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Main Ideas from Shannon’s paper
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* Treat the information source as stochastic

 Separate the transmitter/receiver design into two sub-problems —
“source-channel separation”
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Why the madness of having two competing encoders?
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Recall Module 7 (Fritz’s lecture)

Mapping data to vector spaces
Source coding (remove redundancy in data)

Data lie in subspace (S5) Learning method Coordinates in SS
Linear low-D SS PCA Axes of covariance matrix
Nonlinear low-D SS Manifold learning location on manifold
Clusters Cluster analysis Cluster number (+ loc.)

Union of lin. low-D SS Sparse coding Axes of Indep. Comp.

Union of nonlin. Low-D SS Manifold learning  Manifold number + loc.

Vector encoding of the new coordinates
Feature local: a neuron’s activity encodes a coordinate: PCA, ICA,...
Distributed: values of a coordinate are represented by many neurons:

VSA



Main ideas from Shannon’s paper (cont’d)
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* Nice answers to both questions:
i.  Min. bits to represent a source = H (source entropy) bits/symbol
ii. Max. rate of reliable communication over a channel = C (capacity) bits/use

e Source can be reliably communicated over a channel iff H< C



Surprise from this theory

* We can communicate with arbitrarily small error rates without operating
at zero-rate
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Repetition code Capacity achieving code

Eg. for binary symmetric channel with bit flip probability p



Open questions from Shannon’s paper

* How to design codes?

= Source codes: Huffman, Lemple-Ziv (77, 78)
=>Channel codes: Turbo, LDPC, Polar, etc.

* Network Communication?
= Distributed source compression: Slepian-Wolf Theory
= Distributed communication
* Multiple-Access Channel (MAC)
e Broadcast Channel (BC)
* General network communication ,\\
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Elements in digital communication systems

Texts, images,

BPSK, 16-QAM,
FSK, OFDM, etc.

Dhgital
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audio, etc.
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Entropy and mutual information

* The entropy of a discrete random variable
H(X)=-) p(x)log p(x)
reX

* The joint entropy of a pair of discrete random variables (X,Y) with joint
distribution p(x,y)

H(X,Y)==>Y Y px.y)log p(z,y)

reX yey

 Mutual information is the relative entropy between p(x,y) and p(x)p(y)

I(X:Y) =) ple,y)log nggg(};)

- ﬁ(X) +H(Y) - H(X,Y)
— H(Y) - HY|X)

H(X,Y)

H(Y)



Basic Channel Models
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Binary Erasure Channel
(BEC)
C=1-p
[bits/use]

Binary Symmetric Channel
(BSC)

C'=1-H(p)
[bits/use]

n~ N(0,0?)

r=s-+n

Additive White Gaussian
Noise Channel (AWGN)

C = 2log(1+ L&)
[bits/use]



Asymptotic Equipartition Property (AEP)

* The analog of the law of large numbers in information theory:
If X, X,, ... are L.1.d. ~ p(X), then

—%log p(X1, Xo, ..., X,) — H(X) Inprobability.

* AEP holds when the source has memory (Markov source)



Typical Sequence

* Example: X={a,b}, p(a) = p, p(b)=1-p, where p # 0.5

Look at blocks of length n, we expect roughly np a’s and n(1-p) b’s in the
sequences will occur with highest probability < typical sequence X

p(x) = p"(1 — p) =P =27 A

«— 2" sequences p(A) = 1
14| = —
Non typical set ’ p(x)
Typical set A Source Coding Theorem:

Min # bits to represent the source:

nHTEX) = H(X) bits/symbol




Channel Coding Setup

n n

W X Y
Channel Channel
Encoder Decoder

p(y|z)

e W is uniformin {1,2,---,2"%}
* n: block length
* R: rate [bits/usage]

* Up to which R can we still reliably communicate over the channel?

Channel Coding Theorem:

For any R < C', there exists a sequence of (2", n) codes, such that
Pr(W #W)—0asn— oo



Proof of the Channel Coding Theory using
random codebooks and the joint typical decoder

n

W X" Y
Channel Channel
Encoder Decoder

p(y|z)

e Coder: i.i.d. randomly chosen according to p(x)

e Decoder: Choose unique w such that (X" (w),Y") € Ag”’)

}Dr(f4£n)) —lasn — o

X", Y™ typical



Proof of the Channel Coding Theory (cont’d)
 Assume W=1 is transmitted, there are two error events:
o Fy:=(X"(1),Y") ¢ A™

o E;:=(X"(i),Y") € A™ fori>2

Pr(E\W =1)=Pr(EgUFELU---UFEqr|W =1)
2nR
< PT(W =1)+ > |Pr(E|W =1)
=2 l
2nH(X,Y)

_ 2—nI(X;Y)

on(H(X)+H(Y))



Proof of the Channel Coding Theory (cont’d)

o Pr(E|W =1) < (2"F —1).2-nI(X;Y)

=If R < m(aﬁcf(X;Y) = C, then Pr(£) — 0 as n — 0.
p\x

o P(&) = Ec(Pr(&|C))
= Vn, 3C,, such that Pr(£|C,) — 0

The proof is non-constructive — it shows a good code exists, but does
not give the explicit encoding scheme.



Random Codes in Reality

* Linear block codes with random generator matrix

OXZUG n

o GG;; €{0,1} ii.d. with 0 and 1 equally likely

* For BEC and BSC channels, there exists a G, that approaches capacity.
* Although non-structured G is easy to encode, it’s hard to decode:

e min ||[uG — y||

e Decoding complexity ~ O(n’®) (NP-hard)



Random Codes in Reality

 Fountain codes are a new class of random linear codes with

* Sparse generator matrix

* Decoding complexity O(nlog(n/d)) with decoding probability >1-6
* Approaches capacity for erasure channels with unknown erasure

probabilities

 Sender sends a stream of encoded bits.

* Receivers collect bits until they are reasonably sure that they can recover the
content from the received bits, and send STOP feedback to sender.

* Automatic adaptation: Receiver

required information.

* Practical realizations
* L-T code
e Raptor code
* Online code
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Remarks about channel codes

* Important considerations
e Capacity achieving
* Efficient decoding
= Find codes with good structures of G (e.g. LDPC code, R-S code)
= Suboptimal decoding schemes (iterative decoding)

e Current 5G standard

* LDPC code + iterative message passing (decoding complexity O(n?)-O(n))
* Polar code + successive cancellation (decoding complexity O(nlogn))

* HD computing offers error correction, but its power lies beyond this
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* Orthogonality via random projection



Direct Sequence Spread Spectrum
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e Applications
= Overcome jammers
= Message privacy
= Multiple access (CDMA)

As the pulsesin time get
shorter, the frequency
bandwidth gets larger

Bandwidth expansion factor  yy/
(processing gain) R
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Transmission Frequency (GH2)

Frequency Hopping Spread Spectrum
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An Example of a Co-located Frequency Hopping System
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https://www.slideshare.net/HILDA519/spread-spectrum-modulation
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https://www.slideshare.net/HILDA519/spread-spectrum-modulation

Capacity of the multiple access channel

Encoder 1

Encoder 2

ply|zi,xa)
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For Gaussian channels
Y = X1 + Xo + Z where Z ~ N(0,N)

Ri+ Ry < I(X1,X93Y)
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* Applications of HD computing in communication



Hyperdimensional Modulation
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Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018

IEEE International Conference on Communications (ICC).




Hyperdimensional Modulation
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Hyperdimensional Modulation

HDM LDPC [4] LDPC[2] Polar [7]

D or blk. length 256 236 236 236
g Ave. Liier 2.5 5 2.7 6
= Operations per bit 280 518" 127" 336"

" Not including demodulation (soft-decision) complexity.
TEE=——— i * tanh function is counted as a single operation.
—B— LDPC(n=256, SPA) [2] ; Y Message passing complexity ignored.

—%— Polar (n=25&, SC w/ innar coda) [6]
& — Polar (n=256, BP, 50 iter) [5]
w— L (D=256, N=8, O=4, K=2, M=64) |

1 1 1 1 1 H

b i 7 B 9 10
E /N, dB

Kim, Hun-Seok. "HDM: Hyper-dimensional modulation for robust low-power communications." 2018
IEEE International Conference on Communications (ICC).



SNR and Eb/N,

* Continuous-time AWGN channel n ~ N(0, Ng)
* Signal power =P
* Noise PSD =N,
e Bandwidth=W S
* SNR = P/N,W r=stn

* Discrete-time AWGN channel
* Energy per symbol Es= P/W
* Noise energy = variance of noise = N,
* SNR in discrete time = Es/N, = P/N,W = SNR in continuous time

* Eb/N, = SNR/R=(Es/N,)/(# of transmissions/# of info bits)



Application to sensing problems — Example 1

* Assign a binary vector to each temp range: eg. v0:[0-10],

Palletcontains

v1:[10-20], v2: [20-30], ... AL
* Receiver receives the sum of the vectors sent by all of,
sensors s=s1+s2+.... e
. ] ) . LTI ] \ [ Receiver |
* Binary Query: any inventory in a temp range i?
S ~ U;

* Proportion query: How much inventory is in temp rang i?
z(arvy 4+ asve + -+ -+ apvpr) = S Linear least square regression to find ai
Process the single sum vector s without decoding individual sensor’s reading

Jakimovski, Predrag, et al. "Collective communication for dense sensing environments." Journal of
Ambient Intelligence and Smart Environments (2012).



Application to sensing problems — Example 2

e u(z)x" Qut ()X OV
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* X is the position id in integers
* u(x;) and v(x;) are different measurements (eg. sound or gas sensor readings)
* X, U, vare complex HD vectors for position, u sensor, v sensor



Application to sensing problems — Example 2

, 1t r1, 1,1, e, @, 8,1, 1,1, @, &, 6, 1, 1, 1, @]
Patterns of 16 Sensors [ [0, 0,0, 1,0, 1,0, 1, @, 1, 8, 8, 1, 8, 0, 1]
. 3rd ['Ei, ¢, 1, 1,1, &, &, 1, 1, 1, &, 1, 1, 1, @&, l.'-':!l]
Readmgs 4 [1,1,9,1,1,1,1,1,8, 8, 1,8, 1,8, 1, 1]
Gth ['3, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1]
Pattern # Position #
0 Ind 8
2nd Pattern (original) 5
g
[eeel1818181886818081] =
=
st 2nd  3rd  4th  5th 0123456 7891011243145
_ 0 ond 9
2"d Pattern (R shift +1) ;
=
[leeelel1el1eleelasa] £ %
fae]
E
=40
st 2nd 3rd  4th  5Sth 012345678 91M12A345
0 2nd 10
2" pattern (R shift +2) 4
o
[e1e8@108010l1lel1es81la] £ 100
G\",

Ist 2nd Zrd 4th 5th 012345678 910MN2A31415
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Communication system as an autoencoder
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Loss function to minimize : block level error rate

O’shea, Timothy, and Jakob Hoydis. "An introduction to deep learning for the physical layer." IEEE
Transactions on Cognitive Communications and Networking (2017).



Communication system as an autoencoder

Block error rate

O’shea, Timothy, and Jakob Hoydis. "An introduction to
deep learning for the physical layer." IEEE Transactions
on Cognitive Communications and Networking (2017).
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Figure 4: Constellations produced by autoencoders using pa-
rameters (n, k): (a) (2,2) (b) (2,4), (c) (2,4) with average
power constraint, (d) (7,4) 2-dimensional t-SNE embedding
of received symbols.



Learning to decode
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Fig. 1: Deep learning setup for channel coding.

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference
on Information Sciences and Systems (CISS).



Learning to decode
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e Structured codes are easier to learn than random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference
on Information Sciences and Systems (CISS).



Learning to decode
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* Provide a subset of the entire set during training (p%)

* Able to generalize to codewords that it has never seen during training for structure
codes, but not for random codes

Gruber, Tobias, et al. "On deep learning-based channel decoding." 2017 IEEE Annual Conference on Information
Sciences and Systems (CISS).



Learning to construct codes
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BMA de dij_ug Fig. 5: Performance comparison between learned linear block

codes and RM codes

Huang, L., Zhang, H., Li, R., Ge, Y., & Wang, J. (2019). Al coding: Learning to construct error correction
codes. IEEE Transactions on Communications



Conclusions

* The power of HD computing lies in encoding structures, learning, and
classification.

* New applications drive communication from traditional point-to-point
transmission paradigm into a variety of new problems

= Opportunities for HD computing

Acknowledgements: Connor Bybee, Denis Kleyko, Chris Kymn
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