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Main Ideas from Shannon’s paper

• Treat the information source as stochastic

• Separate the transmitter/receiver design into two sub-problems –
“source-channel separation”

Why the madness of having two competing encoders?
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Recall Module 7 (Fritz’s lecture)



Main ideas from Shannon’s paper (cont’d)

• Nice answers to both questions:
i. Min. bits to represent a source = H (source entropy) bits/symbol

ii. Max. rate of reliable communication over a channel = C (capacity) bits/use

• Source can be reliably communicated over a channel iff H < C 
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Surprise from this theory

• We can communicate with arbitrarily small error rates without operating 
at zero-rate

Repetition code Capacity achieving code

Eg. for binary symmetric channel with bit flip probability p



Open questions from Shannon’s paper

• How to design codes?
Source codes: Huffman, Lemple-Ziv (77, 78)

Channel codes: Turbo, LDPC, Polar, etc.

• Network Communication?
Distributed source compression: Slepian-Wolf Theory

Distributed communication

• Multiple-Access Channel (MAC)

• Broadcast Channel (BC)

• General network communication
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Elements in digital communication systems

Texts, images,
audio, etc.

BPSK, 16-QAM,
FSK, OFDM, etc.

BEC, BSC
AWGN

Band-limited
Fading



Entropy and mutual information
• The entropy of a discrete random variable

• The joint entropy of a pair of discrete random variables (X,Y) with joint 
distribution p(x,y)

• Mutual information is the relative entropy between p(x,y) and p(x)p(y)

H(X|Y) I(X;Y) H(Y|X)

H(X) H(Y)

H(X,Y)



Basic Channel Models

+

Binary Erasure Channel
(BEC)

Binary Symmetric Channel
(BSC)

Additive White Gaussian 
Noise Channel (AWGN)

[bits/use][bits/use] [bits/use]



Asymptotic Equipartition Property (AEP)

• The analog of the law of large numbers in information theory:

If X1, X2, … are i.i.d. ~ p(x), then

• AEP holds when the source has memory (Markov source)

in probability.



Typical Sequence

• Example: X={a,b}, p(a) = p, p(b)=1-p, where p ≠ 0.5

Look at blocks of length n, we expect roughly np a’s and n(1-p) b’s in the 
sequences will occur with highest probability   typical sequence x

2n sequences

Non typical set

Typical set

Prob ≈ 0

Prob ≈ 1

Min # bits to represent the source:

bits/symbol

Source Coding Theorem:



Channel Coding Setup

• W is uniform in 
• n: block length

• R: rate [bits/usage]

• Up to which R can we still reliably communicate over the channel?
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Proof of the Channel Coding Theory using
random codebooks and the joint typical decoder
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Proof of the Channel Coding Theory (cont’d)

• Assume W=1 is transmitted, there are two error events:



Proof of the Channel Coding Theory (cont’d)

The proof is non-constructive – it shows a good code exists, but does 
not give the explicit encoding scheme.



Random Codes in Reality

• Linear block codes with random generator matrix

• For BEC and BSC channels, there exists a Gn that approaches capacity.

• Although non-structured G is easy to encode, it’s hard to decode:

(NP-hard)
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G
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Random Codes in Reality

• Fountain codes are a new class of random linear codes with
• Sparse generator matrix
• Decoding complexity O(nlog(n/δ)) with decoding probability >1-δ

• Approaches capacity for erasure channels with unknown erasure 
probabilities
• Sender sends a stream of encoded bits. 
• Receivers collect bits until they are reasonably sure that they can recover the 

content from the received bits, and send STOP feedback to sender.
• Automatic adaptation: Receivers with larger loss rate need longer to receive the 

required information.

• Practical realizations
• L-T code
• Raptor code
• Online code

[credit: Jose Lopes]
Credit: [A. Shokrollahi]



Remarks about channel codes

• Important considerations
• Capacity achieving

• Efficient decoding

Find codes with good structures of G (e.g. LDPC code, R-S code)

Suboptimal decoding schemes (iterative decoding)

• Current 5G standard
• LDPC code  + iterative message passing (decoding complexity O(n2)-O(n))

• Polar code + successive cancellation (decoding complexity O(nlogn))

• HD computing offers error correction, but its power lies beyond this
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Direct Sequence Spread Spectrum

• Applications
▪ Overcome jammers

▪ Message privacy

▪ Multiple access (CDMA)

Bandwidth expansion factor
(processing gain)

W

R



Frequency Hopping Spread Spectrum

https://www.slideshare.net/HILDA519/spread-spectrum-modulation

[Credit: Proakis]

https://www.slideshare.net/HILDA519/spread-spectrum-modulation


Capacity of the multiple access channel

For Gaussian channels

FDMA

CDMA+SIC
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Hyperdimensional Modulation

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 

IEEE International Conference on Communications (ICC).



Hyperdimensional Modulation

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 

IEEE International Conference on Communications (ICC).



Hyperdimensional Modulation

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018 

IEEE International Conference on Communications (ICC).



SNR and Eb/N0

• Continuous-time AWGN channel
• Signal power = P

• Noise PSD = N0

• Bandwidth = W

• SNR = P/N0W

• Discrete-time AWGN channel
• Energy per symbol Es= P/W

• Noise energy = variance of noise = N0

• SNR in discrete time = Es/N0 = P/N0W = SNR in continuous time

• Eb/N0 = SNR/R=(Es/N0)/(# of transmissions/# of info bits)

+



Application to sensing problems – Example 1

• Assign a binary vector to each temp range: eg. v0:[0-10], 
v1:[10-20], v2: [20-30], …

• Receiver receives the sum of the vectors sent by all
sensors s=s1+s2+….

• Binary Query: any inventory in a temp range i?

• Proportion query: How much inventory is in temp rang i?

Jakimovski, Predrag, et al. "Collective communication for dense sensing environments." Journal of 

Ambient Intelligence and Smart Environments (2012).

Linear least square regression to find ai

Process the single sum vector s without decoding individual sensor’s reading



Application to sensing problems – Example 2

• xi is the position id in integers

• u(xi) and v(xi) are different measurements (eg. sound or gas sensor readings)

• x, u, v are complex HD vectors for position, u sensor, v sensor



Application to sensing problems – Example 2

2nd Pattern (original)

2nd Pattern (R shift +1)

Pattern # Position #

2nd Pattern (R shift +2)

Patterns of 16 Sensors’ 
Readings

1st

2nd

3rd

4th

5th
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Communication system as an autoencoder

O’shea, Timothy, and Jakob Hoydis. "An introduction to deep learning for the physical layer." IEEE 

Transactions on Cognitive Communications and Networking (2017).

Loss function to minimize : block level error rate 



Communication system as an autoencoder

O’shea, Timothy, and Jakob Hoydis. "An introduction to 

deep learning for the physical layer." IEEE Transactions 

on Cognitive Communications and Networking (2017).



Learning to decode

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference 

on Information Sciences and Systems (CISS).



Learning to decode

• Structured codes are easier to learn than random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference 

on Information Sciences and Systems (CISS).



Learning to decode

• Provide a subset of the entire set during training (p%)

• Able to generalize to codewords that it has never seen during training for structure 
codes, but not for random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference on Information 

Sciences and Systems (CISS).



Learning to construct codes

Huang, L., Zhang, H., Li, R., Ge, Y., & Wang, J. (2019). AI coding: Learning to construct error correction 

codes. IEEE Transactions on Communications

Hamming distance,
Decoding threshold, etc.



Conclusions

• The power of HD computing lies in encoding structures, learning, and 
classification.

• New applications drive communication from traditional point-to-point 
transmission paradigm into a variety of new problems

Opportunities for HD computing

Acknowledgements: Connor Bybee, Denis Kleyko, Chris Kymn
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