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To accommodate structured approaches of neural computation, we pro-
pose a class of recurrent neural networks for indexing and storing
sequences of symbols or analog data vectors. These networks with ran-
domized input weights and orthogonal recurrent weights implement
coding principles previously described in vector symbolic architectures
(VSA) and leverage properties of reservoir computing. In general, the
storage in reservoir computing is lossy, and crosstalk noise limits the
retrieval accuracy and information capacity. A novel theory to optimize
memory performance in such networks is presented and compared with
simulation experiments. The theory describes linear readout of analog
data and readout with winner-take-all error correction of symbolic data
as proposed in VSA models. We find that diverse VSA models from the
literature have universal performance properties, which are superior to
what previous analyses predicted. Further, we propose novel VSA mod-
els with the statistically optimal Wiener filter in the readout that exhibit
much higher information capacity, in particular for storing analog data.

The theory we present also applies to memory buffers, networks with
gradual forgetting, which can operate on infinite data streams with-
out memory overflow. Interestingly, we find that different forgetting
mechanisms, such as attenuating recurrent weights or neural nonlinear-
ities, produce very similar behavior if the forgetting time constants are
matched. Such models exhibit extensive capacity when their forgetting
time constant is optimized for given noise conditions and network size.
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1450 E. Frady, D. Kleyko, and F. Sommer

These results enable the design of new types of VSA models for the on-
line processing of data streams.

1 Introduction

An important aspect of information processing is data representation. In
order to access and process data, addresses or keys are required to provide
a necessary context. To enable flexible contextual structure as required in
cognitive reasoning, connectionist models have been proposed that rep-
resent data and keys in a high-dimensional vector space. Such models
include holographic reduced representations (HRR; Plate, 1991, 2003) and
hyperdimensional computing (HDC) (Gayler, 1998; Kanerva, 2009), and
will be referred to here by the umbrella term vector symbolic architectures
(VSA; see Gayler, 2003; section 4.1.1). VSA models have been shown to be
able to solve challenging tasks of cognitive reasoning (Rinkus, 2012; Kleyko
& Osipov, 2014; Gayler, 2003). VSA principles have been recently incorpo-
rated into standard neural networks for advanced machine learning tasks
(Eliasmith et al., 2012), inductive reasoning (Rasmussen & Eliasmith, 2011),
and processing of temporal structure (Graves, Wayne, & Danihelka, 2014;
Graves et al., 2016; Danihelka, Wayne, Uria, Kalchbrenner, & Graves, 2016).
Typically, VSA models offer at least two operations: one to produce key-
value bindings (also referred to as role-filler pairs) and a superposition op-
eration that forms a working memory state containing the indexed data
structures. For example, to represent a time sequence of data in a VSA, in-
dividual data points are bound to time-stamp keys and the resulting key-
value pairs superposed into a working memory state.

Here, we show that input sequences can be indexed and memorized
according to various existing VSA models by recurrent neural networks
(RNNs) that have randomized input weights and orthonormal recurrent
weights of particular properties. Conversely, this class of networks has a
straightforward computational interpretation: in each cycle, a new random
key is generated, a key-value pair is formed with the new input, and the
indexed input is integrated into the network state. In the VSA literature,
this operation has been referred to as trajectory association (Plate, 1993). The
memory in these networks follows principles previously described in reser-
voir computing. The idea of reservoir computing is that a neural network
with fixed recurrent connectivity can exhibit a rich reservoir of dynamic in-
ternal states. An input sequence can selectively evoke these states so that an
additional decoder network can extract the input history from the current
network state. These models produce and retain neural representations of
inputs on the fly, entirely without relying on previous synaptic learning as
in standard models of neural memory networks (Caianiello, 1961; Little &
Shaw, 1978; Hopfield, 1982; Schwenker, Sommer, & Palm, 1996; Sommer
& Dayan, 1998). Models of reservoir computing include state-dependent
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Figure 1: Network model investigated.

networks (Buonomano & Merzenich, 1995), echo-state networks (Jaeger,
2002; Lukoševičius & Jaeger, 2009), liquid-state machines (Maass,
Natschläger, & Markram, 2002), and related network models of mem-
ory (White, Lee, & Sompolinsky, 2004; Ganguli, Huh, & Sompolinsky, 2008;
Sussillo & Abbott, 2009). However, it is unclear how such reservoir models
create representations that enable the selective readout of past input items.
Leveraging the structured approach of VSAs to compute with distributed
representations, we offer a novel framework for understanding reservoir
computing.

2 Results

2.1 Indexing and Memorizing Sequences with Recurrent Networks.
We investigate how a sequence of M input vectors of dimension D can
be indexed by pseudo-random vectors and memorized by a recurrent net-
work with N neurons (see Figure 1). The data vectors a(m) ∈ R

D are fed
into the network through a randomized, fixed input matrix � ∈ R

N×D. In
the context of VSA, the input matrix corresponds to the codebook, and
the matrix columns contain the set of high-dimensional random vector-
symbols (hypervectors) used in the distributed computation scheme. In
addition, the neurons might also experience some independent neuronal
noise η(m) ∈ R

N with p(η i(m)) ∼ N (0, σ 2
η ). Further, feedback is provided

through a matrix of recurrent weights λW ∈ R
N×N where W is orthogonal

and 0 < λ ≤ 1. The input sequence is encoded into a single network state
x(M) ∈ R

N by the recurrent neural network (RNN),

x(m) = f (λWx(m − 1) + �a(m) + η(m)), (2.1)

with f (x) the component-wise neural activation function.
To estimate the input a(M − K) entered K steps ago from the network

state, the readout is of the form
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â(M − K) = g(V(K)�x(M)), (2.2)

where V(K) ∈ R
N×D is a linear transform to select the input that occurred K

time steps in the past (see Figure 1). In some models, the readout includes
a nonlinearity g(h) to produce the final output.

The effect of one iteration of equation 2.1 on the probability distribution
of the network state x(m) is a Markov chain stochastic process, governed by
the Chapman-Kolmogorov equation (Papoulis, 1984),

p(x(m + 1)|a(m)) =
∫

p(x(m + 1)|x(m), a(m)) p(x(m)) dx(m), (2.3)

with a transition kernel p(x(m + 1)|x(m), a(m)), which depends on all pa-
rameters and functions in equation 2.1. Thus, to analyze the memory per-
formance in general, one has to iterate equation 2.3 to obtain the distribution
of the network state.

2.1.1 Properties of the Matrices in the Encoding Network. The analysis sim-
plifies considerably if the input and recurrent matrix satisfy certain con-
ditions. Specifically, we investigate networks in which the input matrix �

has independent and identically distributed (i.i.d.) random entries and the
recurrent weight matrix W is orthogonal with mixing properties and long
cycle length. The assumed properties of the network weights guarantee the
following independence conditions of the indexing keys, which will be es-
sential in our analysis of the network performance:

• Code vectors �d are composed of identically distributed components,

p((�d )i) ∼ p�(x) ∀i, d (2.4)

where p�(x) is the distribution for a single component of a random
code vector, and with E�(x), V�(x) being the mean and variance of
p�(x), as typically defined by E�(φ(x)) := ∫ φ(x)p�(x)dx, V�(φ(x)) :=
E�(φ(x)2) − E�(φ(x))2, with φ(x) an arbitrary function.

• Components within a code vector and between code vectors are in-
dependent:

p
(
(�d′ )i, (�d ) j

) = p((�d′ )i) p((�d ) j ) ∀ j �= i ∨ d′ �= d. (2.5)

• The recurrent weight matrix W is orthogonal and thus preserves the
mean and variance of every component of a code vector:

E((W�d )i) = E((�d )i) ∀i, d,

Var((W�d )i) = Var((�d )i) ∀i, d. (2.6)
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• The recurrent matrix preserves element-wise independence with a
large cycle time (around the size of the reservoir):

p((Wm�d )i, (�d )i) = p((Wm�d )i) p((�d )i) ∀i, d; m = {1, . . . , O(N)}.
(2.7)

The class of RNNs (see equation 2.1) in which the weights fulfill proper-
ties 2.4 to 2.7 contains the neural network implementations of various VSA
models. Data encoding with such networks has a quite intuitive interpre-
tation. For each input ad(m), a pseudo-random key vector is computed that
indexes both the input dimension and location in the sequence, WM−m�d.
Each input ad(m) is multiplied with this key vector to form a new key-value
pair, which is added to the memory vector x. Each pseudo-random key de-
fines a spatial pattern for how an input is distributed to the neurons of the
network.

2.1.2 Types of Memories under Investigation. Reset memory versus memory
buffer. In the case for finite input sequence length M, the network is reset to
the zero vector before the first input arrives, and the iteration is stopped af-
ter the Mth input has been integrated. We refer to these models as reset mem-
ories. In the VSA literature, the superposition operation (Plate, 1991, 2003;
Gallant & Okaywe, 2013) corresponds to a reset memory and, in particular,
trajectory-association (Plate, 1993). In reservoir computing, the distributed
shift register (DSR; White et al., 2004) can also be related to reset memories.
In contrast, a memory buffer can track information from the past in a poten-
tially infinite input stream (M → ∞). Most models for reservoir computing
are memory buffers (Jaeger, 2002; White et al., 2004; Ganguli et al., 2008).
A memory buffer includes a mechanism for attenuating older information,
which replaces the hard external reset in reset memories to avoid overload.
The mechanisms of forgetting we will analyze here are contracting recurrent
weights or neural nonlinearities. Our analysis links contracting weights (λ)
and nonlinear activation functions ( f ) to the essential property of a memory
buffer, the forgetting time constant, and we show how to optimize memory
buffers to obtain extensive capacity.

Memories for symbols versus analog input sequences. The analysis consid-
ers data vectors a(m) that represent either symbolic or analog inputs. The
superposition of discrete symbols in VSAs can be described by equation
2.1, where inputs a(m) are one-hot or zero vectors. A one-hot vector repre-
sents a symbol in an alphabet of size D. The readout of discrete symbols in-
volves a nonlinear error correction for producing one-hot vectors as output,
the winner-take-all operation g(h) = WTA(h). Typical models for reservoir
computing (Jaeger, 2002; White et al., 2004) process one-dimensional ana-
log input, and the readout is linear, g(h) = h in equation 2.2. We derive the
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information capacity for both uniform discrete symbols and gaussian ana-
log inputs.

Readout by naive regression versus full minimum mean square error regression.
Many models of reservoir computing use full optimal linear regression and
set the linear transform in equation 2.2 to the Wiener filter V(K) = C−1A(K),
which produces the minimum mean square error (MMSE) estimate of the
stored input data. Here, A(K) := 〈a(M − K)x(M)�〉 ∈ R

N×D is the covari-
ance between input and memory state, and C := 〈x(M)x(M)�〉 ∈ R

N×N is
the covariance matrix of the memory state. Obviously this readout requires
inverting C. In contrast, VSA models use V(K) = c−1〈a(M − K)x(M)�〉 =
c−1WK�, with c = NE�(x2) a constant, which does not require matrix in-
version. Thus, the readout in VSA models is computationally much simpler
but can cause reduced readout quality. We show that the MMSE readout
matrix can mitigate the crosstalk noise in VSA and improve readout qual-
ity in regimes where MD � N. This is particularly useful for the retrieval
of analog input values, where the memory capacity exceeds many bits per
neuron, limited only by neuronal noise.

2.2 Analysis of Memory Performance. After encoding an input se-
quence, the memory state x(M) contains information indexed with respect
to the dimension 1, . . . , D of the input vectors and with respect to the length
dimension 1, . . . , M of the sequence. The readout of a vector component, d,
at a particular position of the sequence, M − K, begins with a linear dot
product operation,

hd(K) := Vd(K)�x(M), (2.8)

where Vd(K) is the dth column vector of the decoding matrix V(K).
For readout of analog-valued input vectors, we use linear readout:

hd(K) = âd(M − K) = ad(M − K) + nd, where nd is decoding noise resulting
from crosstalk and neuronal noise. The signal-to-noise ratio, r, of the linear
readout can then be defined as

r(K) := σ 2(ad )
σ 2(nd )

, (2.9)

where we suppressed the component index d and assume that the signal
and noise properties are the same for all vector components.

For symbolic input, we will consider symbols from an alphabet of length
D, which are represented by one-hot a vectors; that is, in each input vector,
there is one component ad′ with value 1 and all other ad are 0. In this case, a
multivariate threshold operation can be applied after the linear readout for
error correction, the winner-take-all function: â(M − K) = WTA(h(K)).
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2.2.1 The Accuracy of Retrieving Discrete Inputs. For symbolic inputs, we
will analyze the readout of two distinct types of input sequences. In the
first type, a symbol is entered in every time step, and retrieval consists in
classification to determine which symbol was added at a particular time.
The second type of input sequence can contain gaps: some positions in the
sequence can be empty. If most inputs in the sequence are empty, this type
of input stream has been referred to as a sparse input sequence (Ganguli &
Sompolinsky, 2010). The retrieval task is then detection: whether a symbol
is present and, if so, reveal its identity.

For classification, if d′ is the index of the hot component in a(M − K),
then the readout with the winner-take-all operation is correct if in equation
2.8, hd′ (K) > hd(K) for all distracters d �= d′. As we will see, under the inde-
pendence conditions 2.4 to 2.7 and VSA readout, the hd readout variables
are the true inputs plus gaussian noise. The classification accuracy, pcorr, is

pcorr(K) = p
(
hd′ (K) > hd(K) ∀d �= d′)

=
∫ ∞

−∞
p(hd′ (K) = h)

[
p(hd(K) < h)

]D−1 dh

=
∫ ∞

−∞
N (h′;μ(hd′ ), σ 2(hd′ ))

[∫ h′

−∞
N (h;μ(hd ), σ 2(hd )) dh

]D−1

dh′

=
∫ ∞

−∞
N (h′; ad′ , σ 2(nd′ ))

[∫ h′

−∞
N (h; ad, σ

2(nd ))dh

]D−1

dh′. (2.10)

For clarity in the notation of gaussian distributions, the argument variable
is added: p(x) ∼ N (x;μ, σ 2).

The gaussian variables h and h′ in equation 2.10 can be shifted and
rescaled to yield

pcorr(K) =
∫ ∞

−∞

dh√
2π

e− 1
2 h2
[
�

(
σ (hd )
σ (hd′ )

h − μ(hd ) − μ(hd′ )
σ (hd′ )

)]D−1

=
∫ ∞

−∞

dh√
2π

e− 1
2 h2
[
�

(
σ (nd )
σ (nd′ )

h − ad − ad′

σ (nd′ )

)]D−1

(2.11)

where � is the normal cumulative density function.
Further simplification can be made when σ (nd′ ) ≈ σ (nd ). The classifica-

tion accuracy then becomes

pcorr(s(K)) =
∫ ∞

−∞

dh√
2π

e− 1
2 h2

[� (h + s(K))]D−1
, (2.12)
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where the sensitivity for detecting the hot component d′ from h(K) is
defined:

s(K) := μ(hd′ ) − μ(hd )
σ (hd )

= ad′ − ad

σ (nd )
= 1

σ (nd )
. (2.13)

For detection, the retrieval involves two steps: detecting whether an input
item was integrated K time steps ago and identifying which symbol if one is
detected. In this case, a rejection threshold, θ , is required, which governs the
trade-off between the two error types: misses and false positives. If none of
the components in h(K) exceed θ , then the readout will output that no item
was stored. The detection accuracy is given by

pθ
corr(s(K))

= p
(
(hd′ (K) > hd(K) ∀d �= d′) ∧ (hd′ (K) ≥ θ )|a(M − K) = δd=d′

)
ps

+ p ((hd(K) < θ ∀d)|a(M − K) = 0) (1 − ps), (2.14)

where ps is the probably that a(m) is a nonzero signal. If the distribution
of h(K) is close to gaussian, the two conditional probabilities of equation
2.14 can be computed as follows. The accuracy, given a nonzero input was
applied, can be computed analogous to equation 2.12:

p
(
(hd′ (K) > hd(K) ∀d �= d′) ∧ (hd′ (K) ≥ θ )|a(M − K) = δd=d′

)
=
∫ ∞

(θ−1)s(K;Mps )

dh√
2π

e− 1
2 h2 [

� (h + s(K; Mps))
]D−1

. (2.15)

Note that equation 2.15 is of the same form as equation 2.12 but with dif-
ferent integration bounds. The second conditional probability in equation
2.14, for correctly detecting a zero input, can be computed by

p ((hd(K) < θ ∀d)|a(M − K) = 0) = [� (θs(K; Mps))
]D

. (2.16)

Special Cases

1. As a sanity check, consider the classification accuracy, equation 2.12,
in the vanishing sensitivity regime, for s → 0. The first factor in the
integral, the gaussian, then becomes the inner derivative of the sec-
ond factor, the cumulative gaussian raised to the (D − 1)th power.
With s → 0, the integral can be solved analytically using the (inverse)
chain rule to yield the correct chance value for the classification:

pcorr(s → 0) = 1
D

�(h)D|∞−∞ = 1
D

. (2.17)
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2. The case D = 1 makes sense for detection but not for classification
retrieval. This case falls under classical signal detection theory (Pe-
terson, Birdsall, & Fox, 1954), with s being the sensitivity index. The
detection accuracy, equation 2.14, in this case becomes

pθ
corr(s(K; Mps); D = 1) = (1 − � ((θ − 1)s(K; Mps))) ps

+� (θs(K; Mps)) (1 − ps). (2.18)

The threshold θ trades off miss and false alarm errors. Formulas 2.14
to 2.16 generalize signal detection theory to higher-dimensional sig-
nals (D).

3. Consider classification retrieval, equation 2.12, in the case D = 2.
Since the (rescaled and translated) random variables p(hd′ (K)) ∼
N (s, 1) and p(hd(K)) ∼ N (0, 1) (see Figure 2A) are uncorrelated, one
can switch to a new gaussian variable representing their difference:
y := hd(K) − hd′ (K) with p(y) ∼ N (−s, 2) (see Figure 2B). Thus, for
D = 2, one can compute equation 2.12 by just the normal cumulative
density function (and avoiding the integration):

pcorr(s(K); D = 2) = p(y < 0) = �

(
s(K)√

2

)
. (2.19)

The result, equation 2.19, is the special case d = 1 of table entry
10,010.8 in Owen’s table of normal integrals (Owen, 1980).

In general, for D > 2 and nonzero sensitvity, the pcorr integral cannot be
solved analytically, but can be numerically approximated to arbitrary pre-
cision (see Figure 14).

2.2.2 Accuracy in the High-Fidelity Regime. Next, we derive steps to ap-
proximate the accuracy in the regime of high-fidelity recall, following
the rationale of previous analyses of VSA models (Plate, 2003; Gallant &
Okaywe, 2013). This work showed that the accuracy of retrieval scales lin-
early with the number of neurons in the network (N). We will compare our
analysis results with those of previous analyses and with simulation results.

We now try to apply to the case D > 2 what worked for D = 2 (see equa-
tion 2.19): that is, get rid of the integral in equation 2.12 by transforming to
new variables yd = hd − hd′ for each of the D − 1 distracters with d �= d′. We
can write p(y) ∼ N (−s,�) with

s =
⎛
⎝ s

s
. . .

⎞
⎠ ∈ R

D−1, � =
⎛
⎝ 2 1 1

1 2 . . .

1 . . . 2

⎞
⎠ ∈ R

(D−1)×(D−1).
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1458 E. Frady, D. Kleyko, and F. Sommer

Figure 2: Approximating the retrieval accuracy in the high-fidelity regime.
(A) The retrieval is correct when the value drawn from distribution p(hd′ ) (blue)
exceeds the values produced by D − 1 draws from the distribution p(hd ) (black).
In the example, the sensitivity is s = 2. (B) When D = 2, the two distributions
can be transformed into one distribution describing the difference of both quan-
tities, p(hd′ − hd ). (C) When D > 2, the D − 1 random variables formed by such
differences are correlated. Thus, in general, the multivariate cumulative gaus-
sian integral, equation 2.20, cannot be factorized. The example shows the case
D = 3, with the integration boundaries displayed by dashed lines. (D) How-
ever, for large s, that is, in the high-fidelity regime, the factorial approximation,
equation 2.21, becomes quite accurate. The panel shows again the D = 3 exam-
ple. (E) Linear relationship between the squared sensitivity and the logarithm
of D. The numerically evaluated full theory (dots) coincides more precisely with
the approximated linear theories (lines) when the accuracy is high (the accuracy
is indicated by copper-colored lines; see the legend). The simpler linear theory
(equation 2.24; dashed lines) matches the slope of the full theory but exhibits a
small offset. The more elaborate linear theory (equation 2.25; solid lines) pro-
vides a quite accurate fit of the full theory for high accuracy values.

In analogy to the D = 2 case, equation 2.19, we can rewrite the result of
equation 2.12 for D > 2 by

pcorr = p(yd < 0 ∀d �= d′) = �D−1(s,�), (2.20)

with multivariate cumulative gaussian, �D−1(s,�) (see the table entry
n0, 010.1 in Owen’s table of normal integrals; Owen, 1980).

The multivariate cumulative distribution, equation 2.20, would factor-
ize, but only for uncorrelated variables, when the covariance matrix �

is diagonal. The difficulty with D > 2 is that the multiple yd variables
are correlated: Cov(yi, y j ) = E((yi − s)(y j − s)) = 1. The positive uniform
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off-diagonal entries in the covariance matrix means that the covariance el-
lipsoid of the yd’s is aligned with the (1, 1, 1, . . .) vector and thus also with
the displacement vector s (see Figure 2C). In the high signal-to-noise regime,
the integration boundaries are removed from the mean, and the exact shape
of the distribution should not matter so much (see Figure 2D). Thus, the first
step takes the factorized approximation (FA) to the multivariate gaussian to
approximate pcorr in the high signal-to-noise regime:

pcorr: FA =
[
�

(
s√
2

)]D−1

. (2.21)

Note that for s → 0 in the low-fidelity regime, this approximation fails; the
chance probability is 1/D when s → 0 (see equation 2.17), but equation 2.21
yields 0.5D−1, which is much too small for D > 2.

For an analytic expression, an approximate formula is needed for the
one-dimensional cumulative gaussian, which is related to the complemen-
tary error function by �(x) = 1 − 1

2 erfc(x/
√

2). A well-known exponential
upper bound on the complementary error function is the Chernoff-Rubin
bound (CR; Chernoff, 1952). Later work (Jacobs, 1966; Hellman & Raviv,
1970) produced a tightened version of this bound: erfc(x) ≤ BCR(x) = e−x2

.
Using x = s/

√
2, we obtain BCR(x/

√
2) = e−s2/4, which can be inserted into

equation 2.21 as the next step to yield an approximation of pcorr:

pcorr: FA−CR =
[

1 − 1
2

e−s2/4
]D−1

. (2.22)

With a final approximation step, using the local error expansion (LEE)
ex = 1 + x + . . . when x is near 0, we can set x = − 1

2 e−s2/4 and rewrite

pcorr: FA−CR−LEE = 1 − 1
2

(D − 1)e−s2/4. (2.23)

Solving for s2 provides a simple law relating the sensitivity with the input
dimension,

s2 = 4 [ln(D − 1) − ln(2ε)] , (2.24)

where ε := 1 − pcorr.
The approximation, equation 2.24, is quite accurate (see Figure 2E,

dashed lines) but not tight. Even if equation 2.21 was tight in the high-
fidelity regime, there would still be a discrepancy because the CR bound
is not tight. This problem of the CR bound has been noted for a long time,
enticing efforts to derive tight bounds, usually involving more compli-
cated multiterm expressions (e.g., Chiani, Dardari, & Simon, 2003). Quite
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1460 E. Frady, D. Kleyko, and F. Sommer

recently, Chang, Cosman, and Milstein (2011) studied one-term bounds of
the complementary error function of the form B(x;α, β ) := αe−βx2

. First,
they proved that there exists no parameter setting for tightening the origi-
nal Chernoff-Rubin upper bound. Second, they reported a parameter range
where the one-term expression becomes a lower bound: erfc(x) ≥ B(x;α, β )
for x ≥ 0. The lower bound becomes the tightest with β = 1.08 and α =√

2e
π

√
β−1
β

. This setting approximates the complementary error function as
well as an eight-term expression derived in Chiani et al. (2003). Follow-
ing Chang et al. (2011), we approximate the cumulative gaussian with the
Chang bound (Ch) and follow the same FA and LEE steps to derive a tighter
linear fit to the true numerically evaluated integral,

s2 = 4
β

[
ln(D − 1) − ln(2ε) + ln

(√
2e
π

√
β − 1
β

)]
, (2.25)

with β = 1.08. This law fits the full theory in the high-fidelity regime (see
Figure 2E, solid lines), but it is not as accurate for smaller sensitivity values.

2.2.3 Information content and memory capacity. Memory capacity for symbolic
input. The information content (Feinstein, 1954) is defined as the mutual
information between the true sequence and the sequence retrieved from the
superposition state x(M). The mutual information between the individual
item that was stored K time steps ago (ad′ ) and the item that was retrieved
(âd) is given by

Iitem = DKL (p(âd, ad′ ) || p(âd )p(ad′ )) =
D∑
d

D∑
d′

p(âd, ad′ ) log2

(
p(âd, ad′ )

p(âd )p(ad′ )

)
,

where DKL(p || q) is the Kullback-Leibler divergence (Kullback & Leibler,
1951).

For discrete input sequences, because the sequence items are chosen uni-
formly random from the set of D symbols, both the probability of a par-
ticular symbol as input and the probability of a particular symbol as the
retrieved output are the same: p(âd ) = p(ad′ ) = 1/D. The pcorr(s(K)) integral
evaluates the conditional probability that the output item is the same as the
input item:

p(âd′ |ad′ ) = p(âd′ , ad′ )
p(ad′ )

= pcorr(s(K)).

To evaluate the p(âd, ad′ ) ∀d �= d′ terms, pcorr(s(K)) is needed to compute
the probability of choosing the incorrect symbol given the true input. The
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probability that the symbol is retrieved incorrectly is 1 − pcorr(s(K)), and
each of the D − 1 distracters is equally likely to be the incorrectly retrieved
symbol, thus:

p(âd|ad′ ) = p(âd, ad′ )
p(ad′ )

= 1 − pcorr(s(K))
D − 1

∀ d �= d′.

Plugging these into the mutual information and simplifying,

Iitem(pcorr(K)) = pcorr(s(K)) log2 (pcorr(s(K))D)

+ (1 − pcorr(s(K))) log2

(
D

D − 1
(1 − pcorr(s(K)))

)

= DKL

(
Bpcorr(s(K)) || B 1

D

)
, (2.26)

where Bp := {p, 1 − p} is the Bernoulli distribution. Note that the mutual
information per item can be expressed as the Kullback-Leibler divergence
between the actual recall accuracy pcorr and the recall accuracy achieved by
chance, 1/D.

The total mutual information is the sum of the information for each item
in the full sequence:

Itotal =
M∑

K=1

Iitem(pcorr(s(K))) =
M∑

K=1

DKL

(
Bpcorr(s(K)) || B 1

D

)
. (2.27)

Note that if the accuracy is the same for all items, then Itotal = M Iitem(pcorr),
and by setting pcorr = 1, one obtains the entire input information: Istored =
M log2(D).

Memory capacity for analog input. For analog inputs, we can compute the
information content if the components of input vectors are independent
with gaussian distribution, p(ad′ (m)) ∼ N (0, 1). In this case, distributions
of the readout p(âd′ ) and the joint between input and readout p(ad′ , âd′ ) are
also gaussian. Therefore, the correlation between p(ad′ ) and p(âd′ ) is suffi-
cient to compute the information (Gel’fand & Yaglom, 1957), with Iitem =
− 1

2 log2(1 − ρ2), where ρ is the correlation between the input and output.
There is a simple relation between the signal correlation and the SNR r (9):
ρ = √r/(r + 1), which gives the total information:

Itotal = 1
2

D∑
d′

M∑
K

log2 (r(K) + 1) . (2.28)

The information content of a network is Itotal/N in units bits per neuron.
The memory capacity is then the maximum of Itotal/N (27, 28) over all
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1462 E. Frady, D. Kleyko, and F. Sommer

parameter settings of the network. The network has extensive memory
when Itotal/N is positive, as N grows large.

2.3 VSA Indexing and Readout of Symbolic Input Sequences. In this
section, we analyze the network model, equation 2.1, with linear neurons,
f (x) = x and without neuronal noise. After a reset to x(0) = 0, the network
receives a sequence of M discrete inputs. Each input is a one-hot vector,
representing one of D symbols; we will show examples with alphabet size
of D = 27, representing the 26 English letters and the space character. The
readout, equation 2.2, involves the matrix V(K) = c−1〈a(M − K)x(M)�〉 =
c−1WK� and the winner-take-all function, with c = E�(x2)N a scaling con-
stant. This setting is important because, as we will show in the next section,
it can implement the working memory operation in various VSA models
from the literature.

In this case, a sequence of inputs {a(1), . . . , a(M)} into the RNN, equation
2.1, produces the following memory vector:

x(M) =
M∑

m=1

WM−m�a(m). (2.29)

Under the conditions 2.4 to 2.7, the linear part of the readout, equation 2.8,
results in a sum of N independent random variables:

hd(K) =
N∑

i=1

(
Vd(K)�x(M)

)
i = c−1

N∑
i=1

(�d )i(W−Kx(M))i = c−1
N∑

i=1

zd,i.

(2.30)

Note that under the conditions 2.4 to 2.7, each zd,i is independent, and thus
hd is a gaussian by the central limit theorem for large N. The mean and
variance of hd are given by μ(hd ) = c−1Nμ(zd,i) and σ 2(hd ) = c−1Nσ 2(zd,i).

The quantity zd,i in equation 2.30 can be written as

zd,i = (�d )i(W−Kx(M))i

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(�d′ )i(�d′ )i +
M∑

m �=(M−K)

(�d′ )i(WM−K−m�d′ )i if d = d′

M∑
m

(�d )i(WM−K−m�d′ )i otherwise

.

(2.31)
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Given the conditions 2.4 to 2.7, the moments of zd,i can be computed:

μ(zd,i) =
{

E�(x2) + (M − 1)E�(x)2 if d = d′

ME�(x)2 otherwise
, (2.32)

σ 2(zd,i) =
{

V�(x2) + (M − 1)V�(x)2 if d = d′

MV�(x)2 otherwise
, (2.33)

with E�(x), V�(x) being the mean and variance of p�(x), the distribution of
a component in the codebook �, as defined by equation 2.4.

Note that with linear neurons and unitary recurrent matrix, the argu-
ment K can be dropped because there is no recency effect and all items in
the sequence can be retrieved with the same accuracy.

For networks with N large enough, p(hd(K)) ∼ N (c−1Nμ(zd,i),
c−1Nσ 2(zd,i)). By inserting μ(hd ) and σ (hd ) into equation 2.11, the accuracy
then becomes

pcorr =
∫ ∞

−∞

dh√
2π

e− 1
2 h2 ×

[
�

(√
M

M − 1 + V�(x2)/V�(x)2 h +
√

N
M − 1 + V�(x2)/V�(x)2

)]D−1

.

(2.34)

Analogous to equation 2.12 for large M, the expression simplifies further
to

pcorr(s) =
∫ ∞

−∞

dh√
2π

e− 1
2 h2

[� (h + s)]D−1 with s =
√

N
M

. (2.35)

Interestingly, expression 2.35 is independent of the statistical moments of
the coding vectors and thus applies to any distribution of coding vectors
p�(x) equation 2.4. Since s is the ratio of N to M, it is easy to see that this
network will have extensive capacity when s is held constant: M = βN:

Itotal

N
= 1

N

βN∑
K=1

Iitem

(
pcorr

(√
N
βN

))

= βIitem

(
pcorr

(√
1
β

))

= const. (2.36)
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1464 E. Frady, D. Kleyko, and F. Sommer

However, it is a complex relationship between the parameter values that
actually maximizes the mutual information. We will explore this in section
2.3.5. But first, in sections 2.3.1 to 2.3.4, we will show that s = √

N/M, or a
simple rescaling of it, describes the readout quality in many different VSA
models.

2.3.1 VSA Models from the Literature. Many connectionist models from
the literature can be directly mapped to equations 2.1 and 2.2 with the set-
tings described at the beginning of section 2.3. In the following, we will
describe various VSA models and the properties of the corresponding en-
coding matrix � and recurrent weight matrix W. We will determine the
moments of the code vectors required in equation 2.34 to estimate the ac-
curacy with in the general case (for small M). For large M values, we will
show that all models perform similarly, and the accuracy can predicted by
the universal sensitivity formula s = √

N/M.
In hyperdimensional computing (HDC; Gayler, 1998; Kanerva, 2009),

symbols are represented by N-dimensional random i.i.d. bipolar high-
dimensional vectors (hypervectors), and referencing is performed by a
permutation operation (see section 4.1.1). Thus, network 2.1 implements
encoding according to HDC when the components of the encoding matrix
� are bipolar uniform random i.i.d. variables +1 or −1; that is, their distri-
bution is a uniform Bernoulli distribution: p�(x) ∼ B0.5 : x ∈ {−1,+1}, and
W is a permutation matrix, a special case of a unitary matrix.

With these settings, we can compute the moments of zd,i. We have
E�(x2) = 1, E�(x) = 0, V�(x2) = 0, and V�(x) = 1, which can be inserted in
equation 2.34 to compute the retrieval accuracy. For large M, the retrieval ac-
curacy can be computed using equation 2.35. We implemented this model
and compared multiple simulation experiments to the theory. The theory
predicts the simulations precisely for all parameter settings of N, D, and M
(see Figures 3A and 3B).

In holographic reduced representation (HRR) (Plate, 1993, 2003), sym-
bols are represented by vectors drawn from a gaussian distribution with
variance 1/N: p�(x) ∼ N (0, 1/N). The binding operation is performed by
circular convolution, and trajectory association can be implemented by
binding each input symbol to successive convolutional powers of a random
key vector, w. According to Plate (1995), the circular convolution operation
can be transformed into an equivalent matrix multiply for a fixed vector
by forming the circulant matrix from the vector (i.e., w � �d = W�d). This
matrix has elements Wi j = w(i− j)%N (where the subscripts on w a are inter-
preted modulo N). If ||w|| = 1, the corresponding matrix is unitary. Thus,
HRR trajectory association can be implemented by an RNN with a recurrent
circulant matrix and encoding matrix with entries drawn from a normal dis-
tribution. The analysis described for HDC carries over to HRR, and the error
probabilities can be computed through the statistics of zd,i, with E�(x) =
0, E�(x2) = 1/N giving μ(zd,i) = (1/N)δd=d′ , and with V�(x)2 = 1/N,
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Figure 3: Classification retrieval accuracy: Theory and simulation experiments.
The theory (solid lines) matches the simulation results (dashed lines) of the se-
quence recall task for a variety of VSAframeworks. Alphabet length in all panels
except panel B is D = 27. (A) Accuracy of HDC code as a function of the num-
ber of stored items for different dimensions N of the hypervector. (B) Accuracy
of HDC with different D and for constant N = 2000. (C) Accuracy of HRR code
and circular convolution as binding mechanism. (D) Accuracy of FHRR code
and circular convolution as the binding mechanism. (E) Accuracy of FHRR us-
ing multiply as the binding mechanism. (F) Accuracy achieved with random
encoding and random unitary recurrent matrix also performs according to the
same theory.

V�(x2) = 2/N giving σ 2(zd,i) = (M + δd=d′ )/N. We compare simulations of
HRR to the theoretical predictions in Figure 3C.

The Fourier holographic reduced representation (FHRR) (Plate, 2003) frame-
work uses complex hypervectors as symbols, where components lay on the
complex unit circle and have random phases: (�d )i = eiφ , with a phase angle
drawn from the uniform distribution p(φ) ∼ U (0, 2π ). The network imple-
mentation uses complex vectors of a dimension of N/2. Since each vector
component is complex, there are N numbers to represent: one for the real
part and one for the imaginary part (Danihelka et al., 2016). The first N/2
rows of the input matrix � act on the real parts, and the second N/2 act
on the imaginary part. Trajectory association can be performed with a ran-
dom vector with N/2 complex elements acting as the key, raising the key to
successive powers and binding this with each input sequentially. In FHRR,
both element-wise multiply or circular convolution can be used as the bind-
ing operation, and trajectory association can be performed to encode the
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letter sequence with either mechanism (see section 4.1.2 for further details).
These are equivalent to an RNN with the diagonal of W as the key vector
or as W being the circulant matrix of the key vector.

Given that each draw from C is a unitary complex number z = (cos(φ),
sin(φ)) with p(φ) ∼ U (0, 2π ), the statistics of zd,i are given by E�(x2) =
E(cos2(φ)) = 1/2, [E�(x)]2 = E(cos(φ))2 = 0, giving μ(zd,i) = δd=d′/2. For
the variance, let z1 = (cos(φ1), sin(φ1)) and z2 = (cos(φ2), sin(φ2)). Then
z�

1 z2 = cos(φ1) cos(φ2) + sin(φ1) sin(φ2) = cos(φ1 − φ2). Letting φ∗ = φ1 −
φ2, it is easy to see that it also the case that p(φ∗) ∼ U (0, 2π ). There-
fore, V�(x)2 = Var(cos(φ∗))2 = 1/4 and V�(x2) = 0 giving σ 2(zd,i) = (M −
δd=d′ )/4. Again we simulate such networks and compare to the theoretical
results (see Figures 3D and 3E).

A random unitary matrix acting as a binding mechanism has also been
proposed in the matrix binding with additive terms framework (MBAT) (Gal-
lant & Okaywe, 2013). Our theory also applies to equivalent RNNs with
random unitary recurrent matrices (created by QR decomposition of ran-
dom gaussian matrix), with the same s = √

N/M (see Figure 3F). Picking an
encoding matrix � and unitary recurrent matrix W at random satisfies the
required assumptions 2.4 to 2.7 with high probability when N is large.

2.3.2 Sparse Input Sequences. We next analyze detection retrieval of
sparse input sequences, in which the input data vector a(m) is nonzero
only with some probability ps. The readout must first decide whether an
input was present and determine its identity if present. With a random in-
put matrix, linear neurons, and a unitary recurrent matrix, the sensitivity
is s = √N/(Mps). The crosstalk noise increments only when the input a(m)
generates a one-hot vector. The threshold setting trades off hit and correct
rejection accuracy (miss and false-positive error). We illustrate this in Fig-
ure 4A using equations 2.14 to 2.16 describing retrieval accuracy. The read-
out performance for sparse data sequences depends only on the product
Mps. Thus, it appears possible to recover memory items with high sensi-
tivity even for large sequence lengths M > N if ps is very small. However,
our theoretical result requires assumptions 2.4 to 2.7, which break down for
extremely long sequences. The result does not account for this breakdown
and is optimistic for this scenario. Previous results that consider such ex-
tremely sparse input sequences have used the methods of compressed sens-
ing and sparse inference (Ganguli & Sompolinsky, 2010; Charles, Yap, &
Rozell, 2014; Charles, Yin, & Rozell, 2017), and show that recovering sparse
input sequences with M > N is possible.

2.3.3 Sparse Codebook. Often neural activity is characterized as sparse,
and some VSA models use sparse codebooks. Several studies point to
sparsity as an advantageous coding strategy for connectionist models
(Rachkovskij, 2001). Sparse codes can be studied within our framework,
equation 2.1, with a sparse input matrix—a random matrix in which
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Figure 4: Detection retrieval accuracy, encoding sparsity and noise. (A) Re-
trieval of a sparse input sequence (ps = 0.9, 10% chance for a zero vector). The
hit and correct rejection performance for simulated networks (dashed lines)
with different detection thresholds matches the theory (solid lines): a rejection
is produced if hd < θ ∀d. (B) Performance is not affected by the level of encod-
ing sparsity until catastrophic failing when all elements are 0. C. Simulations
(dashed lines) match theory (solid lines) for networks corrupted by gaussian
noise (top) and random bit-flips (bottom).

elements are zeroed out with a probability referred to as the sparseness factor
(sf) Sparsity in the codebook affects both signal and the noise equally and
cancels out to produce the same sensitivity, s = √

N/M, as with a nonsparse
input matrix. Thus, sparsity essentially has no effect on the capacity of the
memory, up to the catastrophic point of sparsity where entire columns in
the input matrix become zero (see Figure 4B).

2.3.4 Neuronal Noise. Here, we consider the case where each neuron ex-
periences i.i.d. gaussian noise in each time step in addition to the data input.
The effect of the noise depends on the ratio between noise variance and the
variance of a component in the code vectors V�. The sensitivity with neu-
ronal noise is

s =
√

N
M(1 + σ 2

η /V�)
. (2.37)

Thus, noise accumulation only scales s by a constant factor.
There are other ways to model noise in the network. For the case where

there is only white noise added during the retrieval operation, it is easy
to see that this noise will be added to the variance of zd,i, giving s =√

N/(M + σ 2
η /V�). If the noise was instead like a bit-flip in readout hyper-

vector, with the probability of bit-flip p f , then this gives s =
√

N(1−2p f )2

M+2p f
.
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1468 E. Frady, D. Kleyko, and F. Sommer

Figure 5: Information content and memory capacity. (A) Approximations of re-
trieval accuracy derived in section 2.2.2 and Plate (1993) are compared to the
numerically evaluated accuracy (pcorr). The approximations underestimate the
accuracy in the low-fidelity regime (D = 27, N = 10,000). (B) Total information
content retrieved and memory capacity (solid points). High-fidelity retrieval
recovers nearly all of the stored information (thin black line, Istored = M log2 D,
equation 2.27), but the true memory capacity is somewhat into the low-fidelity
regime. (C) Retrieved information measured in simulations (dashed lines) com-
pared to the predictions of the theory (solid lines). The memory capacity is
dependent on D. (D) Memory capacity as a function of D (solid line) and in-
formation of the input sequence at retrieval maximum (Istored, dashed). (E) Maxi-
mum information retrieved (solid black line) and total information stored (Istored,
dashed), where D is a significant fraction of 2N (N = 100). The retrieved infor-
mation for fixed sequence lengths M = {1, . . . , 10} are plotted (green lines of
different shades). For M = 1, retrieved and stored information come close; with
larger M, the gap grows.

Finally, with these derivations of s and equation 2.12, the empirical perfor-
mance of simulated neural networks is predicted (see Figure 4C).

2.3.5 Memory Capacity of VSAs with Symbolic Input. The original esti-
mate for the capacity of distributed random codes (Plate, 1993) considered
a slightly different setup (see section 4.2.2) but follows similar ideas as the
FA-CR-LEE high-fidelity approximation, equation 2.24, and we reformu-
lated the Plate (1993) derivation to compare with our analysis. This work
first showed that random indexing has linear extensive capacity and that
the memory capacity is at least 0.16 bits per neuron. Figure 5A compares
the approximations, equations 2.21, 2.23, and 2.24, with the full theory eval-
uated numerically, equation 2.12. These approximations are good in the
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high-fidelity regime, where pcorr is near 1 but underestimate the perfor-
mance in the low-fidelity regime.

With the relationship s = √
N/M, the information contained in the activ-

ity state x(M) can be calculated. We compare the total information, equation
2.27, based on the approximations with the true information content deter-
mined by numeric evaluation of pcorr (see Figure 5B). In the linear scenario
with unitary weight matrix, pcorr has no dependence on K, and so the total
information in this case is simply Itotal = MIitem, equation 2.27.

In the high-fidelity regime with pcorr = 1 − ε and small ε, we can esti-
mate, with equation 2.24,

Itotal

N
= M

N
DKL

(
B1−ε || B 1

D

)
≈ M log(D)

N log(2)
≈ log(D)

4 log(2)(log(D−1) − log(2ε))
.

(2.38)

We can see that for any fixed, finite D, the information per neuron depends
on the admitted error ε and vanishes for ε → 0. If the alphabet size D is
growing with N and for fixed small error ε, the asymptotic capacity value
is 1/(4 ln 2) = 0.36. Our best high-fidelity approximation, equation 2.25, in-
creases the total capacity bound above previous estimates to 0.39.

Results for the case of a finite moderate-sized alphabet size (D = 27) are
shown in Figure 5B. The novel and most accurate high-fidelity approxima-
tion, equation 2.25, predicts 0.27 bits per neuron; the simpler high-fidelity
approximations substantially underestimate the capacity.

Importantly, however, our full theory shows that the true information
maximum lies outside the high-fidelity regime. The maximum capacity for
D = 27 is nearly 0.4 bits per neuron (see Figure 5B, black circle). Thus,
the achievable capacity is about four times larger than previous analysis
suggested.

In a wide range of D, our full theory precisely predicts the empirically
measured total information in simulations of the random sequence recall
task (see Figure 5C). The total information per neuron scales linearly with
the number of neurons, and the maximum amount of information per el-
ement that can be stored in the network is dependent on D. The memory
capacity increases with D, reaching over 0.5 bits per neuron for large D (see
Figure 5D, solid line).

Capacity without superposition. As the alphabet size, D, grows superlin-
ear in N (approaching 2N), one needs to reduce M in order to maximize
the memory capacity (see Figure 5E, dashed line). The theory breaks down
when there is no superposition, that is, when M = 1. This case is different
because there is no cross-talk, but for very large D and randomly generated
code vectors, collisions arise, another source of retrieval errors. Collisions
are coincidental duplication of code vectors. The theory presented so far
can describe effects of crosstalk but not of collisions.
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For completeness, we briefly address the case of M = 1 and very large D.
This case without cross talk shows that it is possible to achieve the theoret-
ically optimal capacity of 1 bit per neuron and that crosstalk immediately
limits the achievable capacity. If code vectors are drawn i.i.d. with a uni-
form Bernoulli distribution p�(x) ∼ B0.5 : x ∈ {−1,+1}, then the probability
of accurately identifying the correct code word is

pM=1
corr =

∑
C

pC/(C + 1), (2.39)

where pC is the probability of a vector having collisions with C other vectors
in the codebook of D vectors, which is given by the binomial distribution,

pC =
(

D
C

)
qC(1 − q)D−C, (2.40)

where q = 1/2N is the likelihood of a pair of vectors colliding. The collisions
reduce the accuracy pM=1

corr to (1 − 1/e) ≈ 0.63 for D = 2N in the limit N →
∞. However, this reduction does not affect the asymptotic capacity. It is
Itotal/N → 1 bits per neuron as N → ∞, the same as for a codebook without
collisions (see section 4.4.3). The effects of collisions at finite sizes N can be
seen in Figures 5E and 18A.

In the presence of superposition, that is, for M > 1, the crosstalk noise be-
comes immediately the limiting factor for memory capacity. This is shown
in Figure 5E for a small network of 100 neurons. For M = 2, the memory ca-
pacity drops to around 0.5 bits per neuron and decreases to about 0.2 bits per
neuron for large M values (see Figure 5E, black line). The capacity curves
for fixed values of M (5E, green lines) show the effect of crosstalk noise,
which increases as more items are superposed (as M increases). For M = 1
(see Figure 5E, dark green line), equations 2.39 and 2.27 can be evaluated as
D grows to 2N.

2.4 Indexed Memory Buffers with Symbolic Input. With the linear en-
coding network described in the previous section, there is no recency effect;
the readout of the most recent input stored is just as the accurate as read-
out of the earliest input stored. In contrast, a network with a contracting
recurrent weight matrix (see section 2.4.1) or nonlinear neural activation
functions (see sections 2.4.2 and 2.4.3) will have a recency effect. In this
section, the theory will be developed to describe memory in encoding net-
works (see equation 2.1) with recency effects. We juxtapose the performance
of networks with recency effects in our two memory tasks, reset memory
and memory buffer. We show that reset memories yield optimal capacity in
the absence of any recency effect (Lim & Goldman, 2011). However, recency
effects can avoid catastrophic forgetting when the input sequence is infinite.
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Through the recency effect, sequence items presented further back in time
will be attenuated and eventually forgotten. Thus, the recency effect is a soft
substitution of resetting the memory activity before the input of interest is
entered. Further, we show that contracting recurrent weights and saturat-
ing neural activation functions have very similar behavior if their forget-
ting time constants τ are aligned (see section 2.4.4). Finally, we optimize the
parameters of memory buffers for high memory capacity and show that ex-
tensive capacity (Ganguli et al., 2008) is achievable even in the presence of
neuronal noise by keeping the forgetting time constant proportional to N.

2.4.1 Linear Neurons with Contracting Recurrent Weights. Reset memory.
Consider a network of linear neurons in which the attenuation factor 0 <

λ < 1 contracts the network activity in each time step. After a sequence of

M input symbols has been applied, the variance of zd,i is
(

1−λ2M

1−λ2

)
V�, and

the signal decays exponentially with λKE�(x2). The sensitivity for recalling
the input that was added K time steps ago is

s(K) = λK

√
N(1 − λ2)
1 − λ2M

. (2.41)

Thus, the sensitivity decays exponentially as K increases, and the highest
retrieval accuracy is from the most recent item stored in memory. The accu-
racy (see Figure 6A1) and information per item (see Figure 6B1) based on
this formula for s(K) show the interdependence between the total sequence
length (M) and the look-back distance (K) in the history.

In equation 2.41, the sensitivity is monotonically increasing as λ in-
creases, and thus to maximize it for the Kth element in history given a finite
set of M stored tokens, we would want to maximize λ or have the weight
matrix remain unitary with λ = 1.1 The memory capacity is maximized as
λ → 1 when M is finite (see Figure 6C1) and as D grows large (see Figure
6D1), and there is no benefit of contracting weights in reset memories.

Memory buffer. For an infinite stream of inputs, M → ∞, the setting λ =
1 results in catastrophic forgetting. However with λ < 1, the memory can
operate even in this case because past signals fade away and make room
for storing new inputs. These networks with λ < 1, f (x) = x, and W unitary
have been denoted normal networks (White et al., 2004).

The value of λ affects both the signal and the crosstalk noise. For large M,
the noise variance is bounded by 1

1−λ2 , and the network reaches its saturated

1
If we allowed λ to be larger than 1, then memories from the past would grow in

magnitude exponentially. This would mean higher SNR for more distant memories at
the cost of lower SNR for recent memories. This would cause the network to explode;
however, normalization could be used.
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1472 E. Frady, D. Kleyko, and F. Sommer

Figure 6: Linear network with contracting recurrent weights. (A1) Accuracy
in networks with λ < 1. Multiple evaluations of pcorr are shown as a function
of K for sequences of different lengths, M. (λ = 0.996, N = 1000). (B1) The in-
formation per item Iitem also depends on K. (C1) The total retrieved informa-
tion per neuron for different λ. The maximum is reached as λ approaches 1
when M is finite (D = 64; N = 1000). (D1) The retrieved information is maxi-
mized as D grows large (λ = 0.988). (A2) Accuracy in networks with λ < 1 as
M → ∞ (N = 10,000; D = 32). (B2) Information per item. (C2) Total information
retrieved as a function of the total information stored for different λ. There is a λ

that maximizes the information content for a given N and D (D = 64). (D2) Total
information retrieved as a function of the total information stored for different
D (λ = 0.999). Retrieved information is optimized by a particular combination
of D and λ. (E) The total retrieved information per neuron versus the informa-
tion stored per neuron for different D and λ over a wide range. As D increases,
the information is maximized by decreasing λ. (F) Numerically determined λopt

values that maximize the information content of the network with M → ∞ for
different N and D.

equilibrium state. The sensitivity for the Kth element back in time from the
saturated state is

s(K) = λK
√

N(1 − λ2). (2.42)

The theory (see equations 2.42 and 2.12) predicts the performance of simu-
lated networks with contracting recurrent weights that store a sequence of
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symbols with M � N (see Figure 6A2, solid lines) for different λ (see Fig-
ure 6A2, dashed lines). The information per item retrieved (see Figure 6B2)
and the total information (see Figure 6C2) for different values of λ show
the trade-off between fidelity and duration of storage. There is an ideal λ

value that maximizes the memory capacity with M → ∞ for given N and
D. This ideal λ value differs depending on the alphabet size (D) (see Fig-
ure 6D2). For larger alphabets (meaning more bits per symbol), the inputs
should be forgotten more quickly, and memorizing a shorter history opti-
mizes the memory capacity (see Figure 6E). The values of λ that maximize
the memory capacity were computed numerically; they drop with increas-
ing N and D (see Figure 6F).

2.4.2 Neurons with Clipped-Linear Transfer Function. Squashing nonlinear
neural activation functions induce a recency effect, similar to contracting
recurrent weights. Consider equation 2.1 with λ = 1 and the clipped-linear
activation function, f (x) = fκ (x), in which the absolute value of the activity
of neurons is limited by κ :

fκ (x) =

⎧⎪⎨
⎪⎩

−κ x ≤ −κ

x −κ < x < κ

κ x ≥ κ

. (2.43)

Clipping functions of this type with specific κ-values play a role in VSAs
that constrain the activation of memory vectors, such as the binary-spatter
code (Kanerva, 1996) or the binary sparse-distributed code (Rachkovskij,
2001).

We will analyze the HDC encoding scheme, a network with a bipolar
random input matrix and the recurrent weights a permutation matrix. With
this, the components of x will always assume integer values, and due to the
clipping, the components will be confined to {−κ,−κ + 1, . . . , κ}. As a con-
sequence, zd,i, defined as in equation 2.30, will also assume values limited
to {−κ, . . . , κ}. To compute s, we need to track the mean and variance of zd,i.
This requires iterating the Chapman-Kolmogorov equation 2.3. To do so, we
introduce a vector q with qJ (k)(m) := p(zd,i(m) = k) ∀k ∈ {−κ, . . . , κ}, which
tracks the probability distribution of zd,i. The probability of each of the in-
tegers from {−κ, . . . , κ} is enumerated in the 2κ + 1 indices of the vector q,
and J (k) = k + κ is a bijective map from the values of zd,i to the indices of
q with inverse K = J −1. To compute the sensitivity of a particular recall,
we need to track the distribution of zd,i with q before the item of interest is
added, when the item of interest is added, and in the time steps after storing
the item of interest. Note that κ is defined relative to the standard deviation
of the codebook, κ = κ∗/

√
V�. A simple scaling can generalize the following

analysis to account for codebooks with different variance.
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1474 E. Frady, D. Kleyko, and F. Sommer

Reset memory. At initialization x(0) = 0, and so q j(0) = δK( j)=0. For each
time step that an input arrives in the sequence prior to the input of interest,
a +1 or −1 will randomly add to zd,i up until the bounds induced by fκ , and
this can be tracked with the following diffusion of q:

q j (m + 1)

= 1
2

⎧⎪⎨
⎪⎩

q j(m) + q j+1(m) when K( j) = −κ

q j−1(m) + q j(m) when K( j) = κ

q j−1(m) + q j+1(m) otherwise.

∀ m �= M − K. (2.44)

Once the vector of interest arrives at m = M − K, all entries in zd,i will have
+1 added. This causes the probability distribution to skew:

q′
j (m + 1) =

⎧⎪⎨
⎪⎩

0 when K( j) = −κ

q j(m) + q j−1(m) when K( j) = κ

q j−1(m) otherwise

m = M − K.

(2.45)

The K − 1 inputs following the input of interest will then again cause the
probability distribution to diffuse further based on equation 2.44. Finally,
s(K) can be computed for this readout operation by calculating the mean
and variance with q(M):

μ(zd,i) = δd=d′

2κ∑
j=0

K( j)q j(M), (2.46)

σ 2(zd,i) =
2κ∑
j=0

(K( j) − μ(zd,i))2q j(M). (2.47)

Memory buffer. For M → ∞ the diffusion equation, 2.44, will reach a uni-
form equilibrium distribution with the values of zd,i uniformly distributed
between {−κ, . . . , κ}: q j(∞) = 1/(2κ + 1) ∀ j. This means, as with contract-
ing recurrent weights, the clipped-linear function bounds the noise vari-
ance of the saturated state. Here, the variance bound of zd,i is the variance
of the uniform distribution, ((2κ + 1)2 − 1)/12. Thus, information can still
be stored in the network even after being exposed to an infinite sequence of
inputs. The sensitivity in the saturated state can be calculated with M → ∞
by replacing in equation 2.45 q(m) with q(∞), and then again using the
diffusion equation 2.44 for the K − 1 items following the item of interest.

Figure 7 illustrates this analysis of the distribution of zd,i. When the item
of interest is added, the probability distribution is most skewed, and the
signal degradation is relatively small. As more items are added later, the
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Figure 7: Capacity for neurons with clipped-linear transfer function. (A1) The
probability distribution of zd,i for retrieval of the first sequence item, as the
sequence length is increased. The distribution evolves according to equations
2.44 and 2.45; it begins at a delta function (dark blue) and diffuses to the uni-
form equilibrium distribution when M is large (light blue). (B1) The clipped-
linear function causes the signal to degrade as more items are stored (M = K;
N = 5000; D = 27). (C1) The variance of the distribution grows as more items
are stored but is bounded. (D1) The accuracy theory fits empirical simulations,
decoding the first input as more input symbols are stored (dashed lines; M = K;
N = 5000; D = 27). (A2) The probability distribution of zd,i for the memory
buffer, that is, when M → ∞. The most recent symbol encoded (dark blue)
has the highest skew, and the distribution diffuses to the uniform equilibrium
for readout further in the past (light blue). (B2) The signal is degraded from
crosstalk and decays as a function of the look-back. (C2) The noise variance
is already saturated and stays nearly constant. (D2) The accuracy exhibits a
trade-off between fidelity and memory duration governed by κ . (E1) With reset
memory, the information that can be decoded from the network reaches a max-
imum when κ is large (D = 256). (F1) The capacity increases with D (κ = 20).
(E2) When M → ∞, there is a trade-off between fidelity and memory duration;
a particular κ value maximizes the retrieved information for a given D and N
(D = 256). (F2) For a given memory duration (κ = 20), an intermediate D value
maximizes the retrieved information. (G) The memory duration κopt that maxi-
mizes the retrieved information.
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1476 E. Frady, D. Kleyko, and F. Sommer

distribution diffuses to the uniform equilibrium and the signal decays to 0.
The figure compares operation with the initial states corresponding to re-
set memory and memory buffer: empty (see Figures 7A1 to 7F1) and satu-
rated (see Figures 7A2 to 7F2). Numerical optimization of memory capacity
shows how κopt increases with N and decreases with D, the parameter when
M → ∞ (see Figure 7G).

2.4.3 Neurons with Squashing Nonlinear Transfer Function. The case when
the neural transfer function f (x) is a saturating or squashing function with
| f (x)| bounded by a constant also implies zd,i is bounded with |zd,i| ≤ zmax.
For any finite fixed error, one can choose an n large enough so that the dis-
tribution p(zd,i = k) = qJ (k) can be approximated by discretizing the state
space into 2n + 1 equal bins in q. Like the clipped-linear transfer function,
one can construct a bijecteve map from values to indices and track q ap-
proximately using rounding to discretize the distribution, J (k) = � n

zmax
(k +

zmax)�, with inverse K = J −1. The Kolmogorov equation, 2.3, simplifies in
this discrete case and without neuronal noise to the following updates, one
for encoding the signal, and one for encoding the distracters:

q j∗ (m + 1) =
2n∑
j=0

∫
dy p�(y)q j(m) δ j∗=J ( f (K( j)+y)) ∀m �= M − K. (2.48)

The update for the signal, given at m = M − K, where we know that �d′ was
stored in the network is

q′
j∗ (m + 1) =

2n∑
j=0

∫
dy p�(y)q j(m) δ j∗=J ( f (K( j)+y2 )) m = M − K. (2.49)

We illustrate our analysis for a network 2.1 with λ = 1 and f (x) =
γ tanh(x/γ ), where γ is a gain parameter. As in the previous section, the
network implements HDC coding, so the codebook is a bipolar i.i.d. ran-
dom matrix and the recurrent weights a permutation matrix. Our simula-
tion experiments with this memory network examined both reset memories
(see Figure 8, row 1) and memory buffers (see Figure 8, row 2). The iterative
analysis (see equations 2.48 and 2.49) can be used to compute the sensitivity,
and it predicts the experimentally observed readout accuracy very well. We
find that a memory with the neural transfer function tanh possesses quite
similar performance as a memory with the clipped-linear neural activation
function.

2.4.4 Forgetting Time Constant and Extensive Capacity in Memory Buffers.
We have analyzed different mechanisms of a recency effect in memory
buffers, contracting weights, and squashing, nonlinear neural activation
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Figure 8: Capacity for neurons with saturating nonlinearity. (A1) The proba-
bility distribution of one term zd,i in the inner product used for retrieval of the
first sequence item, as the sequence length is increased. The distribution be-
gins as a delta function (dark blue) when only one input symbol is stored and
approaches the equilibrium distribution when M is large (light blue). (B1) The
accuracy theory (solid lines) correctly describes simulations (dashed lines) re-
trieving the first input as more inputs are stored (M = K; N = 2000; D = 32).
(C1) Retrieved information as a function of the stored information. When M
is finite, the maximum is reached for large γ (D = 256). (D1) The capacity in-
creases as D increases (γ = 64). (A2) The probability distribution of zd,i when a
new item is entered at full equilibrium, that is, when M → ∞. The distribution
for the most recent input symbol possesses the highest skew (dark blue), and the
distribution is closer to the uniform equilibrium (light blue) for input symbols
encoded further back in the history. (B2) The accuracy exhibits a trade-off be-
tween fidelity and memory duration governed by γ . (C2) When M is large, there
is a γ that maximizes the information content for a given D and N (D = 256).
(E) Numerically computed γopt that maximizes the information content.

functions. Here we compare their properties and find parameters that opti-
mize memory capacity.

For contracting weights, the forgetting time constant (τ ) is defined from
the exponential decay of the sensitivity λK in equation 2.42 by λ = e−1/τ :

τ (λ) = −1/ log λ. (2.50)

We compute the N that optimizes the capacity of the memory buffer for a
desired time constant (see Figure 9A).

The forgetting time constants for nonlinear activation functions can be
computed by equating the bound of the variance induced by the non-
linearity to the bound induced by contracting weights. For clipping, the
noise variance is bounded by the variance of the uniform distribution,
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1478 E. Frady, D. Kleyko, and F. Sommer

Figure 9: Buffer time constant and optimization. (A) The optimal N for given
time constant τ and D. (B) The relationship between time constant and non-
linear activation parameters, κ and γ . (C) Accuracy comparison of contracting
(solid), clipped-linear (dashed), and tanh (dotted) networks that share the same
time constant, found from the bound on noise variance. (D) The optimal N and
τ shifts in the presence of noise (D = 32). (E) The memory capacity decreases
as noise increases (N = [1K, 2K, 4K, 10K], blue to red). (F) When capacity is nor-
malized by number of neurons, the curves in panel E collapse to a single curve,
showing capacity per neuron to be constant with N and declining with neuronal
noise. (G) Ratio between retrieved and stored information for the clipped HDC
network. The ratio is optimized with four to five bits of resolution per element
(D = [8, 32, 256, 1024, 4096], dark to light).

((2κ + 1)2 − 1)/12, which can be equated to the bound of contracting
weights 1/(1 − λ2). With equation 2.50, one obtains

τ (κ ) = −2

log
(

1 − 3
κ (κ+1)

) ≈ 2
3
κ2 ≈ 2

3
(κ∗)2

V�

, (2.51)

where the approximation holds for large κ .
Equating the bound of the noise variance to 1/(1 − λ2) is a general tech-

nique to approximate the time constant for any nonlinear function with
equation 2.50. For the tanh nonlinearity, we cannot compute analytically the
forgetting time constant for a parameter value γ . Instead we use equations
2.48 and 2.49 to estimate its variance bound and equate it to 1/(1 − λ2).

The relationships between τ , the clipping parameter κ (see equation
2.51), and the tanh gain parameter γ (numerically estimated) are not far
from linear in logarithmic coordinates (see Figure 9B). When the forgetting
time constants are matched, the accuracies of different recency mechanisms
are not identical but quite similar (see Figure 9C).
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With neuronal noise, the optimal forgetting time constant decreases with
noise variance (see Figure 9D) and also the memorized information (see
Figure 9E). Interestingly, the memory capacity is independent of N for a
given noise variance (see Figure 9F), indicating that the memory buffer has
extensive capacity. Since the effects of contracting weights and nonlinear
neurons are similar, these networks can all achieve extensive memory in
the presence of noise by keeping the time constant τ proportional to N.

With the clipped-linear activation function and HDC coding, for any fi-
nite setting of the clipping threshold κ , the number of bits required to repre-
sent or store the network state is finite and given by Istorage = N log2(2κ + 1).
One can now compute the ratio between the readout information and the
information required to store the network state. In general, the amount of
readout information increases with κ (see Figure 7E1) and with D (see Fig-
ure 7F1). However, as κ increases, so too do the number of bits required to
represent the network. It turns out that there is an optimal ratio of about
0.08, achieved with neurons that represent about four to six bits, the exact
value dependent on D (see Figure 9G).

2.5 VSA Indexing and Readout for Analog Input Vectors. The theory
can be easily extended to the recall of coefficients of analog vectors. Rather
than the input vector a(m) being a one-hot or zero vector, the input can be
an arbitrary real vector, and we wish to store and retrieve a sequence of
such analog vectors in the network. We can derive memory capacity under
the assumption that the input vector is drawn independently from a nor-
mal distribution. In the following, the linear network with analog input is
analyzed in two cases, operating as a reset memory (see section 2.5.1), and
a memory buffer (see section 2.5.2).

2.5.1 Capacity of Reset Memories with Analog Inputs. A sequence of vectors
with analog coefficients a(m) is encoded into the network state by equa-
tion 2.1 with a random input matrix � and unitary recurrent weight matrix
W. We return to considering reset memories with linear neurons: f (x) = x.
During the encoding, each coefficient is indexed with a pseudo-random
key vector. To read out an individual coefficient, we use in equation 2.2
a linear readout function g(h) = h and the readout matrix of VSA mod-
els: V(K) = c−1〈a(M − K)x(M)�〉 = c−1WK�, with c = NE�(x2). The read-
out variable can be decomposed into N contributions as in equation 2.30:
âd′ = hd′ =∑N

i c−1zd′,i. For large enough N, hd′ is distributed like a gaussian
due to the central limit theorem. We can compute zd′,i from equation 2.30:

zd′,i = (�d′ )i(W−Kx(M))i

= (�d′ )i [(�d′ )iad′ (M − K)]
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+ (�d′ )i

⎡
⎣ D∑

d �=d′
(�d )iad(M − K) +

M∑
m �=(M−K)

(
WM−K−m

(
D∑
d

�dad(m)

))
i

⎤
⎦.

(2.52)

The signal and the noise term are on two lines in equation 2.52. In the ex-
pression c−1zd′,i, the variance of the signal term is unity, and the resulting
SNR is

r = σ 2(ad′ )
σ 2(nd′ )

= Nσ 2(ad′ )(∑
d �=d′ a2

d(M − K) +∑m �=(M−K)
∑

d a2
d(m)
)

= N
(MD − 1)

≈ N
MD

. (2.53)

When neuronal noise is present, the SNR becomes

r = N
MD

(
1

1 + σ 2
η /(DV�)

)
. (2.54)

If the input coefficients are all independent gaussian random variables, then
the total information can be computed with equation 2.28:

Itotal

N
= MD

2N
log2 (r + 1) = log2 (r + 1)

2r

(
1

1 + σ 2
η /(DV�)

)
. (2.55)

Note that the memory capacity for analog input is a function of r. Thus,
the memory capacity is extensive when MD is proportional to N. Without
neuronal noise, the memory capacity depends on the product MD, and in-
creasing either the sequence length or the alphabet size has the same effect
on memory capacity.

We evaluated equation 2.55 with different parameters, and numerically
optimized the memory capacity. We find linear extensive capacity (see Fig-
ure 10A1). Interestingly, unlike in the symbolic case, there is no catastrophic
forgetting; the retrieved information content saturates to a maximum value
as the sequence length M increases to infinity (see Figure 10B1). This means
that in the limit of infinite sequence length, the information added by new
data is perfectly cancelled by the information lost due to crosstalk (see Fig-
ure 10C1). The memory capacity is maximized for any large (finite) M or D
compared to N, reaching Itotal/N = 1/(2 log 2). This capacity bound can be
easily derived analytically, since it is achieved for r → 0:
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Figure 10: Memory capacity of gaussian inputs. (A1) Numeric evaluation
shows extensive memory for finite gaussian input sequences. (B1) As M grows,
the memory capacity saturates to the maximum. Note that each curve for differ-
ent N and fixed D = 10 is similar. (C1) The family of curves in panel B1 reduces
to a single curve with M/N for each D. As D grows, the memory capacity grows
to the bound for any M. (D1) The family of curves in C1 reduces to a single
curve with MD/N, which is directly related to 1/r. Large MD (small r) reaches
the memory capacity limit. (E1) The same function in D1 with r as the x-axis.
(A2) Numeric evaluation shows extensive capacity whenever τ/N is held con-
stant (colored lines), but a particular ratio results in the maximum (black line).
(B2) Similar curves for different N and fixed D = 10 show an ideal τ that maxi-
mizes memory capacity. (C2) The curves in B2 reduce to a single curve for each
D with the ratio τ/N. As D grows, the capacity is maximized. (D2) As τ and D
grow large, the capacity saturates to the maximum. (E2) The information per
neuron retained at high-fidelity I∗ (copper) and the total mutual information
per neuron (black) declines as the desired minimum r∗ increases. The total mu-
tual information of the memory buffer behaves similar to the total information
in the linear case (compare black line to red line; red line same as in panel D1).

Itotal

N
= log (r + 1)

2r log 2

(
1

1 + σ 2
η /(DV�)

)

= r→0
1

2 log 2(1 + σ 2
η /(DV�))

≈ 0.72
1 + σ 2

η /(DV�)
. (2.56)

However, the regime of optimal memory capacity with r → 0 is not interest-
ing for applications. The critical question is, what fraction of this capacity is
available for a fixed desired level r∗ of SNR? The answer is depicted in Fig-
ure 10D1 as a single curve. Because the memory capacity in the absence of
neuronal noise depends only on the SNR, the curve describes all settings of
the parameters N, M, and D. The capacity starts at the limit value, equation
2.56, and then decreases as r∗ increases (see Figure 10E1). For instance, if the
desired SNR is r∗ = 1, one needs exactly as many neurons (N) as there are
coefficients contained in the data sequence (MD) and achieves a memory
capacity of 0.5 bits per neuron.
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2.5.2 Capacity for Memory Buffer with Analog Input. Here, we analyze the
memory buffer with linear neurons and contracting weights λ < 1 and an
infinite sequence of analog input vectors, M → ∞. To compensate for the
signal decay, the linear readout contains a factor λ−K:

â(M − K) = V(K)�x(M) = c−1λ−K��W−Kx(M).

The readout then produces the original input, corrupted by gaussian noise,
âd′ = ad′ + nd′ , with the SNR:

r(K) = λ2K N(1 − λ2)
D(1 − λ2M)

(
1

1 + σ 2
η /(DV�)

)
. (2.57)

The similarity between memory buffers with different mechanisms of for-
getting still holds for the case of analog input. For buffers with nonlinear
neurons, one can use the analysis of the forgetting time constants in section
2.4.4 and use equation 2.50 to determine the corresponding value of λ. These
values can be used in equation 2.57 to compute the SNR of the readout.

If the input is independent gaussian random variables, the total infor-
mation is

Itotal = D
2

M∑
K

log2 (r(K) + 1) . (2.58)

Inserting equation 2.57 into equation 2.58, we obtain

Itotal = D
2

log2 ((−bMq; q)M) , (2.59)

where q = λ2, bM := N(1−q)
D(1+σ 2

η /(DV� ))(1−qM ) and (a; q)M is the q-Pochhammer
symbol (see section 4.3.1). The advantage of formulation 2.59 is that it is
well defined and can be properly used for M → ∞.

If one numerically optimizes the memory capacity using equation 2.58
for MD � N, as in the case of reset memories, one finds extensive capacity
(see Figure 10A2). Extensive capacity is retained for any constant ratio τ/N,
but there is a particular ratio that is the maximum (see Figure 10B2). A sin-
gle curve for each value of D describes the memory capacity as a function
of the ratio τ/N (see Figure 10C2). As D grows large and τ is optimized,
the capacity saturates at the same asymptotic value as equation 2.56. By
rescaling the x-axis with D, curves for different D become very similar (see
Figure 10D2) but not identical; if τ is too large for a fixed D, then the infor-
mation starts to decrease. These curves collapsed to the exact same curve
in the reset memory (see Figure 10D1) because the effects of M and D are
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fully interchangeable. However, the forgetting time constant introduces a
distinction between the M and D parameters. The asymptotic memory ca-
pacity for the memory buffer, equation 2.59, yields the same numeric value
as for the reset memory, when τ is optimized:

Itotal

N
= 1

2 log(2)(1 + σ 2
η /(DV�))

≈ 0.72
1 + σ 2

η /(DV�)
. (2.60)

This bound is assumed when both τ , D become large enough (see section
4.3.1).

Again, the maximum memory capacity, equation 2.60, is not relevant for
applications because the recall SNR for most memories is extremely low. To
determine the usable capacity, we estimate I∗(r∗) =∑{K:r(K)≥r∗} Iitem(K), the
maximum information about past inputs that can be recalled with a given
SNR r∗ or better. The optimum is reached when as many inputs as possible
can be read out with SNR greater than r∗. From the condition r(K∗) = r∗ and
equation 2.57, one finds the optimal time constant (see section 4.3.2):

τopt

N
= 2

eDr∗(1 + σ 2
η /(DV�))

. (2.61)

The usable memory capacity for a given SNR threshold r∗ is plotted as the
copper line in Figure 10E2. Interestingly, the intercept of this curve for r∗ →
0 is lower than equation 2.60; the numeric capacity value can be computed
(see section 4.3.2) as

I∗(r∗ → 0)
N

= 1 − e−1

2 log(2)(1 + σ 2
η /(DV�))

≈ 0.46
1 + σ 2

η /(DV�)
. (2.62)

The difference between the total capacity (see equation 2.60) and this result
is the unusable fraction of information with r(K) < r∗.

If one counts usable and unusable information toward Itotal in a network
optimized for I∗, another interesting phenomenon occurs: Itotal for a partic-
ular optimized r∗ of the buffer memory is very similar to the capacity of
memory with reset (see Figure 10E2, black line; red line for comparison is
the same as in panel E1). In both cases, the information capacity drops very
similarly as the required fidelity r∗ is increased. Note that the meaning of
r∗ is different in both cases: with reset, it denotes the SNR for all memo-
ries, and for the buffer, it is the lowest accepted SNR. Although the total
capacity is so similar for reset memory and buffer, the usable information
is different. With a reset, all information is retrieved with exactly fidelity
r(K) = r∗. For the memory buffer, the fraction depicted by the copper curve
has fidelity r(K) ≥ r∗, while inputs further back in history (beyond the crit-
ical value r(K∗) = r∗) still take up a significant fraction of memory but do
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not count toward I∗. The buffer has lower capacity because its exponential
decay of the input is only an imperfect substitute of a reset, leaving behind
a sediment of unusable information.

2.6 Readout with the Minimum Mean Square Estimator. Thus far,
we have analyzed readout mechanisms in equation 2.2 that were pro-
posed in the VSA literature. In contrast, in the area of reservoir computing,
a different readout has been studied, with a readout matrix determined
by minimizing the mean square error between stored and recalled data.
The readout is â(M − K) = V(K)�x(M), with V(K) the minimum mean
square estimator (MMSE; i.e., linear regression) or Wiener filter, given by
V(K) = C−1A(K). Here, A(K) := 〈a(M − K)x(M)�

〉
R ∈ R

N×D is the empirical
covariance between input and memory state over R training examples, and
C := 〈x(M)x(M)�

〉
R ∈ R

N×N is the covariance matrix of the memory state.
In this section, we investigate this read-out method and compare its per-
formance with traditional VSA read-out methods described in previous
sections.

The MMSE readout matrix can be determined by solving a regression
problem for an ensemble of training input sequences. It involves generating
R synthetic input sequences of length M and encoding them in a neural net-
work with one particular choice of input and recurrent matrix. This yields R
copies of state vectors, each encoding one of the synthetic input sequences.
The readout matrix is now determined by solving the regression problem
between state vectors and synthetic input sequences. The particular choice
of input and recurrent matrices does not significantly affect the following
results as long as the VSA indexing assumptions 2.4 to 2.7 are satisfied. We
show results for the input matrix being a gaussian random matrix and the
recurrent weights being a permutation matrix.

2.6.1 Reset Memory with MMSE Readout. Symbolic inputs. The MMSE
readout does indeed significantly increase the capacity of reset memories
in the regime where MD � N (see Figures 11A and 11B). However, as D
grows larger, the performance of the MMSE readout falls back to the per-
formance of VSA models. The comparison of the performances for symbolic
input sequences is shown in Figures 11A and 11B.

To find out whether training both the input and decoding matrix, � and
V(K), has any advantages, we investigated the optimization of these matri-
ces with backpropagation through time. A network of N = 500 linear neu-
rons with fixed orthogonal recurrent matrix is fed a sequence of random
input symbols and trained to recall the Kth item in the sequence history.
The cross-entropy between the recalled distribution and the one-hot input
distribution is the error function. During training, the winner-take-all func-
tion in equation 2.2 is replaced with softmax. The network is evaluated each
time step as more and more input symbols are encoded. After 500 inputs are
presented, the network is reset to 0 (see section 4.4.1 for further details).
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Figure 11: MMSE readout of reset memory networks. (A, B) The accuracy (A)
and capacity (B) of VSA prescribed readout (solid lines) is compared to MMSE
readout (dashed lines) for different D values. The empirical s measured from the
MMSE readout is plugged into pcorr, equation 2.12, and matches the measured
accuracy (black lines). (C, D) Accuracy of readout when both encoding and read-
out matrices are trained (black: early training iterations; copper: late training
iterations; blue: VSA theory. After 500 inputs, the network is reset). Note that
converged training in panel C (copper line) matches the dashed line in panel A.
(E–H). MMSE training for analog inputs with neuronal noise utilizes the regime
where MD � N. (N = 500 in all panels).

The readout accuracy with backpropagation learning improves succes-
sively with training (black to copper in Figures 11C and 11D), reaching
the performance level of the MMSE readout (the copper line in Figure 11C
matches the dashed MMSE line in Figure 11A). For larger D, the perfor-
mance of backpropagation learning, MMSE readout, and VSA readout are
equal (see Figure 11D). This convergence in performance shows that the
simultaneous optimization of input and readout matrices (with backprop-
agation learning) yields no improvement over optimizing just the readout
matrix for fixed input and recurrent matrix (with MMSE optimization).

Analog inputs. Compared to the case with discrete input, for analog in-
put, the improvement achievable with MMSE has a similar pattern, but the
magnitude of improvement is even more dramatic. When MD � N, MMSE
can greatly diminish the crosstalk noise and increase memory capacity (see
Figures 11E to 11G). This improvement is because the MMSE readout allows
the network to fully utilize all N orthogonal degrees of freedom and store
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nearly N analog numbers at high fidelity. The retrievable information per
symbol is increased to many bits (see Figure 11F), and the memory capacity
is limited only by neuronal noise (see Figure 11H).

Direct calculation of the readout matrix. The MMSE readout matrix for re-
set memory can also be computed without empirically solving the regres-
sion problem. The case where the number of training input sequences is
sent to infinity R → ∞ (see section 4.4.4) can be treated analytically. If a(m)
has zero mean, the expected covariance matrix of the network states can be
computed from W and � as

C̃ = 〈x(M)x(M)�〉∞ = Mσ 2
η I +

M∑
k=1

Wk���W−k. (2.63)

An element of the expected covariance matrix is given by

C̃i j = (δi= j )MDV�(1 + σ 2
η /(DV�)) + (1 − δi= j )

M∑
k=1

(Wk)i���(W−k) j.

(2.64)

Further, the covariance between inputs and memory states converges to the
VSAreadout: Ã(K) = 〈a(M − K)x(M)�〉∞ = WK�. Thus, the MMSE readout
matrix is given by

Ṽ(K) = C̃−1WK�. (2.65)

Note from equation 2.65 that the MMSE readout involves VSA readout with
an additional multiplication by the inverse covariance of the memory state.
Thus, dimensions in the state space that are only weakly driven through the
input and recurrent matrices are expanded to become fully useful in the de-
coding. The neuronal noise serves as ridge regularization of the regression,
adding power in all dimensions. If the noise power σ 2

η is positive, equation
2.65, is always well defined. However, without neuronal noise, the memory
covariance matrix can become rank deficient and equation 2.65 undefined.

For symbolic input, this directly calculated linear filter matches the per-
formance of the linear filter determined by linear regression from synthetic
data. However for analog input, the filter determined by linear regression
somewhat outperforms the directly calculated filter (see Figure 19).

2.6.2 Memory Buffer with MMSE Readout. Symbolic inputs. Our find-
ings for the memory buffer are similar to our results for reset memo-
ries for both types of inputs. For discrete inputs and when D is small,
the MMSE readout improves the performance of memory buffers in the
regime where MD � N, significantly increasing retrieval accuracy and
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Figure 12: MMSE readout in memory buffer networks. (A–C) The accuracy (A)
and capacity (B, C) of MMSE readout (dashed lines) are compared to VSA read-
out (solid lines) for memory buffers with discrete inputs. Four networks with
τ = 0.8, 0.95, 0.99, 0.999. (D) The capacity is computed as a function of the time
constant for D = 5, . . . , 150 (blue to green). For small D, the time constant can
be used to enhance the readout accuracy and memory capacity, with optimal
time constant between (0.1 − 0.5)N. (E, F) The correlation (E) and capacity (F)
for analog inputs show that MMSE training can utilize nearly all N degrees of
freedom with the right time constant (N = 500, D = 5). (G, H) The capacity is
computed for different amounts of noise.

capacity (see Figures 12A to 12D). Optimizing the time constant is still re-
quired to maximize memory capacity (see Figure 12D), which occurs when
τ is (0.1 − 0.5)N.

Analog inputs. For analog inputs, the time constant can be optimized to
take advantage of the N orthogonal degrees of freedom and mitigate cross-
talk noise (see Figures 12E to 12G). High-fidelity retrieval can be maintained
for Kmax items, with KmaxD � N. Many bits per item can be recovered this
way with τ between (0.1 − 0.5)N/D, and the memory capacity is again lim-
ited only by neuronal noise (see Figure 12H).

Direct calculation of the readout matrix. The expected MMSE readout filter
for the memory buffer is

Ṽ(K) = C̃−1λKWK�. (2.66)

For the case D = 1, this is the readout proposed in White et al. (2004).
The covariance matrix can be estimated for a given W and codebook �:

C̃ = σ 2
η

1 − λ2 I +
∞∑

k=1

λ2kWk���W−k. (2.67)
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This can be simplified to a finite sum if the cycle time of the unitary matrix
is known. Different unitary matrices can have different cycle times (random
permutations have an expected cycle time of 0.62N; Golomb, 1964), but we
can pick a permutation matrix that has a maximum cycle time of N, s.t.
Wk = Wk+N. This gives

C̃ = σ 2
η

1 − λ2 I +
N∑

k=1

λ2k

1 − λ2N
Wk���W−k. (2.68)

Here, the performance of MMSE with directly calculated readout matrix
matches the performance with the readout matrix obtained by regression
over synthetic data.

2.7 Examples of Storing and Retrieving Analog Inputs. To illustrate
the analog theory and also show that the input distribution can be complex
and nongaussian, we encoded a random (12 × 12 × 3) image patch into the
vector a(m) each time step. Several networks of different sizes were used
as memory buffers for the same image sequence, with the time constants
held proportional to N. We empirically evaluated their performance. The
retrieved images are shown as a function of N and look-back K for networks
with VSA readout (see Figure 13A) and networks with full MMSE readout
(see Figure 13B). The empirically measured SNR of the MMSE readout is
greatly increased compared to the VSA readout (see Figure 13C).

One advantage of VSAs is that they can be used to form arbitrary com-
posite representations and index data structures other than sequences. As
a final example, we follow the procedure of Joshi, Halseth, and Kanerva
(2016) that uses the HDC code and algebra to encode the statistics of letter
trigrams. They show how this technique can be used to create an effective,
simple, and low-cost classifier for identifying languages.

We performed the task of storing probabilities of letter n-grams by us-
ing the HDC algebra to create key vectors for each set of individual let-
ters, bigrams, or trigrams from the base set of D = 27 tokens (26 letters and
space). The text of Alice in Wonderland served as the input to accumulate
statistics about n-grams. Important to note here is that a complex combi-
nation of multiplication and permutation is needed to create the composite
n-gram representation from the base set of random vectors. For instance,
the trigram abc is encoded as xabc = ρ2(�a) × ρ(�b) × �c, where ρ is the per-
mutation operation. This encoding distinguishes the abc trigram from the
trigram bac or any other n-gram that may share letters or differ only in letter
order.

Unlike the sequence indexing presented before, this composite repre-
sentation cannot be created by a fixed matrix multiply. However, the com-
posite binding and permutation operations still follow the statistics of
assumptions 2.4 to 2.7 and thus are still characterized by our theory. In fact,
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Figure 13: Analog coefficient storage and retrieval. (A, B) A long sequence of
image patches was stored in networks with different N values, with τ propor-
tional to N. The recent images were retrieved with VSA readout (A) and MMSE
trained readout (B) and reconstructed for different look-back values, K. (C) The
measured SNR of MMSE readout (dashed lines) is greatly increased compared
to the SNR of VSA readout. (D) Indexing language n-grams with compositional
binding operations has the same cross-talk properties as sequence indexing.
(E) The measured readout error of language statistics (dots) matches the the-
ory (lines).

all composite representations of discrete VSA base symbols ultimately fol-
low these assumptions and are effectively a set of superposed random vec-
tors. In terms of the neural network, the storage of n-gram statistics can be
interpreted as the network accumulating the encoded n-gram vectors gen-
erated by external computations. The recurrent weight matrix is the iden-
tity, and thus the network counts up each n-gram vector that is given as
input. The n-gram counts are indexed by the key vector made by the com-
posite VSA operations and integrated into the memory state. We see that the

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/30/6/1449/1041256/neco_a_01084.pdf by guest on 09 O
ctober 2021



1490 E. Frady, D. Kleyko, and F. Sommer

empirical performance of such an encoding behaves in the same qualitative
manner and matches the theory (see Figures 13D and 13E).

3 Discussion

The ability of recurrent neural networks to memorize past inputs in the
current activity state is the basis of working memory in artificial neural
systems for signal processing (Jaeger & Haas, 2004), cognitive reasoning
(Eliasmith et al., 2012), and machine learning (Graves et al., 2014). We try
to dissect and understand what is often an intriguing but rather opaque
property of recurrent neural networks. This is possible through the lens
of vector-symbolic architectures (VSAs), a class of connectionist models
proposed for structured computations with high-dimensional vector rep-
resentations. Our work demonstrates that VSA sequence indexing can be
mapped to recurrent neural networks with specific weight properties: the
input weights random and the recurrent weights an orthogonal matrix. The
computation of an iteration in such a network can now be concisely inter-
preted as generating a unique time stamp key and forming a key-value pair
with the new input. These key-value bindings can be used to selectively re-
trieve data memorized by the network state. We were able to derive a the-
ory describing the readout accuracy and information capacity achievable
in such networks. Our results update and unify previous work on vector-
based symbolic reasoning and contribute new results to the area of reservoir
computing.

The theory includes two different forms of working memory. A reset
memory operates like a tape recorder with start and stop buttons. The net-
work state is initialized to zeros before the input of interest arrives and
the sequence of inputs is finite. With the ability to reset, networks with-
out forgetting reach optimal capacity (Lim & Goldman, 2011). Existing VSA
models map onto networks that operate as reset memories. In contrast, a
memory buffer can track recent inputs in an infinite stream without requir-
ing external reset. We investigated palimpsest networks as memory buffers,
which attenuate older information gradually by various mechanisms, such
as contracting recurrent weights or saturating neural nonlinearities. We
showed that there is one essential property of palimpsest memories: the for-
getting time constant. We demonstrate how this constant is computed for
different forgetting mechanisms and that the model performances are very
similar if the forgetting time constant is the same. Further, we demonstrated
that the time constant can be optimized for obtaining high and extensive in-
formation capacity, even in the presence of neuronal noise.

The theory analyzes memory networks for two different types of input
data, symbolic or analog. Symbolic inputs, encoded by one-hot and binary
input vectors, correspond to neural network models of vector-symbolic
architectures (VSA) (Plate, 1994, 2003; Gallant & Okaywe, 2013). In these
models, a naive linear readout is followed by a nonlinear winner-take-all
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operation for additional error correction. The naive linear readout consists
in projecting the memory state in the direction of the key vector associated
with the wanted input. In addition to storing sequences, VSAs also allow
the storage of other composite structures, such as unconnected sets of key-
value pairs, trees, stacks, and n-grams, and our theory also extends to those
(see Figures 13D and 13E).

The case of analog inputs has been considered before in reservoir com-
puting (Jaeger, 2002; White et al., 2004; Ganguli et al., 2008). Some of these
models have weight properties that fall outside the conditions of our the-
ory. However, the regime described by the theory is particularly interesting.
Previous work has shown that unitary recurrent weights optimize capacity
(White et al., 2004). The readout in memories for analog data is typically
linear. Going beyond the naive readout used in VSAs, these models use the
Wiener filter providing the MMSE regression solution (White et al., 2004).
The MMSE readout greatly improves performance when encoding inde-
pendent analog values, as nearly the full N orthogonal degrees of freedom
can be used with minimal cross-talk noise. In other regimes, however, the
naive readout in VSAs has advantages, as it yields similar performance and
is much easier to compute.2

3.1 Working Memory in Vector-Based Models of Cognitive Reasoning

3.1.1 Analysis of Existing VSA Models. We demonstrated how various
VSA models from the literature can be mapped to equivalent reset mem-
ories with linear neurons and unitary recurrent matrix. This approach not
only suggests concrete neural implementations of VSA models, but also al-
lowed us to trace and highlight common properties of existing models and
develop a common theory for analyzing them.

VSA models use the fact that random high-dimensional vectors are
nearly orthogonal and that the composition operations (such as forming
a sequence) preserve independence and generate pseudo-random vectors.
The prerequisites of VSAs are formalized by conditions 2.4 to 2.7.

The previous analyses of specific VSA models (Plate, 1994, 2003; Gallant
& Okaywe, 2013) were limited to the high-fidelity regime. Our theory yields
more accurate estimates in this regime, revealing that the working memory
performance is actually superior to what was previously thought. Specifi-
cally, we derived a capacity bound of 0.39 bits per neuron in the high-fidelity
regime.

Our theory is not limited to the high-fidelity regime; it predicts the ef-
fects of cross talk and neuronal noise in all parameter regimes. In particular,

2
Computing the inverse of the IRN×N matrix C scales with O(N3) and becomes unfea-

sible with N larger than a few thousand. For instance, the computation of C−1 took over
14 hours for the N = 8000 network shown in Figure 13B.
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the theory revealed that different VSA frameworks from the literature have
universal properties. For larger networks, recall accuracy is independent of
the moments of a particular distribution of random codes, and therefore the
sensitivity for recall is universally s = √

N/M (see equation 2.35). This find-
ing explains that achieving large sensitivity for high-fidelity recall requires
the number of memory items to be smaller than the number of neurons.
These results can be used to design optimized VSA representations for par-
ticular hardware (Rahimi et al., 2017).

3.1.2 New VSA Models with Optimal Readout. VSA models use a linear
readout that is suboptimal but fast to compute. Here, we asked how much
optimal linear readout with the MMSE or Wiener filter can improve the
performance of VSA models. VSA models are used to index both symbolic
and analog input variables, and the input distribution has important con-
sequences on the coding and capacity.

Symbols are represented by binary one-hot vectors and have an entropy
of M log2 D. The MMSE readout can reduce crosstalk when the input can be
represented with N orthogonal dimensions. However, the one-hot vectors
still require MD dimensions to encode the input sequence, and the MMSE
loses its advantage if D is large (see Figures 11A and 11B). Discrete input
sequences that have MD > N can still be stored with the randomized code
vectors as the basis because the entropy is only M log2 D < N, but MMSE
training does not much improve readout accuracy in this regime.

The analog input vectors we considered have independent entries. In
this case, what matters for retrieval accuracy is the number MD of real num-
bers to store. Thus, the dimensions of the input vector, D, and the sequence
length, M, contribute in the same way to the memory load. If and only if
MD � N, the MMSE readout can remove crosstalk noise inherent in stan-
dard VSA models and can greatly increase the capacity to many bits per
neuron. However, if MD > N, the performance of MMSE readout drops
back to the performance of standard VSA readout.

3.1.3 New VSA Memory Buffers. Plate (1994) describes trajectory associ-
ation, the mechanisms for indexing an input sequence with an RNN. Our
analysis quantifies how recency effects, caused by contracting weights or
nonlinear activations, influence recall accuracy. This analysis enabled us
to construct memory buffers that are optimized to perform trajectory as-
sociation in continuous data streams. For instance, consider an optimized
digital implementation of a discrete memory buffer. We can use the HDC
code framework, p�(x) = B0.5, x ∈ {−1,+1}, with clipping nonlinearity, and
create a memory buffer where neurons only have integer activation states
bounded by κ . Thus, the memory state can be represented by N log2(κ ) bits
(see Figure 9G). The recurrent matrix is a simple permutation. This is an ef-
ficient way to utilize the coding scheme for a digital device that can contin-
ually encode a spatiotemporal input into an indexed, distributed memory
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state. Readout neurons can be trained to recognize temporal input patterns
(Kleyko, Frady, & Osipov, 2017). The complex vector representations used
in FHRR could be useful for emerging computational hardware, such as
optical computing or spiking neural hardware.

3.2 Contributions to the Field of Reservoir Computing

3.2.1 Memory Buffers Have Extensive Capacity with Optimized Forgetting
Time Constant. Our theory captures working memory in neural networks
that have contracting weights or saturating nonlinear neurons, both of
which produce a recency effect. We derive for these diverse mechanisms the
one single feature that is critical to the memory performance: the network’s
forgetting time constant. If the forgetting time constant is the same for net-
works with different forgetting mechanisms, the memory performance be-
comes very similar (see Figure 9). Putting the forgetting time constant in
the center focus enables a unified view on a large body of literature investi-
gating the scaling and capacity of recurrent neural networks (Jaeger, 2002;
White et al., 2004; Ganguli et al., 2008; Hermans & Schrauwen, 2010; Wal-
lace, Maei, & Latham, 2013).

Importantly, we found that memory buffers can possess extensive ca-
pacity in the presence of accumulating noise (see Figure 9E; enhanced by
MMSE readout, Figure 12). To preserve extensive capacity with noise, the
time constant (τ ) has to be chosen appropriately for the given noise power
(σ 2

η ) and number of neurons (N). As N grows large, the time constant of the
network must also increase proportionally (see Figure 9A). With this choice,
the noise accumulation scales but does not destroy the linear relationship
between N and the network capacity (see Figure 9D). It was first noted in
White et al. (2004) that extensive capacity could be attained in normal net-
works (e.g., see the networks in section 2.4.1) by correctly setting the decay
parameter in relation to N.

Since the dynamic range of the neurons determines the time constant
of the recency effect, it must be optimized with N to achieve extensive ca-
pacity. Conversely, if the parameters related to the time constant are kept
fixed as N grows large, the memory capacity does not scale proportionally
to N. Thus, our result of extensive capacity is not in contradiction to Gan-
guli et al. (2008) where a subextensive capacity of O(

√
N) is derived for a

fixed dynamic range (e.g., κ) in networks with nonnormal recurrent matrix.
Our analysis confirms the subextensive capacity when the time constant is
held fixed as N grows. With normal matrices, we see O(log N) scaling with
fixed dynamic range. This logarithmic scaling matches results reported in
Wallace et al. (2013).

We show that extensive capacity can be achieved by increasing the dy-
namic range of the neurons as N grows. Extensive capacity is achieved
in this case, but only if the neuronal noise is fixed and not growing
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1494 E. Frady, D. Kleyko, and F. Sommer

proportionally to the dynamic range. If the noise assumptions are such that
neuronal noise and dynamic range are proportional (Ganguli et al., 2008),
then extensive capacity is not possible.

The time constant can also be increased by decreasing the variance of the
codebook, V� and keeping the dynamic range fixed (see equation 2.51). In
the zero-noise case, optimizing the codebook variance can achieve extensive
capacity with a fixed dynamic range. However, when fixed noise is present,
reducing the variance also increases the impact of noise (see equation 2.37),
which prohibits extensive capacity.

The analysis of the recency effect has implications for other models that
use principles of reservoir computing to learn and generate complex output
sequences (Sussillo & Abbott, 2009). The buffer time constant τ and its rela-
tionship to network size could be used for optimizing and understanding
network limits and operational time-scales.

Previous studies have suggested that the RNN (see equation 2.1) can
memorize sparse input sequences in which the sequence length is greater
than the number of neurons, M > N, if sparse inference is used in the read-
out (Ganguli & Sompolinsky, 2010). Using the theory of compressed sens-
ing, it has been shown for a fixed accuracy requirement that the number
of required neurons scales as N ∝ Mps log�(M) (Charles et al., 2014, 2017).
Our result for sparse input sequences, N = s2Mps, lacks the factor logarith-
mic with sequence length. One reason for this discrepancy is that our result
requires conditions 2.4 to 2.7 to hold. For large enough M, condition 2.7
will inevitably fail to hold because unitary matrix powers eventually loop,
and thus the sequence indexing keys for long sparse input sequences are
not independent. Thus, compressed sensing theory might account for this
gradual failing of producing independent time stamp keys, which reduces
performance as the sequence length grows. Another reason for disagree-
ment is that the compressed sensing readout requires sparse inference of
the complete sequence history; it does not permit access to individual se-
quence entries. In contrast, the readout procedures presented in this article
permit individual entries in the sequence to be retrieved separately.

3.2.2 Optimal Memory Capacity of Neural Reservoirs. White et al. (2004)
proposed distributed shift register (DSR) models that store a one-
dimensional temporal input sequence spatially in a delay line using a con-
nectivity that avoids any signal mixing. This model shows how the full
entropy of an RNN can be utilized and that capacity scales proportionally
to N. The DSR performance is considered an upper bound of memory per-
formance in reservoir computing. The DSR uses a constructed code for in-
dexing and storing sequence history along each of the N neural dimensions,
without any crosstalk. However, because of this construction, the network
can break down catastrophically from small perturbations such as the re-
moval of a neuron.
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Table 1: Idealized Bounds on Memory Capacity.

VSA MMSE

Capacity
(

bits
neuron

)
Reset Buffer Reset Buffer

Symbolic ≈ 0.5 ≈ 0.3 1 1
Analog 0.72 0.46 ∞ ∞

White et al. (2004) also analyzed normal networks that can distribute
the input sequence across the neurons and create a more robust memory.
They used an annealed approximation for describing the readout perfor-
mance for one-dimensional input sequences, which shares many character-
istics with assumptions 2.4 to 2.7. Their approximation includes the MMSE
readout and corresponds to analog memory buffer networks considered in
section 2.6.2. This theory suggests much lower performance of normal net-
works compared to the DSR. We directly compare the White et al. (2004)
theory to memory buffers with naive VSA readout and MMSE readout in
section 4.4.2.

We show how VSAs can be used to perform indexing with random code
vectors for inputs of arbitrary dimensions. Our theory precisely character-
izes the nature of cross-talk noise, and we show how MMSE readout can
remove much of this cross-talk noise in the regime where MD � N. We see
that VSA indexing with MMSE readout outperforms the White et al. (2004)
theory for normal networks and can reach the memory performance of the
DSR. Compared to the constructed codes like the DSR, there is a small re-
duction of the capacity due to duplication of code vectors of random codes
(see section 4.4.3), but this reduction becomes negligible for large network
sizes. Thus, VSA encoding with MMSE readout can be distributed and ro-
bust while still retaining the full capacity of the DSR.

3.3 Survey of Memory Capacity across Models. Our results show that
distributed representations indexed by VSA methods can be optimized for
extensive capacity. We report the idealized, zero-noise memory capacity
bounds found for different input streams and readouts in Table 1. The table
reveals that the bounds are finite except for the case of MMSE readout with
analog variables. The table summarizes the performance bounds of differ-
ent models, although these bounds may not be achievable under realistic
conditions.

4 Methods

4.1 Vector Symbolic Architectures. The different vector symbolic ar-
chitectures described here share many fundamental properties, but they
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1496 E. Frady, D. Kleyko, and F. Sommer

Table 2: Summary of VSA Computing Frameworks.

VSA Symbol Set (p�(x)) Binding Permutation Trajectory Association

HDC B0.5 : x ∈ {−1,+1} × ρ
∑

ρm(�d′ )
HRR N (0, 1/N) � None

∑
wm � �d′

FHRR C := eiφ : φ ∈ U (0, 2π ) × �
∑

wm × �d′ or∑
w�m � �d′

MBAT N (0, 1/N) Matrix Matrix
∑

Wm�d′

Note: Each framework has its own set of symbols and operations on them for addition,
multiplication, and a measure of similarity.

also have their unique flavors and potential advantages and disadvantages.
Each framework utilizes random high-dimensional vectors (hypervectors)
as the basis for representing symbols, but these vectors are drawn from dif-
ferent distributions (see Table 2). Further, different mechanisms are used to
implement the key operations for vector computing: superposition, bind-
ing, permutation, and similarity.

4.1.1 Basics. The similarity operation transforms two hypervectors into
a scalar that represents similarity or distance. In HDC, HRR, FHRR, and
other frameworks, the similarity operation is the dot product of two hyper-
vectors, while the Hamming distance is used in the frameworks that use
only binary activations. The distance metric is inversely related to the sim-
ilarity metric. When vectors are similar, their dot product will be very high
or their Hamming distance will be close to 0. When vectors are orthogonal,
their dot product is near 0 or their Hamming distance is near 0.5.

When the superposition (+) operation is applied to a pair of hypervec-
tors, the result is a new hypervector that is similar to each one of the original
pair. Consider HDC, given two hypervectors, �A,�B, which are indepen-
dently chosen from p�(x) = B0.5 : x ∈ {−1,+1} and thus have low similarity
(��

A�B = 0 + noise). Then the superposition of these vectors, x := �A + �B,
has high similarity to each of the original hypervectors (e.g. ��

Ax = N +
noise). In the linear VSA frameworks (Kanerva, 2009; Plate, 2003), we do
not constrain the superposition operation to restrict the elements of the re-
sulting vector to {−1,+1}, but we allow any rational value. However, other
frameworks (Kanerva, 1996; Rachkovskij & Kussul, 2001) use clipping or
majority rule to constrain the activations, typically to binary values.

The binding operation (×) combines two hypervectors into a third hy-
pervector (x := �A × �B) that has low similarity to the original pair (e.g.,
��

Ax = 0 + noise) and also maintains its basic statistical properties (i.e., it
looks like a vector chosen from p�(x)). In the HDC framework, the hyper-
vectors are their own multiplicative self-inverses (e.g., �A × �A = 1, where
1 is the binding identity), which means they can be dereferenced from the
bound pair by the same operation (e.g., �A × x = �B + noise). In the binary
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frameworks, the binding operation is element-wise XOR, while in HRR and
other frameworks, binding is implemented by circular convolution (�).

In different VSA frameworks, these compositions are implemented by
different operations. We note that all the binding operations can be mapped
to a matrix multiply and the frameworks can be considered in the same
neural network representation. The FHRR framework is the most generic
of the VSAs and can utilize both multiply (×) and circular convolution (�)
as a binding mechanism.

4.1.2 Implementation Details. The experiments are all implemented in
Python as Jupyter notebooks using standard packages like numpy.

The experiments done with different VSA models use different imple-
mentations for binding, most of which can be captured by a matrix multipli-
cation. However, for efficiency reasons, we implemented the permutation
operation ρ and the circular convolution operation � with more efficient
algorithms than the matrix multiplication. The permutation operation can
be implemented with O(N) complexity, using a circular shifting function
(np.roll). Efficient circular convolution can be performed by fast Fourier
transform, element-wise multiply in the Fourier domain, and inverse fast
Fourier transform, with O(N log N) complexity.

To implement FHRR, we utilized a network of dimension N, where the
first N/2 elements of the network are the real part and the second N/2 el-
ements are the imaginary part. Binding through complex multiplication is
implemented as

u × v =
[

ureal × vreal − uimaginary × vimaginary

ureal × vimaginary + uimaginary × vreal

]
.

The circular convolution operation can also be implemented in this frame-
work, but with consideration that the pairs of numbers are permuted
together. This can be implemented with a circulant matrix W with size
(N/2, N/2):

w � u =
[

W 0

0 W

]
u.

The superposition (+) is the same, and similarity (·) functions are defined
for complex numbers as simply

u · v = ureal · vreal + uimaginary · vimaginary,

which is the real part of the conjugate dot product, Re(u�v∗).
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1498 E. Frady, D. Kleyko, and F. Sommer

Either circular convolution or element-wise multiplication can be used
to implement binding in FHRR, and trajectory association can be performed
to encode the letter sequence with either operation:

x(M) =
∑

wM−m × �a(m) or

x(M) =
∑

w�(M−m) � �a(m),

where w�m means circular convolutional exponentiation (e.g., w�2 = w �
w).

4.2 Accuracy of Retrieval from Superpositions

4.2.1 Comparison of Approximations for the High-Fidelity Regime. We com-
pared each step of the high-fidelity approximation (see section 2.2.2) to the
true numerically evaluated integral (see Figure 14) to understand which
regimes of the approximations were valid (see Figure 15B).

We compare the CR bound and the Chang et al. (2011) approximation to
the numerically evaluated normal cdf � and see that the CR lower bound
does not get tight until multiple standard deviations into the very high-
fidelity regime (see Figure 15A).

In Figures 15D and 15E, we see that while the approximations given
are not strictly lower bounds, they are typically below the numerically
evaluated accuracy. The Chang approximation can overestimate the per-
formance, however, in the high-fidelity regime when D is large.

4.2.2 Previous Theories of the High-Fidelity Regime. The capacity theory de-
rived here is similar to but slightly different from the analysis of Plate (2003),
which builds on work done in Plate (1994). Plate (2003) frames the question:
“What is the probability that I can correctly decode all M tokens stored, each
of which is taken from the full set of D possibilities without replacement?”
This is a slightly different problem, because this particular version of Plate’s
(2003) anlaysis does not use trajectory association to store copies of the same
token in different addresses. Thus, M is always less than D, the M tokens are
all unique, and there is a difference in the sampling of the tokens between
our analysis frameworks.

Nonetheless, the analysis can be translated to a roughly equivalent
framework given that D is relatively large compared to M. Plate (2003) de-
rives the hit p(hd′ ) and reject p(hd ) distributions in the same manner as pre-
sented in our analysis, as well as uses a threshold to pose the probability
problem:

pall−corr = p(hd′ > θ )M p(hd < θ )D−M. (4.1)
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Figure 14: Numeric algorithm for accuracy integral.

This can be interpreted as that the probability of reading all M tokens
correctly (pcorr−all) is the probability that the dot product of the true token
is larger than threshold for all M stored tokens (p(hd′ > θ )M) and that the
dot product is below threshold for all D − M remaining distracter tokens
(p(hd < θ )D−M).
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1500 E. Frady, D. Kleyko, and F. Sommer

Figure 15: Comparison of different methods to approximate the retrieval ac-
curacy. (A) The Chernoff-Rubin (CR; Chernoff, 1952) lower bound (blue) and
the Chang et al. (2011) approximation (red) to compute the normalized cu-
mulative density function (NCDF; black) analytically. The Chang et al. (2011)
approximation becomes tight faster in the high-fidelity regime, but is not a
lower bound. (B) Differences between the three methods of approximations
and the numerically evaluated pcorr integral (black line). The factorial approx-
imation (dashed black line) still requires numerical evaluation of the NCDF.
Adding the CR lower bound (dashed blue) and the local error expansion, the
high-fidelity regime can still be described well, but the low-fidelity regime can-
not be captured. (C) Same as panel B, but using the Chang et al. (2011) ap-
proximation to the NCDF. (D) Accuracy curve and approximations for D = 8.
(E) D = 1024. Right panels in panels D and E are zoom-ins into the high-fidelity
regime (marked by gray box insets in the left panels).

In our framework, the probability of correctly reading out an individual
symbol from the M items stored in memory is independent for all M items.
This is given by equation 2.12; alter the equation to output the probability
of reading all M tokens correctly, simply raise pcorr to te Mth power:

pall−corr = [pcorr
]M =

[∫ ∞

θ

dh√
2π

e
−h2

2 [� (h + s)]D−1
]M

. (4.2)

In Figure 16, we compare our theory to Plate’s by computing pall−corr given
various different parameters of N, M, and D. We show that Plate’s (2003)
framework comparatively underestimates the capacity of hypervectors.
There is slight discrepancy in our analysis frameworks because of how
the tokens are decoded from memory. In our analysis framework, we take
the maximum dot product as the decoded symbol, and there are instances
that can be correctly classified that Plate’s (2003) probability statement,
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Indexing and Memory in Neural Networks 1501

Figure 16: Comparison with the theory in Plate (2003). (A) Plate (2003) derived
pall−corr = pM

corr, plotted in dashed lines for different values of N with D fixed at
4096. The new theory in solid lines. (B) Plate’s (2003) theory in dashed lines with
different values of D and fixed N. The new theory in solid lines.

equation 4.1, would consider incorrect. For instance, the true symbol and
a distracter symbol can have dot products above threshold and the correct
symbol can still be decoded as long as the true symbol’s dot product is larger
than the distracter. However, this scenario would be classified as incorrect
by equation 4.1.

Plate next uses an approximation to derive a linear relationship describ-
ing the accuracy. Citing Abramowitz, Stegun, and Miller (1965), he writes:

er f c(x) <
1

x
√

π
e−x2

.

This approximation allows Plate to estimate the linear relationship between
N, M, log D, and ε, arriving at

N < 8M log
(

D
ε

)
.

The FA-CR-LEE approximation differs only by a factor of 2 because of the
slightly different choice we made to approximate the cumulative gaussian
as well as the different setup for the problem.

Subsequent work by Gallant and Okaywe (2013) proposed an alterna-
tive VSA framework that used a matrix as a binding mechanism. Based on
their framework, they too, in analogous fashion to Plate (2003), derived an
approximation to the capacity of vector symbols in superposition. Their
derivation takes the high-fidelity factorial approximation as the starting
point and uses e−x as the bound on the tail of the normal distribution.
This work is very similar to the derivation presented in this article, but we
add more rigor and derive a tighter high-fidelity approximation utilizing
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the Chernoff-Rubin bound and the updated approximation by Chang et al.
(2011).

4.3 Derivations for Analog Gaussian Inputs

4.3.1 Analytic Capacity Bounds for Gaussian Analog Input. In section
2.5.1, we derived the memory capacity for gaussian inputs. Numerically,
we showed that the equations suggest the memory capacity saturates to
1/(2 log 2) bits per neuron. It is possible to derive these capacity bounds
analytically.

The total information is determined by r(K), equation 2.57,

r(K) = λ2K N(1 − λ2)
D(1 − λ2M)(1 + σ 2

η /(DV�))
,

and for gaussian variables, it can be computed as equation 2.58

Itotal = D
2

M∑
K

log2 (r(K) + 1) .

Inserting equation 2.57 into 2.58, we obtain

Itotal = D
2

M∑
K

log2 (r(K) + 1) = D
2

log2

(
M∏

K=1

(r(K) + 1)

)
. (4.3)

The definition of the q-Pochhammer symbol or shifted factorial,

(a; q)M :=
M−1∏
K=0

(1 − aqK ), (4.4)

yields a more compact expression, equation 2.59,

Itotal = D
2

log2 ((−bMq; q)M)

with q := λ2 and bM := N(1−q)
D(1−qM )(1+σ 2

η /(DV� )) .
The approximation of the logarithm of the q-Pochhammer symbol for

|bMq| < 1 will now be useful (Zhang, 2013),
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log ((bMq; q)∞) = 1
2

log(1 − bMq) − τ

2
Li2(bMq) − 1

6τ

bMq
1 − bMq

+ O(1/τ 3)

= −τ

2
Li2(bMq) + 1

2
log(1 − bMq) + O(1/τ ), (4.5)

where τ := −2/ log(q) is the signal decay time constant for a given q and
Li2(x) is the dilogarithm function. Note that for q close to one and large
decay time constant, the first term in equation 4.5 becomes the leading term.

For the case M → ∞ and any N, we can lead q so close to one that

b∞q = ε becomes very small. This is accomplished by q = 1 − εD(1+σ 2
η /(DV� ))

qN

and, equivalently, τ = 2Nq
εD(1+σ 2

η /(DV� )) . With this setting, we can apply approx-
imation 4.5 to compute the asymptotic information capacity. Neglecting
nonleading terms,

Itotal

N
= D

2N
log2 ((−b∞q; q)∞)

= − Dτ

4N log(2)
Li2 (ε) = q

2 log(2)(1 + σ 2
η /(DV�))

≈ q→1
0.72

1 + σ 2
η /(DV�)

. (4.6)

Equation 4.6 uses the result for the polylogarithm: lim|z|→0 Lis(z) = z.
For the case of finite M and D ∝ N, the identity (a; q)n = (a;q)∞

(aqn;q)∞
is use-

ful in combination with approximation 4.5. We consider D = N/α with
α, so that bMq = α(1−q)q

(1−qM )(1+σ 2
η /(DV� )) = ε becomes very small. Further, we set

τ = −2/ log(q):

Itotal

N
= D

2N log(2)

[
log ((−bMq; q)∞) − log

(
(−bMqM+1; q)∞

)]
= τ

4 log(2)α

[−Li2 (ε) + Li2
(
εqM)]+ O(ε) + O(1/τ )

= (1 − q)q(1 − qM)τ
4 log(2)(1 − qM)(1 + σ 2

η /(DV�))
+ O(ε) + O(1/τ )

= 1
2 log(2)(1 + σ 2

η /(DV�))
× (1 − q)q

− log(q))
+ O(ε) + O(1/τ )

≈ q→1
0.72

1 + σ 2
η /(DV�)

(4.7)

Thus, in both cases, we find the same asymptotic value for the information
capacity.
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4.3.2 Fixed Fidelity Retrieval Optimization for Memory Buffer. With the re-
lation between r, K, and τ , we can find the τopt that maximizes K∗ such that
r(K) ≥ r∗ ∀K ≤ K∗. Beginning with the SNR, equation 2.57,

r(K) = λ2K N(1 − λ2)
D(1 + σ 2

η /(DV�))
= e−2K/τ N(1 − e−2/τ )

D(1 + σ 2
η /(DV�))

. (4.8)

Setting r(K∗) = r∗ and solving for K∗ gives

K∗ = −τopt

2
log

(
Dr∗(1 + σ 2

η /(DV�))

N(1 − e−2/τopt )

)
. (4.9)

Taking the derivative dK∗/dτopt and setting to 0,

−1
2

log

(
Dr∗(1 + σ 2

η /(DV�))

N(1 − e−2/τopt )

)
− e−2/τopt

(1 − e−2/τopt )τopt
= 0. (4.10)

For moderately large τopt , the second term asymptotes to 1
2 , giving

−1 = log

(
Dr∗(1 + σ 2

η /(DV�))

N(1 − e−2/τopt )

)
,

e−1 = Dr∗(1 + σ 2
η /(DV�))

N(1 − e−2/τopt )
,

τopt = −2

log
(

1 − eDr∗(1+σ 2
η /(DV� ))

N

) ,
τopt

N
= 2

eDr∗(1 + σ 2
η /(DV�))

. (4.11)

From the first line of equations 4.11 and 4.9, it is easy to see that K∗ = τopt/2.
The information per neuron retrieved with a certain SNR criterion r∗ is

then given by

I∗(r∗)
N

= D
2N

K∗∑
K=1

log2 (r(K) + 1) = D
2N log(2)

log
(
(b∞q; q)τopt/2

)
(4.12)

with equation 4.11, q = e−2/τopt and b∞ = er∗.
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For small r∗ we can estimate

I∗(r∗ → 0)
N

= Dτopt

4N log(2)

[
Li2(b∞q) − Li2(b∞qτopt/2+1)

]

= Dτoptb∞
4N log(2)

q(1 − qτopt/2) =r∗→0
1 − qτopt/2

2 log(2)(1 + σ 2
η /(DV�))

= 1 − e−1

2 log(2)(1 + σ 2
η /(DV�))

≈ 0.46
1 + σ 2

η /(DV�)
. (4.13)

4.4 Capacity Results with MMSE Readout

4.4.1 Training Procedure for the Recurrent Neural Network. We used tensor
flow to train a linear recurrent neural network at the sequence recall task.
The parameter K could be altered to train the network to output the symbol
given to it in the sequence K time steps in the history. However, larger K
requires deeper backpropagation through time and becomes more expen-
sive to compute and harder to learn. The training was based on minimizing
the cross-entropy between a(m − K) and â(m − K). The accuracy was mon-
itored by comparing the maximum value of the output histogram with the
maximum of the input histogram.

We initialized the network to have a random gaussian distributed en-
coding and decoding matrix (�, V(K)) and a fixed random unitary recur-
rent weight matrix (W). The random unitary matrix was formed by taking
the unitary matrix from a QR decomposition of a random gaussian matrix.
Such a matrix maintains the energy of the network, and with a streaming
input, the energy of the network grows over time. After a fixed number of
steps (M = 500), the recurrent network was reset, where the activation of
each neuron was set to 0. This erases the history of the input. Only outputs
K or more time steps after each reset were considered part of the energy
function.

4.4.2 Comparison to DSR and Normal Networks in Reservoir Computing.
White et al. (2004) describes the distributed shift register (DSR), a neural
network that encodes an input sequence spatially by permuting the inputs
down a chain of neurons. The final neuron in the chain, however, is not
connected to any other postsynaptic neuron. This allows the network to
store exactly N numbers. Since the last neuron is not connected, the network
remembers exactly the last N most recent inputs, and the sequence length
can be infinite. However, the network can be equated to our orthogonal
networks with finite sequence length and a reset mechanism.

White et al. (2004) use a memory function that is the correlation be-
tween the input and decoded output to understand the information content
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Figure 17: Memory performance in normal networks. Comparison of naive
VSA readout (solid lines), approximation from White et al. (2004) (dot-dashed
lines), and empirical performance (dashed lines) for analog memory buffers
with different time constants, λ2 = [0.7, 0.95, 0.99, 0.999] red to blue, N = 400,
D = 1. These parameters are taken from White et al. (2004).

of the DSR. This analysis extends to orthogonal networks with contract-
ing weights, denoted normal networks. The correlation function for the DSR
remains 1 until the look-back value K exceeds N, when the correlation
function drops to 0. This has been taken as the upper limit on the in-
formation capacity for reservoir computing, and our results support this
conclusion.

White et al. (2004) also derive an annealed approximation formula for the
correlation function in normal networks. This approximation includes the
MMSE readout and corresponds to analog memory buffer networks con-
sidered in section 2.6.2 (compare to Figure 12). We compare their theory to
the naive VSA readout performance and the empirically measured perfor-
mance of memory buffers with MMSE readout in Figure 17. The curves in
Figure 17 match those in White et al. (2004, Figure 2; dot-dashed lines in
Figure 17). These curves are given by

m(K) = λ2Kq
1 + λ2Kq

, (4.14)

where q satisfies

1 = N−1
∞∑

K=0

λ2Kq
1 + λ2Kq

+ σ 2
η q

1 + λ2 . (4.15)

These curves are generally more optimistic than the performance of naive
VSA readout (see Figure 17, solid lines), except for larger time constants.
However, the empirical performance of the MMSE readout (see Figure 17,
dashed lines) still highly outperforms both naive VSA readout and the
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Figure 18: Finite size effects on information capacity in discrete DSRs with ran-
domized codes. (A) The accuracy pM=1

corr with increasing N. (B) The retrieved in-
formation with increasing N.

White et al. (2004) theory. The MMSE readout performance approaches
DSR-like performance, and nearly the full entropy of the neural space can
be utilized if the time constant is appropriately optimized.

In our discrete framework, the discrete DSR would be considered a net-
work with D = 2 (or with D = 1 and a detection threshold), and a sequence
of binary inputs can be stored, with M increasing as high as N but not higher.
Because of the way this representation is constructed, there is no interfer-
ence noise, and the assumptions needed for our theory do not hold. How-
ever, the DSR can be reconsidered by focusing on the end result rather than
the time evolution of the network. Ultimately, the DSR builds a binary repre-
sentation for each possible binary input sequence and is equivalent to stor-
ing a single binary representation in the network. This is as if M = 1 and
D = 2N, where each possible input sequence corresponds to one of the D
code vectors. Thus, we are able to apply our M = 1 analysis to understand
the information capacity of DSRs and find that they are able to achieve the
full capacity of binary neurons, i.e., 1 bit per neuron.

4.4.3 Randomized Vector Representations. In section 2.3.5, we compared
the memory capacity of superpositions to the memory capacity of the M = 1
case as D → 2N. As D grows to a significant fraction of 2N, the crosstalk
from superpositions becomes overwhelming, and the memory capacity is
maximized for M = 1. The retrieval errors are then due only to collisions
between the randomized codevectors, and the accuracy pM=1

corr is given by
equation 2.39. Figure 18A shows the accuracy for M = 1 as D grows to 2N

with a randomly constructed codebook for different (smaller) values of N;
for large N, the numerical evaluation of equation 2.39 is difficult. As N
grows, the accuracy remains perfect for an increasingly large fraction of the
2N possible code vectors. However, at the point D = 2N, the accuracy falls
off to (1 − 1/e), but this falloff is sharper as N grows larger. The information
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retrieved from the network also grows closer and closer to 1 bit per neuron
as N grows larger with M = 1 (see Figure 18B).

In Figure 18B, the capacity Itotal/N of the randomly constructed codebook
for M = 1 was computed with the equation we developed for superposed
codes (see equation 2.27). However, the nature of the retrieval errors is dif-
ferent for M = 1; rather than crosstalk, collisions of code vectors are the er-
ror source. By performing an exhaustive analysis of the collision structure of
a particular random codebook, the error correction can be limited to actual
collisions, and the capacity of such a retrieval procedure is higher. The infor-
mation transmitted when using the full knowledge of the collision structure
is

Itotal =
∑

C

pC log2

(
pCD

C + 1

)
. (4.16)

For D = 2N and N → ∞, the total information of a random vector symbol
approaches 1 bit per neuron:

lim
N→∞

1
N

∑
C

pC

(
N + log2

(
pC

C + 1

))
→ 1. (4.17)

It is an interesting and somewhat surprising result in the context of DSRs
that a random codebook yields asymptotically, for large N, the same capac-
ity as a codebook in which collisions are eliminated by construction (White
et al., 2004). But it has to be emphasized that a retrieval procedure that uses
the collision structure of the random codebook is necessary and advanta-
geous only for the M = 1 case. For superpositions, even with just two code
vectors (M = 2), the alphabet size D has to be drastically reduced to keep
cross talk under control and the probability of collisions between random
code vectors becomes negligible.

4.4.4 Capacity with Expected MMSE Readout. Further following White
et al. (2004), we were able to compute C̃, the expected covariance matrix
of MMSE readout, without any training data (see section 2.6). White et al.
(2004) focus on the memory buffer scenario where an infinite stream of in-
puts is given. They derive the result of MMSE readout in the buffer sce-
nario, where they have an infinite input stream to act as training data. Their
result is extended to higher D by equation 2.67. This matches the perfor-
mance of empirically trained memory buffers for both discrete and analog
inputs.

We derive an analogous equation for the expected covariance matrix
of linear reset memories, equation 2.63. Computing C empirically requires
training R parallel neural networks with the same connectivity but different
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Figure 19: Performance of analog reset memory with expected covariance ma-
trix. Compare to Figures 11E to 11H.

input sequences. The covariance matrix C is given by

C = 〈x(M)x(M)�〉R

= 1
R

R∑
r

⎛
⎝ M∑

K1

WK1�a(K1; r) + η(K1; r)

⎞
⎠
⎛
⎝ M∑

K2

WK2�a(K2; r) + η(K2; r)

⎞
⎠

�

=
M∑
K

WK�

(
1
R

R∑
r

a(K; r)a(K; r)�
)

��W−K

+
M∑
K1

M∑
K2 �=K1

WK1�

(
1
R

R∑
r

a(K1; r)a(K2; r)

)
��W−K2 + Mσ 2

η I. (4.18)

The covariance matrix is broken up into three parts: the diagonal term, the
cross term, and the noise term. For R → ∞, the diagonal term contains
1
R

∑R
r a(K; r)a(K; r)� → Iσ 2(a). The cross term converges to 0 if μ(a) = 0.

This leaves equation 2.63:

C̃ = 〈x(M)x(M)�〉∞ = Mσ 2
η I +

M∑
k=1

Wk���W−k.

Using C̃ in the readout does exceed the naive readout performance; how-
ever, it does not perform as well as an empirically trained MMSE network
with finite R. Our simulations appear to be approaching the theory of equa-
tion 2.63, but second-order terms seem to play an important role in elimi-
nating the cross-talk noise. These terms are small but still significant even
for very large R. The performance of readout with the expected covari-
ance matrix is shown in Figure 19 and can be compared to Figures 11E
to 11H.
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