HD Computing in Communication

Ping-Chen Huang Nov. 17, 2021

Outline

- Overview of communication problems
- Principles related to HD computing in communication
 - Law of large numbers & random codes
 - Orthogonality via random projection
- Applications of HD computing in communication
- Al/Machine learning in communication

Main Ideas from Shannon's paper

- Treat the information source as stochastic
- Separate the transmitter/receiver design into two sub-problems "source-channel separation"

Why the madness of having two competing encoders?

Recall Module 7 (Fritz's lecture)

Mapping data to vector spaces

Source coding (remove redundancy in data)

Data lie in subspace (SS)	Learning method	Coordinates in SS
Linear low-D SS	PCA	Axes of covariance matrix
Nonlinear low-D SS	Manifold learning	location on manifold
Clusters	Cluster analysis	Cluster number (+ loc.)
Union of lin. low-D SS	Sparse coding	Axes of Indep. Comp.
Union of nonlin. Low-D SS	Manifold learning	Manifold number + loc.

Vector encoding of the new coordinates

Feature local: a neuron's activity encodes a coordinate: PCA, ICA,... Distributed: values of a coordinate are represented by many neurons: VSA

Main ideas from Shannon's paper (cont'd)

- Nice answers to both questions:
 - i. Min. bits to represent a source = H (source entropy) bits/symbol
 - ii. Max. rate of reliable communication over a channel = C (capacity) bits/use
- Source can be reliably communicated over a channel iff H < C

Surprise from this theory

• We can communicate with arbitrarily small error rates without operating at zero-rate

Eg. for binary symmetric channel with bit flip probability p

Open questions from Shannon's paper

• How to design codes?

⇒Source codes: Huffman, Lemple-Ziv (77, 78)
 ⇒Channel codes: Turbo, LDPC, Polar, etc.

• Network Communication?

⇒ Distributed source compression: Slepian-Wolf Theory
 ⇒ Distributed communication

- Multiple-Access Channel (MAC)
- Broadcast Channel (BC)
- General network communication

Elements in digital communication systems

Entropy and mutual information

• The entropy of a discrete random variable

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

• The joint entropy of a pair of discrete random variables (X,Y) with joint distribution p(x,y)

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

• Mutual information is the relative entropy between p(x,y) and p(x)p(y)

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= H(X) + H(Y) - H(X,Y)$$
$$= H(Y) - H(Y|X)$$

Basic Channel Models

Binary Erasure Channel (BEC) Binary Symmetric Channel (BSC) Additive White Gaussian Noise Channel (AWGN)

C = 1 - p
[bits/use]

$$C = 1 - H(p)$$

[bits/use]

 $C = \frac{1}{2}log(1 + \frac{p}{\sigma^2})$ [bits/use]

Asymptotic Equipartition Property (AEP)

- The analog of the law of large numbers in information theory: If $X_1, X_2, ... are i.i.d. \sim p(x)$, then $-\frac{1}{n}log \ p(X_1, X_2, ..., X_n) \rightarrow H(X)$ in probability.
- AEP holds when the source has memory (Markov source)

Typical Sequence

• Example: $X = \{a, b\}, p(a) = p, p(b) = 1-p, where p \neq 0.5$

Look at blocks of length *n*, we expect roughly *np* a's and n(1-p) b's in the sequences will occur with highest probability \leftarrow typical sequence **x**

$$p(\mathbf{x}) = p^{np}(1-p)^{n(1-p)} = 2^{-nH(X)}$$

Source Coding Theorem: Min # bits to represent the source: $\frac{nH(X)}{n} = H(X) \text{ bits/symbol}$

Channel Coding Setup

- W is uniform in $\{1, 2, \cdots, 2^{nR}\}$
 - n: block length
 - R: rate [bits/usage]
- Up to which R can we still reliably communicate over the channel?

Channel Coding Theorem:

For any R < C, there exists a sequence of $(2^{nR}, n)$ codes, such that $Pr(W \neq \hat{W}) \to 0$ as $n \to \infty$

Proof of the Channel Coding Theory using random codebooks and the joint typical decoder

- Coder: i.i.d. randomly chosen according to p(x)
- Decoder: Choose unique w such that $(X^n(w), Y^n) \in A_{\epsilon}^{(n)}$

$$Pr(A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty$$

$$X^{n} \text{ typical}$$

$$X^{n} \text{ typical}$$

$$X^{n} \text{ typical}$$

$$X^{n}, Y^{n} \text{ typical}$$

Proof of the Channel Coding Theory (cont'd)

• Assume W=1 is transmitted, there are two error events:

•
$$E_0 := (X^n(1), Y^n) \notin A_{\epsilon}^{(n)}$$

•
$$E_i := (X^n(i), Y^n) \in A_{\epsilon}^{(n)}$$
 for $i \ge 2$

$$Pr(\mathcal{E}|W=1) = Pr(E_0 \cup E_1 \cup \dots \cup E_{2^{nR}}|W=1)$$

$$\leq Pr(E_0|W=1) + \sum_{i=2}^{2^{nR}} Pr(E_i|W=1)$$

$$\frac{2^{nH(X,Y)}}{2^{n(H(X)+H(Y))}} = 2^{-nI(X;Y)}$$

Proof of the Channel Coding Theory (cont'd)

•
$$Pr(\mathcal{E}|W=1) \le (2^{nR}-1) \cdot 2^{-nI(X;Y)}$$

 $\Rightarrow \text{If } R < \max_{p(x)} I(X;Y) := C, \text{ then } Pr(\mathcal{E}) \to 0 \text{ as } n \to \infty.$

•
$$P(\mathcal{E}) = E_{\mathcal{C}}(Pr(\mathcal{E}|\mathcal{C}))$$

 $\Rightarrow \forall n, \exists \mathcal{C}_n \text{ such that } Pr(\mathcal{E}|\mathcal{C}_n) \to 0$

The proof is *non-constructive* – it shows a good code exists, but does not give the explicit encoding scheme.

Random Codes in Reality

- Linear block codes with random generator matrix
 - $\mathbf{x} = \mathbf{u}G$
 - $G_{ij} \in \{0, 1\}$ i.i.d. with 0 and 1 equally likely

- For BEC and BSC channels, there exists a G_n that approaches capacity.
- Although non-structured G is easy to encode, it's hard to decode:
 - $\min ||\mathbf{u}G \mathbf{y}||$
 - Decoding complexity $\sim O(n^3)$ (NP-hard)

Random Codes in Reality

- Fountain codes are a new class of random linear codes with
 - Sparse generator matrix
 - Decoding complexity $O(nlog(n/\delta))$ with decoding probability >1- δ
- Approaches capacity for erasure channels with unknown erasure probabilities
 - Sender sends a stream of encoded bits.
 - Receivers collect bits until they are reasonably sure that they can recover the content from the received bits, and send STOP feedback to sender.
 - Automatic adaptation: Receivers with larger loss rate need longer to receive the required information.
- Practical realizations
 - L-T code
 - Raptor code
 - Online code

Credit: [A. Shokrollahi]

[credit: Jose Lopes]

Remarks about channel codes

- Important considerations
 - Capacity achieving
 - Efficient decoding

⇒Find codes with good structures of G (e.g. LDPC code, R-S code)
⇒Suboptimal decoding schemes (iterative decoding)

- Current 5G standard
 - LDPC code + iterative message passing (decoding complexity O(n²)-O(n))
 - Polar code + successive cancellation (decoding complexity O(nlogn))
- HD computing offers error correction, but its power lies beyond this

Outline

- Overview of communication problems
- Principles related to HD computing in communication
 - Law of large numbers & random codes
 - Orthogonality via random projection
- Applications of HD computing in communication
- Machine learning in communication

Direct Sequence Spread Spectrum

$$\frac{E_b}{J_0} = \frac{2W/R}{J_{av}/P_{av}}$$

Frequency Hopping Spread Spectrum

https://www.slideshare.net/HILDA519/spread-spectrum-modulation

Capacity of the multiple access channel

Outline

- Overview of communication problems
- principles related to HD computing in communication
 - Law of large numbers & random codes
 - Orthogonality via random projection
- Applications of HD computing in communication
- Machine learning in communication

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 IEEE International Conference on Communications (ICC).

Hyperdimensional Modulation

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 IEEE International Conference on Communications (ICC).

Hyperdimensional Modulation

	HDM	LDPC [4]	LDPC [2]	Polar [7]
D or blk. length	256	256	256	256
Avg. I _{iter}	2.5	5	2.7	6
Operations per bit	280	518 [*] °	127 ^{*+0}	336*

" Not including demodulation (soft-decision) complexity.

+ tanh function is counted as a single operation.

^o Message passing complexity ignored.

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 IEEE International Conference on Communications (ICC).

SNR and Eb/N_0

- Continuous-time AWGN channel
 - Signal power = P
 - Noise PSD = N_0
 - Bandwidth = W
 - $SNR = P/N_0W$
- Discrete-time AWGN channel
 - Energy per symbol Es= P/W
 - Noise energy = variance of noise = N_0
 - SNR in discrete time = $Es/N_0 = P/N_0W = SNR$ in continuous time
- Eb/N₀ = SNR/R=(Es/N₀)/(# of transmissions/# of info bits)

Application to sensing problems – Example 1

- Assign a binary vector to each temp range: eg. v0:[0-10], v1:[10-20], v2: [20-30], ...
- Receiver receives the sum of the vectors sent by all sensors s=s1+s2+....
- Binary Query: any inventory in a temp range i?

 $s \sim v_i$

• Proportion query: How much inventory is in temp rang i?

 $z(a_1v_1 + a_2v_2 + \cdots + a_Mv_M) = s$ Linear least square regression to find ai

Process the single sum vector **s** without decoding individual sensor's reading

Jakimovski, Predrag, et al. "Collective communication for dense sensing environments." *Journal of Ambient Intelligence and Smart Environments* (2012).

Application to sensing problems – Example 2

- x_i is the position id in integers
- $u(x_i)$ and $v(x_i)$ are different measurements (eg. sound or gas sensor readings)
- **x**, **u**, **v** are complex HD vectors for position, u sensor, v sensor

Application to sensing problems – Example 2

Patterns of 16 Sensors' Readings

1 st	[1,	1,	1,	0,	0,	0,	1,	1,	1,	0,	0,	0,	1,	1,	1,	0]
2 nd	[0,	0,	0,	1,	0,	1,	0,	1,	0,	1,	0,	0,	1,	0,	0,	1]
3 rd	[0,	0,	1,	1,	1,	0,	0,	1,	1,	1,	0,	1,	1,	1,	0,	0]
4 th	[1,	1,	0,	1,	1,	1,	1,	1,	0,	0,	1,	0,	1,	0,	1,	1]
5 th	[0,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1]

2nd Pattern (original) [0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1]

2nd Pattern (R shift +1) [1000101010100100]

2nd 3rd 4th 5th

1st

0123456789101112131415

2nd Pattern (R shift +2) [0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0]

Outline

- Overview of communication problems
- Principles related to HD computing in communication
 - Law of large numbers & random codes
 - Orthogonality via random projection
- Applications of HD computing in communication
- Al/Machine learning in communication

Communication system as an autoencoder

Loss function to minimize : block level error rate

O'shea, Timothy, and Jakob Hoydis. "An introduction to deep learning for the physical layer." *IEEE Transactions on Cognitive Communications and Networking* (2017).

Communication system as an autoencoder

O'shea, Timothy, and Jakob Hoydis. "An introduction to deep learning for the physical layer." *IEEE Transactions on Cognitive Communications and Networking* (2017).

Figure 4: Constellations produced by autoencoders using parameters (n, k): (a) (2, 2) (b) (2, 4), (c) (2, 4) with average power constraint, (d) (7, 4) 2-dimensional t-SNE embedding of received symbols.

Learning to decode

Fig. 1: Deep learning setup for channel coding.

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference on Information Sciences and Systems (CISS).

Learning to decode

• Structured codes are easier to learn than random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference on Information Sciences and Systems (CISS).

Learning to decode

- Provide a subset of the entire set during training (p%)
- Able to generalize to codewords that it has never seen during training for structure codes, but not for random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference on Information Sciences and Systems (CISS).

Learning to construct codes

Huang, L., Zhang, H., Li, R., Ge, Y., & Wang, J. (2019). Al coding: Learning to construct error correction codes. *IEEE Transactions on Communications*

Conclusions

- The power of HD computing lies in encoding structures, learning, and classification.
- New applications drive communication from traditional point-to-point transmission paradigm into a variety of new problems
- ⇒Opportunities for HD computing

Acknowledgements: Connor Bybee, Denis Kleyko, Chris Kymn

References

- Cover, Thomas M. Elements of information theory. John Wiley & Sons, 1999.
- Proakis, J., and Masoud Salehi. "Digital Communication Fifth edition." 2008.
- El Gamal, Abbas, and Young-Han Kim. *Network information theory*. Cambridge university press, 2011.