vein, methods have been proposed to make use 
of the robustness of HD vectors in various communica-
tion layers [31–37]. Particularly, recent hyperdimensional 
modulation (HDM) [33] can be interpreted as a spread-
ing modulation scheme whose spreading gain linearly 
improves with the vector dimension, allowing higher 
error tolerance with increased dimensionality. Multiple 
spread vectors are superposed before transmission; at the 

receiver, an iterative feedback decoder denoises the query 
vector by subtracting the estimated vectors. In low SNR 
channels where each value cannot be reliably demodu-
lated, HDM can still achieve successful demodulation of 
symbols without requiring an explicit error correction.

In an initial effort, it was shown that HDM exhibits a 
comparable bit error rate (BER) to that of low-density 
parity check (LDPC) and Polar codes at a lower num-
ber of operations in decoding [33]. Moreover, HDM was 
shown to be more collision tolerant than conventional 
orthogonal modulations (e.g., OFDM) in highly con-
gested low power wide area networks [34]. However, 
the HDM proposed in [33] represents symbols using 
complex-valued components in a vector, hence we call it 
Complex-HDM, which requires more bits per symbol to 
be transmitted and involves energy-hungry fast Fourier 
transform (FFT) operations in encoding and decoding.

Here, we first address these shortcomings of Complex-
HDM by simplifying its encoding/decoding operations, 
and improving its SNR gain. Next, we demonstrate how 
our approach can effectively blur the boundaries between 
communication and ML by relying on a unified HD rep-
resentation system. This paper makes the following three 
main contributions (highlighted in Fig. 1 as well).

First, in Sect.  3, we propose Integer-HDM that super-
poses bipolar vectors. These vectors can be rematerial-
ized in an encoder with a combination of simple lookup 
and permutation operations that are hardware-friendly 
[38]. Further, the burden of decoding complexity is low-
ered by using associative memory (AM) searches, purely 
with integer arithmetic instead of performing FFT. Such 
best match searches use cheap clean-up operations, 
which scale better than FFT searches on long codes, and 
can be efficiently implemented with analog in-memory 
computing [30]. Our Integer-HDM achieves the same 
SNR gain as the Complex-HDM [33] under additive 
Gaussian white noise (AWGN) without relying on the 
expensive FFT operations in encoding and decoding.

Secondly, to improve the SNR gain, we propose a 
soft-feedback decoding mechanism which additionally 
takes the estimation’s confidence into account (Sect.  4). 
Although the soft-feedback involves floating-point oper-
ations, it improves the SNR gain of the Integer-HDM by 
0.2  dB at a BER of 10−4 . To simplify the soft-feedback 
decoder, it is quantized to 4.1 fixed-point without any 
degradation in the SNR gain under AWGN. Further, we 
have observed that our soft-feedback decoder can be 
combined with an optimized minimum mean-squared 
error (MMSE) readout to increase the number of super-
posed vectors, which can be successfully decomposed in 
a noise-free case. This effectively improves the capacity 
of HD superposition by 1.7× for noise-free information 
retrieval; we improve the number of encoded information 
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Fig. 1 Overview of this work with colors pointing to Sects. 3, 4 and 
5 in the paper. Sensor data are encoded to high-dimensional vector 
x ∈ Z

D using a novel Integer-HDM encoder and transmitted over 
a noisy channel. At the receiver, the perturbed vector y is either 
decomposed by an optimized soft-feedback decoder (that improved 
Integer-HDM decoder) to reconstruct the sensory data, or directly 
classified by a near-channel classifier (NCC) without any decoding 
step
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bits in a 500-dimensional HD vector [14] from 0.7 to 
1.2 bits/dimension.

Thirdly, we propose to combine channel coding, 
source coding, and ML classification into a single uni-
fied layer exploiting multifaceted HD representations. 
This approach avoids transformations between repre-
sentations and the addition of multiple layers of encod-
ing/decoding. The approach is inspired by the structural 
similarities between the Integer-HDM encoding and the 
spatial feature encoding in HD classifiers used for multi-
channel biosignal classification tasks [22, 25]. In practice, 
we reuse the spatial encoding for both data transmission 
and classification; hence, we avoid the transition between 
different representations. The encoded vector can be reli-
ably transmitted to the receiver, where it is either decoded 
to analyze the underlying data, or directly classified, ena-
bling near-channel classification (NCC). In Sect.  5, we 
present a use case for wearable hand gesture recognition 
(5-class) based on electromyography (EMG) signals from 
64 sensors [22] where encoded vectors are transmitted to 
perform either NCC, or reconstruct the underlying fea-
tures at the receiver. In NCC mode, the 10,000-bit rep-
resentation shows great robustness by maintaining the 
noise-free accuracy of 94% at SNR as low as 0 dB. Reduc-
ing the vector dimension to 2048-bit—where there is no 
redundancy—also exhibits graceful degradation in the 
presence of AWGN and interference from other sensor 
nodes, allowing up to −5 dB SNR and up to 6 simultane-
ously sending sensor nodes at less than 6% accuracy loss, 
compared to the noise-free case. Moreover, the soft-feed-
back decoder guarantees successful reconstruction of the 
features even in noisy environments and improves the 
mean-squared reconstruction error by up to 20 dB com-
pared to standard decoding at dimension D = 2048.

In the remainder of the paper, Sect.  2 provides back-
ground into HD computing, the creation and decom-
position of HD superpositions, and HDM. Section  6 
concludes the paper.

2  Background
2.1  High‑dimensional computing
The brain’s circuits are massive in terms of numbers of neu-
rons and synapses, suggesting that large circuits are funda-
mental to the brain’s functioning. HD computing [10]—aka 
holographic reduced representations [12], semantic pointer 
architecture [39], or vector symbolic architectures [13, 
40]—explores this idea by looking at computing with vec-
tors as ultrawide words. These vectors are D-dimensional 
(the number of dimensions is in the thousands) and 
(pseudo)random with independent and identically dis-
tributed (i.i.d.) components. They thus conform to a holo-
graphic or holistic representation: the encoded information 
is distributed equally over all the D components such that 

no component is more responsible for storing any piece of 
information than another. Such representation maximizes 
robustness for the most efficient use of redundancy [10].

In this work, we focus on multiply–add–permute (MAP) 
architectures [13], which define the multiplication ( ∗ ) as the 
element-wise multiplication between two vectors, the addi-
tion ( + ) as the element-wise addition among multiple vec-
tors, and the permutation ( � ) as the random shuffling of 
the vector elements. Multiplication and permutation yield 
dissimilar vectors compared to their input vector, whereas 
addition preserves similarity and is often used to repre-
sent sets. The permutation can be realized with hardware-
friendly, cyclic shifts ( ρ ). We compare two D-dimensional 
vectors x and y with the cosine similarity:

where < ., . > is the ℓ2-inner product and ||.||2 the ℓ2-
norm. The cosine similarity reflects the angle between 
vectors, neglecting their length/norm.

Creating HD representations starts with building a dic-
tionary (aka item memory) IM = {e1, e2, ..., eN } , where 
ei ∈ {−1, 1}D are atomic vectors with the elements in 
each vector being a Rademacher random variable (i.e., 
equal chance of values being “ −1 ” or “ +1”). 

The high dimensionality guarantees all elements in 
the dictionary to be orthogonal with high probability, 
aka quasi-orthogonality. Information can be encoded 
by HD superposition: a string of information symbols 
(q1, q2, ..., qV ), qi ∈ {1, 2, ...,N } ∀i is mapped to the cor-
responding element in the dictionary, permuted, and 
superposed via addition:

where T is the transpose, E := (e1, e2, ..., eN ) ∈ {−1, 1}D×N 
the matrix representation of the IM containing the 
atomic vectors as columns, and c(qv) ∈ {0, 1}N an all-zero 
vector except element qv that is one. Note that all permu-
tations �v are distinct.

The individual vectors in the superposition can be 
retrieved by the associative memory (AM) search:

where ĉv ∈ R
N . The estimated index q̂v is the one with 

the highest value in ĉv:

(1)c =
< x, y >

||x||2 · ||y||2
,

(2)x(q1, q2, ..., qV ) =

V
∑

v=1

�v

(

eqv
)

,

(3)=

V
∑

v=1

�v

(

c(qv)
T
· E

)

,

(4)ĉv =
1

D
ET

·�−1
v (x),
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Increasing the number of superposed vectors yields a 
higher information density; therefore, HD superposition 
can be used for compression. For example, it has been 
successfully applied for compressing model weights in 
deep neural networks [41]. However, the number of cor-
rect retrievals from highly compressed representations 
is limited by the number of superposed vectors V; an 
increasing V yields a lower signal-to-interference ratio 
(SIR) for retrieval.

The superposition x has integer-valued elements 
instead of bipolar elements; it can be bipolarized by set-
ting negative elements to “ −1 ” and positive to “ +1 ”. If the 
number of superposed vectors is even, ties at zero are 
broken at random, or by simply adding another deter-
ministic (random) vector to the superposition before 
bipolarizing (see [38]). Even though bipolarizing the 
superposition is common practice in HD computing, it 
heavily affects both the number of retrievable vectors and 
the noise resiliency in HD superposition.

2.2  Hyperdimensional modulation
Hyperdimensional modulation (HDM) [33] superposes 
complex-valued vectors using the rows of the discrete 
Fourier transform (DFT) matrix as entries in the IM. The 
mapping is realized by transforming the sparse vector cv 
with a DFT, whereas the readout matrix corresponds to 
the inverse DFT, which can be efficiently implemented 
with FFT and inverse FFT. Additional information is 
encoded by having multiple non-zero values in cv66, and 
modulating the non-zero values with phase-shift keying. 
Decoding is performed in multiple iterations, subtract-
ing the last iteration’s estimation from the superposition 
for the next estimation. An additional cyclic redundancy 
check (CRC) validates the estimation’s correctness; if the 
CRC fails, the decoder searches through a list of most 
probable alternative solutions correcting single, double, 

(5)q̂v = argmax
q=1,...,N

ĉv[q]. or triple errors. This yields an SNR gain of 1.75 dB at a 
BER of 10−5 . Overall, the presented decoding resulted in 
similar SNR gains compared to LDPC and Polar codes 
[33].

3  Integer‑HDM
This section is the first main contribution of the paper: 
we introduce Integer-HDM, a new modulation scheme 
that transmits the superposition of bipolar vectors, 
depicted in Fig. 2. We present a novel encoding scheme 
that effectively increases the IM size (i.e., the dictionary) 
while keeping the memory footprint small, which allows 
to achieve a high code throughput even on resource-
limited devices. An iterative unit-feedback decoder 
decomposes the transmitted vector to get the estimated 
bit-string. Our decoder is inspired by Complex-HDM 
[33], but instead of requiring FFT operations it relies only 
on efficient AM searches. We experimentally evaluate the 
SNR gain in an AWGN channel and show that our novel 
encoding achieves the same SNR gain as Complex-HDM.

3.1  Memory‑efficient encoding
We start with the description of a memory-efficient 
encoding of a binary input string u of length k to a 
D-dimensional integer vector, defined as

We define the throughput r of the code in bits per chan-
nel usage

The ultimate goal is to find an encoding function � 
with a high code throughput while ensuring that the 
encoded vector is robust against errors occurring during 
transmission.

The left side of Fig.  2 illustrates the proposed encod-
ing scheme. First, the input string u is divided into V 

(6)� : {0, 1}k −→ Z
D.

(7)r =
k

D
.

Fig. 2 Integer-HDM encoder and decoder: binary string u ∈ {0, 1}k is encoded to HD superposition x ∈ Z
D which is transmitted over an AWGN 

channel. The received vector y is finally decoded using an iterative unit-feedback decoder with unit feedback yielding the estimation û
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equally sized sub-strings ( u1,u2, ...,uV  ). Each sub-string 
is encoded separately with its corresponding encoding 
module. In the following we will explain the encoding 
of u1 , and then the generalization to all other encoding 
modules.

First, the bit-to-index (b2i) block maps the bit-string u1 
of length k/V to the IM index q1 , rotation index r1 , and 
sign index s1 . For generating the indexes, we split the 
bit-string into three slices that are mapped to their cor-
responding integer values. The resulting indexes are then 
further used for decoding information in the HD space.

The IM builds the central part of the encoding and 
serves as a random but fixed dictionary. It stores N bipo-
lar vectors of dimension D, where the entries are drawn 
randomly with an equal number of “ +1 ” and “ −1 ”. The 
IM index q1 is used to read out the corresponding vector 
in the IM. The number of information bits kq which can 
be encoded with an IM of size N is

The IM grows exponentially with the number of bits we 
want to encode. As a consequence, the code throughput 
of tightly resource-limited devices would be restricted. 
To relax the memory requirements, we extend the encod-
ing by rotation encoding ρr1 , which applies a cyclic rota-
tion by r1 positions to the vector. A cyclic rotation is an 
alternative, hardware-friendly random permutation. The 
shifted result is quasi-orthogonal to its input vector. The 
number of available shifts is limited to the number of 
dimensions D, resulting in a maximum of

additionally encoded bits. The rotation encoding virtu-
ally increases the IM size by factor D, without requiring 
any additional memory. In the next step, the vector is 
multiplied with the sign modulator s1 ∈ {−1, 1} . This fur-
ther gives

bit.
We illustrate the encoding with an example assuming 

dimension D = 64 and an IM size of N = 8 . The bit-
string u1 contains kq + kr + ks = 3+ 6+ 1 = 10 bits, 
e.g., u1 = (0100100010) . The bit-to-index block splits the 
bit-string into three slices (010|010001|0) and maps them 
to the corresponding integer indexes q1 = 2 , r1 = 17 , and 
s1 = (−1) . Finally, the encoded vector is

The described encoding steps are identical among dif-
ferent encoding blocks; the same IM is shared among all 
blocks. In the last step, the encoded vectors are permuted 

(8)kq = log2(N ).

(9)kr = log2(D),

(10)ks = 1,

(11)x′1 = s1 · ρ
r1
(

eq1
)

= (−1) · ρ17(e2).

with a unique, random permutation �v per encoding 
block and superposed, resulting in the final vector x . The 
final throughput of the code is

3.2  FFT‑free decoding based on associative memory
We present an iterative unit-feedback decoder, depicted 
in Fig.  2, which decomposes the transmitted vector y to 
estimate the bit-string û . It consists of an estimation and 
a feedback stage. In the estimation stage, the indexes q̂v , 
r̂v , and ŝv are guessed for every block v individually. The 
estimated indexes are encoded to the corresponding vec-
tor x̂v using the same encoding as described in the previ-
ous part. To perform the estimation in the next iteration, 
the encoded vectors x̂v are subtracted from the input vec-
tor y removing the interference from other vectors in the 
superposition.

The estimation in block v starts with computing the inner 
products between the inversely permuted input vector and 
all elements in the associative memory (AM):

where �−1
v (.) is the inverse permutation of block v and 

ρ−r the cyclic shift by (−r) elements. The estimated item 
and rotation indexes are those that maximize the abso-
lute value of the inner product:

and the estimated sign is the sign of the maximizing 
inner product:

After encoding the estimated indexes to the vectors x̂v , 
the input vector is cleaned up for the estimation in the 
next iteration i + 1:

In the first iteration, all feedback vectors are initialized 
to zero, i.e., x̂(0)v = 0 . The decoding is repeated until all 

(12)r =
V (kq + kr + ks)

D
,

(13)=

V
(

log2(N )+ log2(D)+ 1
)

D
.

(14)ĉv[q, r] =
1

D
< ρ−r

(

�−1
v

(

ŷv
)

)

, eq >,

(15)q̂v , r̂v = argmax
q=1,...,N r=1,...,D

∣

∣ĉv[q, r]
∣

∣,

(16)ŝv = sign(ĉv[q̂v , r̂v]).

(17)ŷ(i+1)
v = y −

∑

j �=v

x̂
(i)
j .

(18)= y −

(

V
∑

v=1

x̂
(i)
j

)

+ x̂(i)v .
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estimated indexes converge, or until a maximum number 
of iterations is reached without convergence. Finally, the 
estimated indexes are mapped to the bit-string û.

The computations in the proposed unit-feedback 
decoder are dominated by the AM search depicted in 
Eq.  (14). These AM searches allow for a high degree of 
parallelism and only require additions and subtractions, 
thanks to the bipolar representation of the dictionary. 
Moreover, the search can be efficiently deployed to a 
computational memory [42], such as phase-change mem-
ory, where the inner product is computed in constant 
time at O(1) in the analog domain leveraging Kirchhoff’s 
law. When applied to a language classification problem, 
performing the AM search in the phase-change memory 
has shown to be over 100× more energy efficient than in 
an optimized digital implementation [30].

3.3  Experimental results
This section evaluates the BER vs. SNR performance for 
Integer-HDM and other state-of-the-art (SoA) codes. We 
assume an AWGN channel with the received signal in the 
baseband y being modeled as:

where x is the sent vector containing V accumulated vec-
tors, and n is AWGN with n ∼ N (0, V

SNR ID) and SNR the 
signal-to-noise ratio. We define the energy per informa-
tion bit over noise floor Eb/N0 := SNR/2r.

Figure 3a shows the BER vs. SNR behavior of Integer-
HDM when varying the number of superposed vectors V 
and the IM size N while fixing the dimension to D = 512 . 
Transmitting a single vector ( V = 1 ) shows the highest 
noise resiliency but results in the lowest code throughput 
( r = 0.031− 0.041 for N = 64 − 2048 ). Integer-HDM 
allows us to flexibly increase the number of superposed 
vectors resulting in a linear increase in code throughput; 
e.g., superposing nine vectors achieves the highest cod-
ing rate of r = 0.37 . Transmitting more vectors at the 
same time reduces the self-induced SIR; hence, a higher 
SNR is required to achieve the same BER.

The number of decoding iterations of the same code 
configurations is shown in Fig. 3b. Iterative decoding is 
not helpful when transmitting only one vector ( V = 1 ) 
as no denoising of other superposed vectors is needed; 
thus, decoding is terminated after the first iteration. 
Conversely, the number of decoding iterations depends 
heavily on the number of superposed vectors, the IM 
size, and the SNR, when superposing more than one 
vector. However, the number of iterations converges 
towards two when increasing the SNR. More impor-
tantly, a low number of iterations is observed in low 
BER regimes (where the code is eventually operating); 
e.g., Integer-HDM in configuration V = 7 and N = 512 

(19)y = x + n,

requires ≈ 0 dB at BER = 10−4 and takes only 2.44 
decoding iterations at the same SNR.

Next, we compare Integer-HDM to Complex-HDM 
[33] and a Polar code. Like in Complex-HDM [33], we 
evaluate the codes in short block lengths ( D = 512 ) at 
a throughput of r = 1/4 . Complex-HDM sends vectors 
with complex-valued elements of block length D = 256 
at a throughput of rc = 1/2 bits per complex channel 
use, which is equivalent to our setting with r = 1/4 bits 
per real channel use and a block length of D = 512.

The integer codes are configured to V = 7 and 
N = 512 , yielding a throughput of r = 0.2598 . A rate 
1/4 Polar code at equal block length 512 serves as a sec-
ond baseline. We use it according to the downlink con-
figuration specified by 3GPP for 5G New Radio (NR) 
[43]: the information bits are appended by 24 CRC bits 
and encoded by the Polar encoding with rate-match-
ing. The encoded bits are transmitted with BPSK. For 
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Fig. 3 BER (a) and number of decoding iterations (b) depending on 
the SNR for Integer-HDM with fixed D = 512 and varying number of 
superposed vectors V and item memory size N 
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decoding the soft symbols, we use CRC-aided succes-
sive cancellation list decoding with list length L = 4 
[44]. As the L = 4 list decoder utilizes a part of the 
information in the CRC bits, we count two of these 
towards the parity bits. We consider the remaining 22 
bits as effective information bits for the comparison, 
as block errors are not detected in the HDM case. As 
a result, the effective information bits comprised 106 
information bits plus 22 CRC information bits for the 
Polar code.

Figure 4 shows the waterfall diagram of all considered 
codes. Our proposed Integer-HDM with unit-feedback 
decoder performs on par with Complex-HDM [33] 
without needing CRC-aided decoding nor FFT opera-
tions. Moreover, it requires fewer decoding iterations 
than Complex-HDM (2.44 vs. 2.9 @0  dB SNR). The 
rate 1/4 Polar code outperforms the HD-based codes: it 
requires  1.2 dB less SNR at BER of 10−6 . However, this 
comes at the cost of a higher number of decoding oper-
ations: Polar codes have shown to require 1.2× more 

decoding operations than Complex-HDM (336 vs. 280 
operations per information bit) [33]. The high decoding 
complexity has an impact on the overall power consump-
tion of the system that includes encoding, transmission, 
and decoding [45]. Complex-HDM has already been 
shown to require fewer decoding operations than Polar 
codes. We further reduce the number of iterations by 
lowering the number of decoding iterations and replacing 
the FFT-based decoding with cheap AM searches, that 
can be efficiently implemented in the analog domain [30].

4  Soft‑feedback decoding
This section proposes enhancements to the decoder, 
introducing a new soft-feedback strategy and quantiza-
tion schemes for more efficient decoding. Figure 5 depicts 
the soft-feedback decoding mechanism that scales the 
currently estimated vector according to the confidence of 
the previous estimation. Estimations with low confidence 
are attenuated in the feedback, which results in a damped 
behavior. We show that the new soft-feedback decoding 
increases the number of correct vectors retrieved in both 
the AWGN and noise-free case.

4.1  Soft‑feedback decoding
The feedback stage reconstructs the estimated vector 
to remove the noise from the superposition in order to 
increase the SIR. However, it is not clear in advance how 
much the past estimations should influence the future 
ones. The unit-feedback strategy, used both in Complex-
HDM and our standard Integer-HDM, weighs all estima-
tions equally with factor one, which can have limitations. 
For example, if the number of wrong estimations out-
weighs the correct ones, the feedback decreases the SIR 
instead of increasing it. Moreover, we observed oscilla-
tory behavior in the unit-feedback decoder, illustrated in 
Fig. 6.
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Fig. 4 Bit error rate (BER) of considered codes with k = 128 
information bits and D = 512 real-valued transmission symbols

Fig. 5 Soft-feedback decoder
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To this end, we propose a soft-feedback scaling func-
tion, which attenuates estimations with low confidence:

where ĉv :=
∣

∣ĉv[q̂v , r̂v])
∣

∣ is the highest absolute inner 
product interpreted as the confidence of the previous 
estimation. As the inner product can exceed one, we limit 
the feedback scaling to be less or equal to one. The exam-
ple in Fig.  6 illustrates the soft-feedback scaling’s effec-
tiveness: the oscillations are no longer present, and we 
converge to the correct solution.

4.2  Quantized Soft‑feedback decoding
For most FEC codes, the decoding complexity is signifi-
cantly higher than the coding complexity. This also holds 
for our proposed Integer-HDM; therefore, any reduction 
of the computational requirements for decoding is desir-
able. We start by quantizing the decoder to fixed-point, 
where we quantize every value in the decoder to a fixed-
point representation with m magnitude bits (integer) and 
q fractional bits, denoted as “fixed-point m.q”. The quan-
tization has the main effect on the input vector y as well 
as the damped feedback vector x̃ . The range of expected 
values of the input vector depends on the number of 
added vectors V. For example, with V = 3 , we expect 
values in {−3,−1, 1, 3} , which can be represented by 
m = 3 integer bits. If we reduced the number of integer 
bits, high values get clipped, which is not desirable in the 
decoding process. The feedback scaling takes values in 
[0, 1]; a quantization to q = 1 fractional bits and arbitrary 
m yields scaling factors in {0, 0.5, 1}.

In addition to the quantization of the general decoder 
to fixed-point arithmetic, we further reduce the com-
plexity by quantizing the AM search. The dominating 

(20)x̃v = max
(

ĉv , 1
)

· x̂v ,

operation in the AM search is the inner product between 
the query vector ỹ and all vectors in the dictionary 
eq ∈ {−1, 1}D . We quantize the query vector before the 
AM search by mapping it to the nearest neighbor from 
the set of values in the original, noise-free case:

Figure  7 shows the histograms of the elements in an 
encoded vector with dimension D = 512 and V = 7 . The 
elements in x take values in {−7,−5, ..., 5, 7} , whereas 
values with large amplitude are less probable than small 
values, which are close to 0. We then add AWGN (0 dB 
SNR) to the encoded vector, yielding y . In the readout-
quantization, we map the values to the nearest neighbor 
of the values in the original, noise-free case. Moreover, 
we limit the values to V ′ due to the low probability of 
values with large amplitudes. In the extreme case, we set 
V ′

= 1 , which would reduce the inner product to a Ham-
ming similarity computation. If V ′ > 1 , the inner product 
can be computed with integer or binary arithmetic, map-
ping the values to a Thermometer code.

4.3  MMSE‑optimized readout
We consider an alternative AM readout matrix to E 
determined by minimizing the mean-squared error 
between the estimated ĉv and the ground truth vector cv 
[14]:

where we assume no sign and rotation encoding for sim-
plicity. The minimum mean square error (MMSE) estima-
tor can be found by solving a linear regression problem, 
providing a training set of R samples with ground truth 
symbol vectors cv and their encoded HD superposi-
tion x . The MMSE readout matrix F can be found with 
stochastic gradient descent (SGD) minimizing the MSE 
between ground truth symbol vectors cv and estimated 
symbol vectors ĉv on the training. Note that we neither 
have to inversely permute the superposition x nor require 
the knowledge of the underlying dictionary; the readout 

(21)Q(y[i],V ′) = argmin
l=−V ′,−V ′

+2,...,V ′
−2,V ′

||y[i] − l||2.

(22)ĉv = FTv · x,

0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

1.1
Unit feedb. v=1 Soft feedb. v=1 Correct est.
Unit feedb. v=2 Soft feedb. v=2 Wrong est.
Unit feedb. v=3 Soft feedb. v=3

Iteration

C
on

fid
en
ce

c
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matrix is only learned based on empirical data. However, 
a separate readout matrix Fv is needed for every super-
posed vector, which increases the memory footprint, spe-
cifically with large V.

The MMSE readout has been shown to increase the 
number of superposed vectors that can be successfully 
retrieved with high probability pc [14], compared to 
the standard AM search. Consequently, this results in a 
higher operational capacity of the superposition which is 
defined as the number of bits/dimension:

4.4  Experimental results
We compare our novel soft-feedback decoder in AWGN 
simulation using both full-precision floating-point and 
quantized decoder. Moreover, we evaluate the accuracy 
of the correct retrieval of HD superpositions in the noise-
free case using different decoding strategies.

4.4.1  Soft‑feedback decoding
First, we compare the soft-feedback with the unit-
feedback decoder used in Integer-HDM and Complex-
HDM, shown in Fig  4. The Integer-HDM code is in 
the same configuration as in the previous experiment 
(i.e., D = 512 , N = 512 , and V = 7 ). The soft-feedback 
decoder is able to increase the SNR gain by 0.2 dB com-
pared to the unit-feedback decoder. As a result, Integer-
HDM with soft-feedback reduces the SNR gap to the 
Polar 1/4 code (0.7 dB gap at BER = 10−4 and 0.8 dB at 
BER = 10−5).

4.4.2  Quantized Soft‑feedback decoding
We analyze the performance of the soft-feedback decoder 
when quantizing specific parts of the decoder, described 
in Sect.  4.2. We start with the quantization of the AM 
readout, i.e., the values in the query vectors ỹ fed to the 
AM readout. The results in Fig.  8 illustrate that when 
quantizing the vector elements to bipolar values (i.e., 
{−1, 1} at V ′

= 1 ), the code performance degrades sig-
nificantly, compared to the full-precision AM readout. 
Similar degradation was observed when quantizing the 
encoded vector x to bipolar values before sending it over 
the channel. On allowing more levels ( V ′

= 7 ), however, 
the code performance can be re-established.

When quantizing the entire decoding to fixed-point 
arithmetic (see Fig.  9), one fractional and four integer 
bits are sufficient to achieve the same performance as 
the decoder in floating-point. In addition to the desired 

(23)

Capacity(pc) =
V

D

{

pclog2(pcN )

+(1− pc)log2

(

N

N − 1
(1− pc)

)}

.

reduction in decoding complexity, this result also gives 
valuable insight into the soft-feedback decoder: a feed-
back scale taking values in c ∈ {0, 0.5, 1} is sufficient. This 
yields three options for feedback: take estimation fully 
into account ( c = 1 ), ignore it ( c = 0 ), or partly use it 
( c = 0.5).

4.4.3  Recall from noise‑free superpositions
Finally, we experimentally evaluate the decoding per-
formance of the presented feedback decoder and differ-
ent readout matrices (standard AM and MMSE) in the 
noise-free case. We measure the probability of correct 
retrieval pc and derive the operational capacity as in (23). 
For comparison, we use the same configurations as in 
[14]: we fix the dimension D = 500 and vary the IM size 
N ∈ {5, 15, 100} and the number of superposed vectors 
V ∈ {1, 2, ..., 300} . No sign and rotation encoding are used 
in these experiments.
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Figure 10 shows the accuracy and the resulting capac-
ity for the decoder without feedback, with unit-feedback, 
and soft-feedback. Moreover, we conducted experiments 
with the MMSE estimator with and without feedback. 
The MMSE decoder performed similarly with unit and 
soft-feedback; therefore, we only show unit-feedback 
results.

Considering the estimator’s accuracy without feed-
back in small IM sizes ( N = 5 ), the MMSE readout can 
decode a much larger number of superposed vectors with 
100% accuracy, compared to the standard AM readout 
( V = 134 vs. V = 12 ). However, the advantage of MMSE 
over AM readout vanishes when increasing the IM sizes 
( N = 100).

The feedback decoder significantly increases the num-
ber of correctly retrieved vectors in small IM size when 
using both the MMSE and AM readout ( V = 250 and 
V = 100 for AM soft-feedback and MMSE unit-feed-
back, respectively). Moreover, the soft-feedback further 
increases the accuracy compared to unit-feedback, espe-
cially in larger IM sizes ( N = 100 ). Generally, the feed-
back decoder moves the corner point of 100% correct 
recoveries to larger Vs; however, the accuracy descent is 
much steeper compared to non-iterative estimations. The 
later yet steeper descent of the feedback decoder shows 
that the denoising is only effective until a certain SIR (i.e., 

the number of added vectors V). If the SIR gets too low, 
most of the estimations are wrong, and the feedback adds 
even more interference.

Considering the capacity, MMSE unit-feedback sig-
nificantly improves the capacity in small dictionary sizes 
( N = 5 ) compared to the current SoA MMSE readout 
(1.2 vs. 0.7  bits/dimension). This capacity cannot be 
achieved in larger dictionary sizes. On the contrary, the 
AM readout with unit or soft-feedback keeps the maxi-
mum capacity constant ( ≈ 0.6 bits/dimension), with the 
soft-feedback achieving slightly higher capacity than the 
unit-feedback.

5  Case study: hybrid near‑channel classification 
and data transmission in EMG‑based gesture 
recognition

This section extends the application of pure data trans-
mission with a classification task in EMG-based gesture 
recognition [22], illustrated in Fig. 11. Our hybrid system 
provides two modes: (1) a classification mode, where the 
received bipolar vector is used to estimate the gesture 
using an AM search; (2) a data transmission mode, where 
the quantized features are reconstructed at the receiver 
for further analysis. In related work, alternative hybrid 
approaches compress EMG data using rakeness-based 
compressed sensing [46] or with a stacked auto encoder 
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[47], before sending the data to the receiver. The received 
data can be reconstructed or classified using an artifi-
cial neural network (ANN). However, these representa-
tions are sensitive to noise when used in connection with 
ANNs [48], while the HD representation in our approach 
is naturally robust against noise, as we will experimen-
tally show in this section.

5.1  flexEMG dataset
We use the dataset from a study in [22], which contains 
recordings of three healthy, male subjects. Each subject 
participated in three sessions recorded on three different 
days. We only use sessions one and three, which contain a 
separate training set and test set. The subjects performed 
four different gestures (fist, raise, lower, open) plus the 
rest class in ten runs, yielding a total of 10 · 5 = 50 trials 
per training and test set. The data were acquired with 64 
electrodes, uniformly distributed on a flexible 16× 4 grid 
of size 29.3 cm ×8.2 cm. Finally, the data were sampled at 
1 kS/s and sent to a base-station over BLE.

5.2  Hybrid encoding
5.2.1  Classification
We propose a spatiotemporal encoding, which differs 
from [22] by exclusively using bipolar MAP operations 
instead of multiplicative mappings. First, the data of 
every EMG channel is pre-processed the same way, pass-
ing it through a digital notch filter with a 60 Hz stopband 
and a Q-factor of 50, an 8th-order Butterworth band-
pass filter (1–200 Hz), an absolute value computation, a 
moving average filter with 100 taps, and then downsam-
pled by 100× , yielding ten samples per second. Moreover, 
the samples are normalized with the 95% quantile of the 
training data per channel, which results in features f tch in 

[0, 1] with high probability (i.e., p = 0.95 on the training 
set).

For mapping features to HD vectors, we quantize them 
to L = 128 levels and map them to a corresponding value 
vector stored in a continuous IM (CiM) [23]. The CiM is 
shared among all channels and is constructed as follows. 
First, a bipolar seed vector is drawn randomly, which cor-
responds to level l = 1 . For level l = 2 , we invert D/(2L) 
values at random positions. For the remaining levels, we 
continue inverting an increasing number of bits until we 
have inverted D/2 elements for level l = L , which yields 
orthogonal vectors for level l = 1 and l = L . This map-
ping is fully bipolar and more hardware-friendly than the 
multiplicative mapping used in [22], which relies on mul-
tiplicative floating-point operations.

The embedded value vector is circularly permuted, 
depending on the channel index, and superposed result-
ing in the compressed representation xt . The encoding is 
completed by bipolarizing xt and building a 5-gram out 
of five consecutive vectors with random permutations 
( � ) and binding ( ∗ ). Overall, the encoding achieves a 
throughput of

which can, depending on the dimension of the HD vec-
tor, result in compression (e.g., r = 4.375@D = 512).

The encoded vector is modulated (e.g., with BPSK) 
and sent to the receiver over a wireless channel. At the 
receiver, the demodulated signal y is finally classified 
with an AM search. The AM stores a prototype vector 
per class. Each prototype is learned by accumulating all 
encoded vectors of the training samples for each class 
and finally bipolarizing the vectors. For classification, the 
query vector y is compared to all prototype vectors using 

(24)r =
64 channels · 7 bits · 5 gram
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the AM readout. The class with the corresponding best 
matching prototype is the estimated label [23].

5.2.2  Data transmission
The availability of the underlying data, which led to a 
certain decision or classification, can be helpful in many 
applications, e.g., allowing interpretability of the model 
or analysis of the data by a medical specialist. To address 
this demand, we propose an additional data transmission 
mode, where the spatially encoded vector xt is sent to the 
receiver and decoded with an iterative HDM decoder. 
This comes with minimal additional requirements at 
the sensing node, compared to the standard approaches 
where features are encoded with separate source and 
channel coding.

In contrast to the quasi-orthogonal IM used for encod-
ing in the previous Sect.  3, the CiM is non-orthogonal, 
i.e., not every quantization level qi has an orthogonal 
vector. This makes the exact decoding of the features dif-
ficult; however, the distance preserving CiM mapping 
reduces the effective error in the reconstruction. For 
example, an estimation of eq+1 instead of eq translates to 
an error of only 1/L.

5.3  Experimental results
5.3.1  Classification
We assess the classification performance in the noise-
free, single-node AWGN, and multi-node interference 
case. The classification accuracy is defined as the ratio 
between the number of correct estimations and the total 
number of estimations, given that the classifier makes a 
new estimation every 100  ms. All models were imple-
mented and tested in MATLAB 2019b.

Table 1 shows the classification accuracy in the noise-
free case. A support vector machine (SVM) with linear 
kernel and cost parameter C = 500 on pre-processed, 
flattened features in float-32 precision with dimension 
320 (64 channels 5-gram) [49] as well as an HD classifier 
with multiplicative mapping [22] serve as baselines. Both 
HD classifiers operate at a dimension of D = 10, 000 . 
The SVM marginally outperforms the HD classifiers by 
0.14% and 2%; however, in contrast to the HD classifiers, 
the SVM does not support online updates of the model, 
which is crucial for practical deployment of EMG appli-
cations [49]. The bipolar feature embedding using the 
CiM instead of the float-based multiplicative mapping in 
the HD classification yields only a small accuracy degra-
dation (95.99% vs. 94.13%).

Next, we evaluate the classification accuracy when the 
query vector was exposed to noise:

(25)y = x + n,

where x ∈ {−1, 1}D is the encoded vector and 
n ∼ N (0, 1

SNR ID) AWGN. Figure  12 shows the aver-
age classification accuracy for different vector dimen-
sions, depending on the SNR. In the high SNR regime 
(SNR =  10 dB), a reduction in the dimension results in 
slight accuracy degradation (e.g., 93.91%@D = 8192 vs. 
86.32%@D = 512 ). When decreasing the SNR, we see a 
graceful accuracy degradation with superior performance 
when using higher dimension: at D = 4096 , the absolute 
accuracy loss compared to the noise-free case is less than 
4% in low SNR until −10 dB SNR (91.16% vs. 94.13%).

As an additional experiment, we bipolarize the query 
vector y before the AM search, shown in dashed lines. 
This allows a more efficient AM search only requiring 
Hamming distance computation; however, it results in 

Table 1 Classification accuracy (%) on 5-class EMG-based 
gesture recognition task using 64-channel flexEMG data [22]

We compare a linear SVM, an HD classifier with multiplicative embedding, and 
our HD classifier with bipolar CiM embedding. Both HD classifiers operate at 
dimension D = 10 000

a Reproduced

Classifier 
Representation

SVMa [49]
Float

HDa [22]
Float

HD (ours)
Bipolar

Subject Session

1 1 98.13 99.60 97.20

3 100.00 99.20 98.20

2 1 99.53 98.33 98.53

3 96.47 97.53 96.07

3 1 99.60 90.40 92.27

3 83.07 90.87 82.53

Average 96.13 95.99 94.13
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lower classification accuracies in the low SNR regime 
(SNR < 0 dB).

Furthermore, we demonstrate the robustness of our 
distributed representations in the presence of interfer-
ence from unrelated nodes as well as AWGN, shown in 
Fig. 13. The nodes operate at D = 2048 where the effec-
tive throughput is r = 1.094 ; hence, the encoding does 
not add any redundancy. The HD representation exhib-
its robustness against the interference: when interfering 
with up to 6 nodes at large SNR (10 dB), the classification 
accuracy drops by only 4.07% (93.50% vs. 89.43%). More-
over, a graceful accuracy degradation is observed at low 
SNR of −5 dB and 6 interfering nodes, where an accuracy 
of 87.75% is maintained.

5.3.2  Reconstruction of features
Finally, we reconstruct the encoded features with the 
soft-feedback decoder in the presence of AWGN. We 
measure the mean-squared error (MSE) between recon-
structed and original features during active gesture inter-
vals of all subjects in sessions 1 and 3. The time between 
trials is not considered for reconstruction. Also, the 
encoded vector is exposed to AWGN.

Figure 14 shows the MSE depending on the SNR using 
either the soft-feedback decoder or the AM search with-
out feedback. Akin to previous classification results, 
higher dimensional representations show higher noise 
resiliency yielding a lower MSE. Moreover, the soft-feed-
back further improves the retrieval of the features with 
up to 10  dB MSE reduction compared to AM readout 
without feedback. As a result, the soft-feedback decoder 
allows the vector dimension to be reduced while still 
ensuring lower MSE: at 10  dB SNR, soft-feedback at 
dimension D = 2048–8192 achieves lower MSE than 

AM readout in all considered dimensions D ≤ 8192 . At 
dimension D = 2048 , the soft-feedback decoder achieves 
a maximal reconstruction gain of 20  dB MSE at 10  dB 
SNR compared to AM readout without feedback.

For illustration, Fig. 15 depicts the original features of 
subject 1 in the training session of the first session, the 
reconstructed features with soft-feedback decoder, and 
the reconstructed features with the AM readout without 
feedback. The reconstructed features from the AM read-
out without feedback shows many faulty estimations that 
do not follow the ground truth, being particularly visible 
as peaks during the rest state. In contrast, the soft-feed-
back decoder’s estimation follows the ground truth more 
accurately.

6  Conclusion
This paper investigates the use of robust and distributed 
HD representations in wireless communication and clas-
sification. We propose a novel encoding, called Integer-
HDM, that generates integer-valued vectors based on 
bipolar seed vectors, cyclic shift encoding, sign modula-
tion, and superposition. A new soft-feedback decoder suc-
cessfully decomposes the vectors, improving the decoding 
performance in both noise-free and AWGN scenarios. 
Achieving a similar SNR gain as complex HDM [33], the 
proposed Integer-HDM does not require FFT operations 
and can be quantized to low-resolution fixed-point arith-
metic. In a classification use-case, an EMG-based hand 
gesture recognition demonstrates the robustness of HD 
representations against AWGN and other interfering sens-
ing nodes; and thus, the same spatial encoding can be used 
for classification as well as reconstruction of the under-
lying features. Further investigations can be made into 
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the decoding of bipolarized superpositions, and N-gram 
encoded vectors, e.g., using resonator networks [50, 51].
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