
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019 439

A Programmable Hyper-Dimensional Processor
Architecture for Human-Centric IoT

Sohum Datta , Student Member, IEEE, Ryan A. G. Antonio, Student Member, IEEE,
Aldrin R. S. Ison, Student Member, IEEE, and Jan M. Rabaey, Fellow, IEEE

Abstract— Hyper-dimensional Computing (HDC), a
bio-inspired paradigm defined on random high-dimensional
vectors, has emerged as a promising IoT paradigm. It is known
to provide competitive accuracy on sequential prediction tasks
with much smaller model size and training time compared to
conventional ML, and is well-suited for human-centric IoT.
In the post-Moore scaling era, where increasing variability
has challenged traditional designers, its novel computing
method based on randomness can be leveraged for continued
performance. This work develops a complete, programmable
architecture for ultra energy-efficient supervised classification
using HD computing. Its simple construction follows from basic
HD operations and its massively parallel, shallow datapath
(< 10 logic layers) resembles in-memory computing. The
architecture also supports scalability: multiple such processors
can be connected pralallely to increase effective HD dimension.
A broad evaluation is performed by comparing HDC and
3 conventional ML algorithms on conventional architectures such
as CPU and eGPU for instruction count, energy cost and memory
requirements. Finally, a 2048-dim ASIC design is synthesized
in a 28nm HK/MG process and benchmarked on 9 supervised
classification tasks with varying complexity (such as language
recognition and human face detection). The simulated chip
exhibits energy efficiency < 1.5µJ/pred. for the entire benchmark
at about 2.5ns cycle time, with most applications requiring
< 700 nJ/pred. As a first complete design working with high
dimensional stochastic signals, the main architectural decisions
for similar systems harnessing variability in emerging devices
(eg. CNFET and RRAM) are established. A fabricated system
could be readily deployed for human-centric IoT applications.

Index Terms— Brain-inspired computing, hyper-dimensional
computing, holographic reduced representations, energy effi-
ciency, Internet-of-Things, human-centric computing, body sens-
ing (alternatively, body sensor networks).

I. INTRODUCTION

TWO crucial events in the last decade determine the
pace of technical innovation today. The first is the

gradual slowdown in relentless miniaturization of semicon-
ductor devices, known as Moore’s law [1]. Its current phase

Manuscript received April 15, 2019; revised July 9, 2019 and
August 9, 2019; accepted August 10, 2019. Date of publication August 15,
2019; date of current version September 17, 2019. This work was spon-
sored by E2CDA-NRI, a funded center of NRI, through the SRC program
co-sponsored by NSF. This article was recommended by Guest Editor
K. Kailas. (Corresponding author: Sohum Datta.)

S. Datta and J. M. Rabaey are with the Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, Berkeley,
CA 94704 USA (e-mail: sohumdatta@berkeley.edu).

R. A. G. Antonio and A. R. S. Ison are with the Electrical and Electronics
Engineering Institute (EEEI), University of the Philippines Diliman, Quezon
City 1101, Philippines.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2019.2935464

of equivalent scaling of transistors (i.e. using novel gate
materials and geometries) is likely to give way to hyper-
scaling (functionality-aware beyond-Boltzmann transistors)
after 2025 [2]. And as transistor dimensions approach 10nm,
variability and reliability effects begin to dominate its deter-
ministic behavior [3]. For continued miniaturization, new
avenues of research into materials, semiconductor physics and
organic chemistry for emerging devices have materialized [4].

Secondly, the rise of data-driven learning algorithms have
completely changed the way businesses function [5]. Due to
the widespread proliferation of sensory devices and improve-
ments in connectivity, the huge amounts of data gathered
must be processed for ensuring quality of services. Mobile
devices (e.g. smartphones, tablets, sensor-nodes in sensor net-
works) function under limited bandwidth, battery and storage
capacity, thereby requiring high energy efficiency in their
computations [6].

Clearly, one way forward is to perform machine learning
on emerging post-Moore devices with much lower energy
footprints. This is especially useful for edge-based Internet-
of-Things (IoT), where data is partially processed immedi-
ately after collection to reduce bandwidth usage and server
workload. Emerging devices allow such computations to
meet the strict energy constraints required. However, adapting
emerging devices to the exact-computing paradigm is difficult
due to their inherent variability [7]. As energy efficiency no
longer scales with integration capacity, voltage reduction and
near-threshold operation reduces power consumption at the
expense of favorable signal-to-noise ratio (SNR) [8]. Finally,
for conventional architectures such as CPUs and General-
Purpose GPUs (GPGPUs), few applications today (including
data mining and classification) have enough parallelism to
completely utilize available hardware [9].

While challenges of using unreliable components have long
been known [10], biology offers the most concrete inspiration.
Consequently, brain-inspired computing could provide the
required robustness and scalability for continued inprove-
ments.

Hyper-Dimensional Computing (HDC) is one such
nano-scalable paradigm [11], and is known to excel in
body-based sensing/IoT applications [12]. It originated from
a theoretical model of cognitive reasoning [13], [14] and is
motivated by the fact that brains compute by transforming
activation patterns of a large population of neurons. Hence,
tolerance to variability is inherent: changes in activation of
a few neurons do not affect the overall functionality. Its
energy efficiency and robustness to noise (introduced by

2156-3357 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9546-6927

440 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

TABLE I

THE HDC BENCHMARK SUITE: 9 SUPERVISED CLASSIFICATION TASKS WITH VARYING COMPLEXITY WERE CHOSEN TO EVALUATE THE GENERIC
HD PROCESSOR (D = 2048). THE MULTI-PROCESSOR CONFIGURATION INCREASES EFFECTIVE DIMENSION AND IMPROVES ACCURACY

SIGNIFICANTLY (FIG. 7(A)). (*)-MEMBERS ARE WELL SUITED FOR HUMAN-CENTRIC COMPUTING IN INTERNET OF THINGS (IOT) [35]

reduced VDD) in the datapath was demonstrated for Language
Recognition [15], [16] and tested on fabricated systems
based on emerging devices: a hybrid of carbon nanotube
field-effect transistors (CNFETs) and resistive RAM (RRAM)
memory in [17], and a CMOS/vertical-RRAM (VRRAM)
implementation in [18]. [18] also demonstrated the robustness
of HDC to inherent RRAM variability in endurance cycles
and wafer-level device-to-device characteristics.

However, both [18] and [17] are hard-wired to solve only
Language Recognition on a specific dataset, and cannot
be used for other datasets and applications. They also
have low data-width (32 bits), requiring large amount of
time-multiplexing to simulate the complete machine of full
width (> 1000 bits). Datapaths specific to applications other
than Language Recognition have also been proposed [19], but
a general HD system is yet to be developed ([11] presents a
brief outline).

A general HDC architecture, which can be easily pro-
grammed to perform a variety of applications on different
datasets, is crucial for evaluating its potential as a viable
IoT paradigm [12]. This requires developing the fundamental
architectural blocks that are configured and interconnected to
produce a complete system. A comprehensive exploration of
the above is the main goal of this work.

II. HYPER-DIMENSIONAL COMPUTING

HD computing defines random high-dimensional vectors
(D > 1000) as its fundamental data type. It is a holo-
graphic computing framework: unlike arithmetic over num-
bers, no vector component contains more information than any
other. Although vectors with elements from any algebraic field
can be used (see Table I of [11]), we will consider only binary
vectors as it results in the simplest hardware.

To compare vectors, a distance metric is required. Hamming
distance (denoted by dH (a, b)) is the number of dissimilar
elements between vectors a and b. Two binary vectors x and
y of dimension D are said to be orthogonal if dH (x, y) =
D/2. This definition is more familiar in bipolar code (0-valued
elements replaced by integer −1): orthogonal x and y have
zero inner product, 〈x, y〉 = 0.

The underlying principle of HDC is almost certain
orthogonality in high-dimensional spaces. For a rigorous
demonstration, note that if x and y are chosen indepen-
dently and uniformly from {0, 1}D (i.e. probability of any

Fig. 1. Orthogonality in High Dimensions: Note the sharper concentration
around 0.5 as D increases.

bit being 1 is p = 1/2), their hamming distance is bino-
mially distributed: dH (x, y) ∼ Bin(D, p = 1/2). Fig. 1
plots a histogram (hist) of dH (x, y) normalized by dimen-
sion D for 10, 000 randomly-generated pairs (x, y). It also
plots the density function (pdf) for Normal Approximation
N(Dp, Dp(1 − p)) of Bin(D, p) scaled to have an area
equalling sample size 10, 000. The Normal Approximation
helps in plotting and is very accurate for high dimensions:
using the Berry-Essen bound (Theorem 10.4 in [20]) for X ∼
Bin(D, p), Y ∼ N(Dp, Dp(1 − p)), p = 1/2 and dimension
D ≥ 1024, the maximum error in cumulative distribution
(max0<t<1| Pr(X ≤ t)− Pr(Y ≤ t)|) is 0.025.

Then, it can be shown that (Theorem 1 of [21]):

Pr

[∣∣∣∣dH (x, y)

D
− 1

2

∣∣∣∣ ≥ ε

]
< 2e−2Dε2

(1)

Only high dimensions (D > 1000) result in a meaningful
right-hand side in Eq. 1 [22]. Then random vectors x and y
have normalized distance very close to 0.5. The exponential
drop in probability beyond ε-deviation from the mean is the
crucial property exploited here.

A. The Binary HDC Subset

All high-dimensional binary vectors used in a given compu-
tation will be called hyper-vectors. When the context is obvi-
ous, hyper-vectors and vectors will be used interchangeably.

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 441

In addition to high dimensionality, a set of operations
are required that preserve near orthogonality. Although there
are many sets of operations with equivalent performance,
(see Table I of [11]), the Multiply-Add-Permute (MAP)
framework is most suitable as it maps directly to logic gates.
These encoding operations allow representation of complex
structures such as sequences, lists and trees [14], [23], and are
fundamental to the paradigm:
• Multiplication/Binding is useful for forming associa-

tions among related vectors. X and Y are bound together
to form C = X ⊕ Y orthogonal to both its constituents.
It is implemented by element-wise XOR.

• Addition/Superposition is the primary conjunctive oper-
ation. Based on Hebbian learning [23], the goal is to find
a vector z representing the set of operand hyper-vectors
{x1, x2, . . . xn}. It is denoted by z = [x1 + x2 + . . .+ xn]
and implemented by performing vector sum of operands
and thresholding each element at the mean (0 for bipolar
code).

• Permutation is a unary operation such that the per-
muted vector (denoted by ρ(x)) is nearly orthogonal to a
randomly-generated hyper-vector x . Any cyclic permuta-
tion which does not have fixed points is a valid candidate.
While all candidates result in the same performance, we
use circular shift as it is easiest to implement in hardware.
Note that the chosen candidate is a constant operation to
be applied everywhere (i.e. all applications and datasets).
Hyper-vector x permuted n times is denoted as ρn(x).

As Fig. 1 shows, it is very rare for random hyper-vectors
to deviate much from orthogonality. The addition operation
above generates non-orthogonal vectors from random operand
vectors. This allows us to encode meaning, as significant
deviation from orthogonality implies common membership
or dependency. Therefore, an associative search to find the
closest match of the MAP-encoded hyper-vector to stored class
hyper-vectors is also a crucial operation.

B. Example: Language Recognition

Language recognition from text is an ideal example for
illustrating HDC in supervised classification, as the state-of-
the-art algorithm can be directly mapped to this framework.
A corpus of 21 Indo-European languages transliterated to
English forms the training set, and new sentences are queried
as tests [16].

1) Baseline: n-Gram Character Model: In state-of-the-art
algorithms, a language is modeled as a probability distribution
on character sequence of length n (also called n-grams). More
sophisticated models such as dictionary of words, phrases, etc.,
increase complexity with negligible gains [24], [25].

While training a language, raw n-gram frequency counts are
generated from a large corpus and iteratively smoothened [26]
to remove outlier artifacts. The resulting n-gram distribution
is the trained language model. The steps are repeated for a
test query, and the trained model with the closest distribution
is the language prediction.

2) HDC Setup and Algorithm: To make use of HD com-
puting, the first step is to map random vectors to meaningful

entities. In this case, characters from the Latin alphabet are
assigned to uniformly generated hyper-vectors of dimension
D = 10, 000. The HD algorithm uses them to encode the
training data and generate a single hyper-vector for each
language.

A direct equivalent of frequency counting is the superpo-
sition of hyper-vectors representing each occurring n-gram in
the text. Permutation and Multiplication are used to generate
an n-gram vector from constituent letter hyper-vectors. For
example, “abc” is encoded as Vabc � ρ2(Va) ⊕ ρ(Vb) ⊕ Vc,
where Vz is hyper-vector representing symbol z. Due to
properties of HD operations (Section II-A), all n-gram and
character hyper-vectors are nearly orthogonal to each other.

The test hyper-vector is computed similarly, and the lan-
guage with closest hyper-vector is returned as the prediction.
Since the superimposed language vector is in the linear space
spanned by the set of all n-gram vectors, the class with the
closest n-gram distribution from baseline equivalently has the
smallest distance in HDC.

HDC has an accuracy of 96.7 % against a baseline of 97.1
% [16] for n = 4, D = 10000. However, it is an online
algorithm requiring a single iteration though the dataset.
The deviations from orthogonality (Fig. 1) during encoding
operations automatically smoothen the superimposed multi-
set. Finally, the HD model size (1 vector/class) is fixed with
n-gram size, but grows exponentially in the baseline. Indeed,
for n = 4, the HDC model is 20× smaller than the baseline
model.

III. BENCHMARK APPLICATIONS

HDC, also known as Holographic Reduced Representa-
tions (HRR), has been applied to a variety of problems
such as simulation of finite automata, logical and analogical
reasoning [23]. In the simplest HDC algorithms, random vec-
tors are combined according to an application-specific expres-
sion of MAP operations in a single pass through the dataset.
This approach is viable for expert systems (as in Sec. II-B),
where the generating process of the data is already known.
For simple applications with unknown generating models,
perceptron-based re-training of the closest known expert model
can improve HDC accuracy [36]. During iteration, if the
validation data-point with encoded hyper-vector v of correct
class with vector Ccorrect results in a wrong prediction (class
with hyper-vector Cwrong), we update them as: Cwrong ←
Cwrong − v, Ccorrect ← Ccorrect + v.

HDC is known to work very well for sequence predic-
tion problems [37], especially when the generating process is
Markov of finite order with a known upper bound [38], [39].
For finite-order Markov time series, where the label of the
current time instant depends only on a few instants of the
recent past (unlike the more general arbitrary dependence on
the entire past), a single-pass HDC algorithm is equivalent
in performance to the optimal classifier (mixed-order Markov
Model) [38]. Such problems are routinely encountered in
sensor-based IoT applications, such as body-based sensing and
industrial fault isolation [40]. Body-sensing is an especially
attractive application, as the benefits of wearable electronics

442 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

and HDC can be integrated into a common platform for seam-
less processing of medical data [41], human-computer inter-
action, and human-centric IoT [27], [35]. Consequently, such
applications have been extensively studied for HDC (see [12]
for a summary). Single-pass HDC suffices compared to con-
ventional ML techniques that require much more resources
with negligible accuracy gains: in EEG-based medical applica-
tions, multi-layer Neural Networks (NN) require 5-13× more
memory than HDC [42], Long-Short Term Memory (LSTM)
and Convolutional Neural Network (CNN) require 1400× and
50× more operations [43] than HDC respectively to achieve
similar accuracy on the same dataset.

For an arbitrary prediction problem, it is unknown whether
HDC can achieve optimal performance, especially relative to
known ML algorithms. Although it is too early to ascertain,
we feel it is unlikely that HDC alone could tackle harder
problems that have a richer structure than finite-order Markov
processes. For such problems, a hybrid system of HDC
and ML/deep-learning algorithm is perhaps superior to either
approach separately. Some recent work has been done in this
direction, such as using a hybrid HDC-NN system for storage
and inference on knowledge graphs [44], a HDC back-end
in the vision engine for active perception in robots [45], and
training multiple NNs simultaneously in a single model using
near orthogonality of Sec. II [46].

To evaluate the designed architecture, a set of applications
must be chosen to faithfully represent the state of the art.
The following 9 applications were finally chosen as the
benchmark. Members which are well suited for processing on
ultra energy-efficient sensor nodes in human-centric IoT [35]
are *-marked.

Language Recognition (LANG) is described in
Section II-B [16]. EMG Hand-Gesture Recognition (EMG)
classifies 64-channel electromyography signals recorded
from a subject’s hand into a set of hand-gestures [27]. DNA
Sequencing (DNA) predicts the presence of Exon/Intron or
Intron/Exon boundaries in a strand of DNA [28]. Fetal State
classification (CARDIO) uses measurements of heart-rate and
uterine pressure during pregnancy to classify fetal condition
before delivery [29]. Page-block classification (PAGE)
finds all blocks of the page layout in a document that
has been detected by a segmentation process [30]. UCI
Human-activity Recognition (UCIHAR) classifies recordings
of 30 subjects performing activities of daily living while
carrying a waist-mounted smartphone with embedded inertial
sensors [31]. Spoken Letter Classification (ISOLET) predicts
the English letter spoken from voice recordings of subjects.
Face Detection (FACE) determines whether a human face
is present within a given picture frame [33]. MNIST Digit
Recognition (MNIST) classifies the digit from images of
drawn digits [34].

Table I compares the accuracy of single-pass HDC with
the best ML models for each benchmark dataset from the
literature. Bold indicates better or equal accuracy over the
best-known ML algorithm. The list is non-exhaustive but
contains representative datasets from human-centric IoT sum-
marized in [12]. It is also balanced overall: MNIST, FACE
and ISOLET represent the fact that known HDC algorithms

alone applied on raw features cannot compare to ML for even
simple speech and vision problems.

IV. PROFILING ON CONVENTIONAL ARCHITECTURES

Before proposing a specialized architecture tailored to HDC,
it is prudent to look at its performance on conventional
architectures with standard compilers and compare against
conventional ML algorithms. In this section, a broad eval-
uation of the costs of doing HDC on a CPU and embedded
GPU (eGPU) is performed for 3 supervised classification tasks,
and the results are compared with conventional ML approaches
for the same.

While [12] compares HDC and conventional ML algorithms
on body-sensing applications alone, experiments here are
conducted on popular datasets of the ML algorithm to study
the effectiveness of CPU and eGPU architectures for more
general tasks. It is shown that although compilers cannot
discover the underlying parallelism present in HDC in general,
HDC still produces more efficient code than ML occasionally.
Finally, a comparison across platforms reveals that an ASIC
implementation offers orders-of-magnitude improvements in
classification costs, with energy/inference of few μJ necessary
for deployment in sensor-based IoT.

A. CPU Profiling of HDC

LANG, MNIST and EMG was profiled on an ARM Cortex
A57 onboard a NVIDIA Jetson TX2 embedded platform [47].
The main goal here is to gain a preliminary comparison of
energy expended per prediction, number of cycles, instruc-
tions executed, number of loads/stores and memory footprint
(maximum size of pages allocated).

1) Code Setup: For LANG, HD algorithm and the compared
k-Nearest Neighbors (kNN) base-line were written in C [16].
The text-histograms for kNN was generated using standard
hash-map [48], also written in C.

For EMG, the HD algorithm was written in C as described
in [49], and the corresponding Support Vector Machine (SVM)
algorithm implemented using LIBSVM library [50].

For MNIST, feature-superposition (Section V-B) is used
for the 28 × 28 gray-scale frames. Since the pixel values
are bimodal, its values are thresholded first to a 0 or 1.
The Convolutional Neural Network compared for MNIST
has 2 convolutional layers with 32 3 × 3 kernels and ReLU
activation, followed by 2 × 2 max-pooling layer and finally
a 128-node dense layer (total ≈ 0.5 × 106 parameters, code
modified from [51]). This network was used as it was much
smaller but with similar accuracy to cutting-edge MNIST clas-
sifier (99.3% vs. 99.7% [34]). However, as shown in Table II,
HDC (D = 2048) is more resource efficient that even the
simple CNN profiled. Clearly, HDC would be much more
resource efficient than the far larger cutting-edge MNIST
classifier [34].

All HDC algorithms for CPU were written in C where
hyper-vectors are represented as 32-bit integer arrays. The
associative search through class vectors was implemented
as nested for-loops, where LANG, MNIST used hamming
distance and EMG used cosine-similarity as in [49].

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 443

TABLE II

CPU PROFILING RESULTS: ROWS 1 - 9 COMPARE 2048-DIM HDC WITH KNN, SVM AND CNN. BOLD NUMBERS ARE RATIOS OF METRICS FOR
THE NON-HDC ALGORITHM TO 2048-DIM HDC; LARGER THAN 1 INDICATE HDC IS BETTER. ROWS 10 - 15 COMPARE D = 10000

AGAINST D = 2048; RATIO LARGER THAN 1 INDICATE D = 2048 IS MORE EFFICIENT

TABLE III

PERFORMANCE ON GPU OF HDC & NON-HDC: ARM CORTEX A57 (H) AND NVIDIA 256-CORE PASCAL (G) PERFORMANCE METRICS ARE DISPLAYED.
HD DIMENSION IS D = 2048. BOLD NUMBERS ARE RATIO OF NON-HDC TO HDC; LARGER THAN 1 INDICATE HDC IS BETTER

2) Profiling Method: NVIDIA Jetson TX2 has an on-board
power monitor INA226 [52] used for energy and power mea-
surements. The monitor measures power drawn from separate
supply-lines of CPU and DDR as well. For measuring the
maximum OS page-memory, Valgrind’s massif utility was
used to track all pages allocated to the process by system calls
rather just for dynamic heap. Finally cycles, instructions, and
number of loads and stores were profiled by sampling PMU
registers through UNIX’s perf utility. Since it is sampling-
based, interference by OS code or other processes during the
total elapsed time can lead to variations in measurements.
Multiple runs were performed to reduce empirical variance
in measurement.

Some observations from the results in Table II:
• D = 2048 is about 5-times more efficient than

D = 10000. This is expected as most instructions,
loads and stores and execution time scale linearly with
dimension.

• kNN and MNIST are inefficient compared to HDC
(D = 2048), even though hyper-vectors in C used int32
to store 1 bit. kNN is especially inefficient as it needs to
compare histograms with 284 = 5.31× 105 dimensions
versus 2048 for HDC.

• SVM is uniformly better than HDC (D = 2048). The
lack of bit-level instructions for the compiler along with

lower dimensions of support-vectors (64 dimensions for
SVM vs. 2048 for HDC) explains this effect.

This clearly demonstrates promise for HDC: a better bit-level
mapping and more efficient instruction sequences will make
HDC better than all of these applications. Also note that
kNN, CNN and SVM require multiple iterations while train-
ing (against a single-pass for HDC). Therefore, their energy
consumption for training will be far higher than HDC. A more
detailed study in the future could include dynamic binary
instrumentation from source [53], effects of bit-instructions
and optimal assembly-code on HDC performance, and pro-
filing training with a reasonable setting of hyperparameters
for kNN, CNN, SVM.

B. GPU Profiling for HDC

NVIDIA Jetson TX2 houses an embedded General-Purpose
GPU (GPGPU) tailored for ultra-low-power ML
applications [47]. The same steps as Section IV-A were
repeated on the Arm Cortex A57 CPU - GPU system
onboard Jetson TX2. We also measured memory transfers
between the CPU host (“H” in Table III) and GPU Device
(“G” in Table III).

1) Code Setup: HDC code in Section IV-A were re-written
in TensorFlow [54]. APIs for HDC were developed, including

444 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

TABLE IV

ENERGY PROFILING FOR GPU IMPLEMENTATION OF HDC VS. NON-HDC

creation of data-tensors and execution graphs for computing
dependant tensors for the final accuracy. For LANG, k-Nearest
Neighbors (kNN) was implemented with hashing supported
by Python’s standard dictionaries. For EMG, the Support
Vector Machine (SVM) algorithm was implemented using
ThunderSVM library [55]. For MNIST, the same CNN as
in CPU was implemented in TensorFlow. HDC tensors use
int32 to store hyper-vectors.

2) Profiling Method: NVIDIA Jetson TX2’s on-board
power monitor INA226 can access measure GPU supply-lines
as well [52]. For the remaining metrics, NVIDIA’s proprietary
nvprof utility was used. The summary log was used for
reporting total time spent in copying memory from CPU to
GPU or vice-versa. The API-trace log was used to calculate
the total data (in Bytes) transferred between CPU and GPU.
Finally, all remaining metrics were profiled by nvprof by
re-running Kernels.

Unlike in Section IV-A, the comparison results of HDC with
non-HDC when using GPU is not uniform (see Tables III, IV).
kNN doesn’t have enough DLP to efficiently utilize GPU
parallelism. It transfers huge amount of data from CPU to
GPU before the computation can begin, thereby executing a
large number of loads and instructions on the GPU. Hence,
it is highly inefficient and expensive.

SVM shows similar results on GPU as on CPU. A down-
side of using float32 to store bit-elements is the use of
complex ALUs. Using bit-operations supported on GPU could
greatly improve HDC performance.

Finally, CNN is about 10X more efficient than HDC on the
GPU. This is most likely because of the highly-optimized APIs
for CNNs supplied by TensorFlow. However, the fact that far
more instructions are executed for CNN than HDC indicates
that actual computation cost is likely to be small.

A future experiment should instrument a carefully optimized
code (preferably written in lower-level CUDA) that can handle
multiple-batch sizes and compute them in a single kernel-
session.

C. Summary

Fig. 2 summarizes the energy/inference costs for the HDC
experiments performed in this section, and also shows the cost
comparison with the synthesized ASIC processor described in
Sec. VI. Clearly, eGPU and CPU require much higher energy
expenditure than the ASIC design.

Fig. 2. Energy Efficiency across platforms: Shown energy consumed [J] in
HDC across platforms CPU, eGPU and ASIC. 1-chip denotes energy cost on
the synthesized 28nm ASIC processor using 2048-dim vectors (see Sec. VI).
5-chip denotes energy cost on a system of 5 interconnected ASIC processors
with effective dimensionality of 10240.

HDC algorithms have been profiled on other platforms such
as FPGAs [56] and ML accelerators [12]. Since the proposed
ASIC design in Sec. VI is optimized to HDC, it is likely
to have smaller overhead than such platforms. ASIC is most
suitable for severely energy-constrained environments of IoT.
As shown in later sections, it is indeed possible to design a
simple and small architecture made of simple building blocks
with small programming overhead.

V. GENERIC ARCHITECTURE

This section constructs the generic HD architecture from
the properties of MAP operations (Section II-A). For the high
energy efficiency necessary in IoT, it is crucial that the archi-
tecture is optimal. Therefore, ensuring component simplicity,
using least resources and reducing redundant computation are
the unifying principles used here.

A generic architecture must be able to map application-
specific data after suitable pre-processing. The first step
towards a general design is to abstract essential elements of
HD algorithms. For supervised classification, a clear structure
emerges.

A. Structure of HD Programs

1) Value Representation: To allow consumption by a
discrete-time (clocked) digital system, the input data must
be quantized into discrete states and sampled with a finite
frequency. The choice of quantization scheme and sam-
pling rates are important [57], [58] and is assumed to be
pre-determined by a domain expert. Hence, a common symbol
set X

′ representing values in the feature space always exists.
Amulti-channel input stream can be serialized with a suitable

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 445

policy (for example, samples from 2 channels x1, x2, . . . and
y1, y2, . . . combined to x1, y1, x2, y2, . . .).

Therefore, the input may be modeled as a sin-
gle finite-length time-series of symbols (say, Iserial �
(x1, x2, . . . , xT)) without losing generality. Once the set of
classes, representation space, sampling rate, quantization and
channel ordering are established, a supervised classification
task is ready to be processed in HD.

2) Stages in HD Algorithms: Let Nn � {1, 2, . . . n} be the
set of all natural numbers up to n. The first step is to assign
a random hyper-vector (item) to each symbol in X

′ to obtain
the common item-set X. Then the input stream of symbols in
Iserial = (xt |t = 1, 2, . . . , T) (where each xt ∈ X′) is replaced
by the assigned hyper-vectors, to obtain the corresponding
input sequence of hyper-vectors I � (Xt |t = 1, 2. . . . , T)
(where each Xt ∈ X). Any collection of input values can now
be specified by its set of indices in I. Since only supervised
classification is considered, a given I belongs to a single
class to be trained or tested. For both cases, the exact same
algorithm is applied for processing the hyper-vector sequence.

Therefore, the application-specific encoding stage is an
expression of hyper-vectors Xt , t ∈ NT and MAP operations
(Section II-A). It is important to realize that superposition
is the last operation in such expressions. This is because
permutation and multiply distributes over superposition.
• ρ([A + B]) = [ρ(A) + ρ(B)] for all permutations ρ()

and vectors A, B .
• C ⊕ [A + B] = [(C ⊕ A) + (C ⊕ B)] for all vectors

A, B, C since threshold in superposition is the mean 0.
Using these distribution laws, any HD expression can be
transformed to have superposition as the last operation.

A single-stage algorithm is defined as any HD algorithm
where superposition is used only once. All operands of the
final superposition are products of inputs and their permu-
tations only. In other words, the encoded result is S =
[∑K

i=1 fi (I)], where i th term is

fi (I) = (X p1 ⊕ X p2 . . .⊕ X pm)

⊕(ρu1(Xq1)⊕ ρu2(Xq2) . . .⊕ ρun (Xqn)) (2)

Each term fi (I) depends on specific input values: some occur-
ring as is (set of positions denoted by Pi � {p1, p2, . . . pm} ⊆
NT), and others permuted (set of positions denoted by Qi �
{q1, q2, . . . qn} ⊆ NT) where permutation powers (u1, u2, ..un)
are positive integers. Note that a few inputs may occur both
with and without permutation in the term (i.e. Pi ∩ Qi �= φ).

A dual-stage algorithm has terms composed of prod-
ucts of inputs, outputs of a single-stage algorithm and their
permutations. Similarly, one can build any multi-stage HD
program by hierarchically combining outputs of smaller-stage
algorithms.

3) The ‘Generic’ Model: The main complexity is the gen-
eration of K term vectors fi (I). Each term requires only a
few specific inputs Ai = Pi ∪ Qi , usually a small part of
of the entire stream I. In the most general case, expressions
for distinct terms may have very different inputs and result
expressions, and separate hardware would be dedicated to each
of them. However, all known HD algorithms for expert systems

and fixed-order Markov sequences (including Table I) have a
much simpler form. Specifically, the following conditions are
satisfied:

1) The number of dependent inputs |Ai | is constant for all
terms i ∈ NK . Let this be L.

2) All K terms have the same HD expression. If
fi (z1, z2, . . . , zL) denotes the expression of the i th term
in terms of L input variables z = (z1, z2, . . . , zL) ∈ X

L ,
then fi (z) = f j (z) ∀i, j ∈ NK . This common expression
will be called f (z).

3) The set of dependent inputs for the i th term are trans-
lations of a fixed subsequence of input stream. That
is, for some increasing sequence ti ∈ NT with t1 = 0;
the i th input dependency set is Ai = A1 + ti . Here,
A1 + t denotes the set obtained by adding t to each
element of A1. Note that the first term input A1 cap-
tures the essential pattern of input dependencies for all
terms.

These conditions limit the possibilities of single-stage HD
expressions. An architecture designed to handle all such
expressions shall be called generic as opposed to “general-
purpose” or “general”. Since input stream is a time series,
the entire programming complexity of such a machine is only
for computing f (z).

Property 3 above ensures a sequential generation of all K
term vectors. Assume a pipelined hardware for f (z) with fixed
latency and throughput equal to input rate and let the input
hyper-vectors I be loaded in sequence. Then, the i th term is
produced ti steps after the first term. The final superposition
S = [∑K

i=1 fi (I)] can be computed by accumulating these
terms fi (I) at the required time-steps (t1, t2, . . .). A T -bit
register can mark these time-steps when the accumulator must
be enabled.

B. Common Algorithmic Kernels

Only a few basic expressions are used repeatedly in most
HD algorithms. In fact, all applications in the benchmark
in Table I require variations of the following 2 kernels. EMG
encodes 4-grams for 64-feature samples.
• n-gram Sequence Encoding: As mentioned in

Section II-B, n-grams or the multi-set of n-sequences
can be very useful for modelling sequences. Characters
in an symbol set A � {a1, a2, . . . , aN } are mapped
to random hyper-vectors Ya1, Ya2 , . . . , YaN and the n-
sequence x1, x2, . . . xn (where xi ∈ A) is encoded as
ρn−1(Yx1) ⊕ ρn−2(Yx2) ⊕ ρn−3(Yx3) . . . ⊕ Yxn . Finally,
all occurring n-sequences in the input are encoded and
superimposed to form the final hyper-vector.

• Feature Superposition: This is used to map input feature
vectors into a hyper-vector. Let the feature vector of d
dimensions be V = (v1, v2, . . . , vd). For each vector
position i ∈ Nd , a random hyper-vector Ci is generated
and as discussed in Section V-A.1, all possible input val-
ues v are assigned hyper-vectors Yv . Then V is encoded
as [∑d

i=1(Ci ⊕ Yvi)] and a collection of n samples (a
matrix U with sample vectors as rows) is encoded as the
superposition [∑n

i=1
∑d

j=1(C j ⊕ YUij)].

446 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

Fig. 3. The Generic HD Processor: major components and dataflow during test are shown. A body-sensing application is illustrated with two-channel input
streams. All application-specific peripherals are to the left of HD Mapper. The Encoder is the only programmable component, and systolic array is the most
suitable architecture.

C. Major Components

A generic HDC processor for supervised classification
requires three major components corresponding to the major
steps of processing:
• Item Memory (IM) stores a repertoire of random

hyper-vectors (items). A sufficiently large collection of
such vectors can be re-used for many applications. This
storage requirement cannot be avoided as the map of
symbols to items must be the same during training and
testing.

• Encoder combines the input hyper-vectors sequence
according to an application-specific algorithm to form
single vector per class.

• Associative Memory (AM) stores the trained class
hyper-vectors. During testing, the class hyper-vector clos-
est to the encoded test hyper-vector is returned as the final
prediction.

Fig. 3 shows a diagram for the complete system. All applica-
tion specific pre-processing, sampling and quantization is done
before combining input streams. The peripheral HD Mapper
assigns incoming symbols to an item in Item Memory and
class labels to AM addresses. This mapping is retained for all
sessions of training and testing. Therefore, the actual input to
the generic processor is a time series of IM addresses. Fig. 3
also shows the operation during testing. The IM fetches input
hyper-vectors and the Encoder generates the test hyper-vector.
The AM returns the address of the closest class vector. The
actual label is substituted back by HD Mapper for further
consumption.

While there could be multiple ways to interconnect these
fundamental blocks depending on the complexity of the HDC
system, the simplest system to consider is the generic model of
Sec. V-A.3. When the processor is abstracted in this manner,
two crucial properties emerge:

1) Uni-directional Dataflow: For all applications,
hyper-vectors always flow from IM to Encoder to
AM during both training and testing. There are no
iterations over the input sequence Iserial : symbols xt

are fed in order only once.
2) Single programmable component: Only the Encoder

needs to be programmed for an application. The operation
of both memories always remain the same and do not
change with applications.

Therefore, all major architectural decisions principally con-
cern the Encoder. Since it performs only MAP operations, it is
important to note the parallelism of each operation. For super-
position and multiply, an element of the result vector depends
only on corresponding elements of its operands. Permutation is
the only operation with dependency across vector elements,
where a result element depends on a neighbouring operand
element.

To begin with, the generic model of Section V-A.3 explicitly
encodes dependencies that are not mapped into instructions
optimally by compilers. Finally, hardware required to extract
dynamic ILP and DLP add to energy costs. Section IV-A
and IV-B and Fig. 2 show that conventional architectures such
as CPU & embedded GPUs are very energy-inefficient for
HDC.

Clearly, a dataflow architecture is the most suitable candi-
date. Here, the Encoder is comprised of a regular network
of simple Data Processing Units (DPU), and inter-DPU
communication for dependencies is restricted to neighbors
no more than a fixed distance away [59]. Though several
attempts have been made to map common workloads to
DPUs [60]–[64], only a few of them where dependency
patterns can be expressed as a regular graph have been
successful [59], [65], [66]. HD algorithms perfectly fit these
conditions. All HD operations can be implemented with a few
gates. The sequential input model and the generic abstraction
of Section V-A.3 enables us to map algorithms to DPUs
explicitly.

D. Encoder Architecture

The Encoder is crucial for the overall programmability of
the processor and has the largest activity and wiring complex-
ity. Hence, efficient design of its architecture is important for
optimal implementation.

1) Organization of the Encoder: Generic algorithms can
be decoupled into the generation of terms and super-position.
Clearly, the DPU network only needs to generate all neces-
sary terms, hence it suffices to only implement multiply and
permute in them.

Fig. 4(a) shows the Hyper-dimensional Logic Unit (HLU),
the simplest (single-bit) DPU with only a register and gate.
Since permute has intra-word dependencies, D HLUs can be
connected together to form a module operating on an entire

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 447

Fig. 4. Encoder organization: (From Top-Left): (a) Hyper-Dimensional
Logic Unit (HLU), (b) connecting single-bit HLUs to create a HLU Layer,
(c) encoding steps required for a 3-gram Zt of hyper-vectors Xt , Xt+1, Xt+2
and across-subword dependency, (d) inter-connecting multiple HLU Layers to
generate terms, (e) accumulator for superposition, (f) for the generic model,
the delay partial term and permute partial term can be separately computed
and combined to get the final term for superposition.

hyper-vector (Fig. 4(b)). This coherent unit will be called
HLU Layer. It takes two hyper-vector operands A and B
and can multiply (C = A⊕ B), permute (C = ρ(A)), delay
(C = A) or permute-and-multiply (C = A ⊕ ρ(B)). Each
constituent HLU performs the same operation on input bits.
Permute is a single-cycle derangement, hence any Hamiltonian
path connection through p_in and p_out visiting all HLUs
is valid. Fig. 4(b) illustrates a scheme where alternate HLUs
(except first and last) are connected to minimize length of
longest wire.

HLU Layers can be interconnected among themselves, gen-
erating an overall output hlu_final_out by transforming
the stream of inputs (item) from the IM (Fig. 4(d)).

Finally, a simple array of accumulators perform the
super-position (Fig. 4(e)). A counter at a hyper-vector position
increments or decrements according to corresponding bits
of hlu_final_out being 1 or 0. When the encoding
completes, the vector formed by the MSB of the counters is
the required superposition. Note that the accumulator takes
in hyper-vectors (hlu_final_out) calculated by the last
HLU Layer. In Fig. 4(e) the shift-register ENABLEREG is
programmed to mark the cycles of arrival of required terms
and enable the counters for accumulation (see Section V-A.3).
Its contents are shifted as the design encodes, accumulating
only the required terms.

2) Programmability: A crucial factor for array architec-
tures is the choice of interconnection network. More general

Fig. 5. Examples of HLU Interconnections: (a) A feedback implementation
of input Xt delayed by 3 cycles. (b) A feedforward implementation of input
Xt delayed by 3 cycles. (c) An optimal implementation of 3-gram, using
the minimum number of HLU Layers. (d) A non-optimal implementation of
3-gram with 5 HLU Layers.

networks allow efficient mapping of algorithms at the cost of
increased hardware complexity and power consumption.

For the Encoder, HLU Layers are the only independent
processing elements. Therefore, the major decision here is the
set of allowed operands to each HLU Layer. The most general
network would allow output of any HLU Layer or IM to be
either operand for all HLU Layers.

Fig. 4(d) provides an example Encoder with 3 layers.
Signals op1, op2, op3 program the operation carried out
by HLU Layer 1, 2, 3 respectively. For generic programs, the
term expression is constant, hence these control signals stay
the same throughout the encoding. Operand-select signals A1,
B1, A2, B2, A3, B3 decide the actual interconnections
of HLU Layers. Note that in this setting, feedback is allowed:
a HLU Layer’s output may be its own input in the next cycle.

Feedback offers greater variety for most term expres-
sions. Fig. 5(a) and 5(b) are two HLU networks with feed-
back and feedforward configurations respectively. Both of
them transform the input sequence Xt to the same final
output hlu_final_out = Xt−3. Equivalent networks
with feedback can have non-trivial dependency patterns and
usually requires an exhaustive search through all possible
interconnections.

However, operand-MUX widths and wiring complexity
grow quadratically with the number of HLU Layers, making

448 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

general interconnections infeasible for large designs. It also
complicates the overall pipeline control, as flushing or filling
a pipeline with arbitrary feedback connections is complex.

Fortunately, the benchmark applications do not need such
large designs. Feedforward implementations for term expres-
sions are easy to find and the generic abstraction from
Section V-A.3 helps. Eq. 2 separates a term fi (I) into two
products: the delay partial term (X p1 ⊕ X p2 . . . ⊕ X pm)
made up only of delayed inputs and the permute partial term
(ρu1(Xq1) ⊕ ρu2(Xq2) . . . ⊕ ρun (Xqn)) made up of permuted
and delayed inputs. They can be implemented by separate
interconnections of the HLU Delay Circuit and Permute
Circuit respectively, and combined to give the final output
(Fig. 4(f)).

3) Depth and Width of Dataflow Network: For IoT and
embedded applications, energy efficiency is the critical metric
of success. This subsection describes the effect of Encoder
depth (i.e. number of HLU Layers) and width (say DEncoder)
on energy efficiency.

a) Encoder depth: The HLU Layers are the principal
computing resource in this architecture. They are also use-
ful for intermediate storage as managing a high-dimensional
register-file or data-cache is very inefficient. Consequently,
a given encoding algorithm requires a minimum number of
HLU Layers to be implemented. For example, 3-grams require
at least 3 HLU Layers for storing the 3 operand hyper-vectors
Xt−1, Xt−2, Xt−3 (Fig. 5(c) shows one such interconnection).
Hence, an Encoder with 2 HLU Layers cannot encode n-grams
of n ≥ 3 as no interconnections with 2 Layers exist for them.
Using more than the minimum Encoder layers is possible for
any term f (z) (while expending more energy), and there is
no maximum (trivially, use Fig. 5(a) repeatedly to delay the
input). Fig. 5(d) shows an interesting alternative interconnec-
tion to encode 3-grams using 5 HLU layers.

b) Encoder width: Note that both Item and Associative
Memory must be full-width to avoid accesses to extremely
expensive off-chip memory. Hence, the designer only has a
choice of reducing the Encoder width. The following argu-
ments suggest that sub-word Encoders (DEncoder < D) are
not energy-efficient:
• As Fig. 4(c) shows, permutation leads to additional

dependencies: at each cycle, grey-coded output bits
require operands from neighboring sub-words. This leads
to redundancy as the external bits are re-computed for
another sub-word. For example: n-gram uses n(n − 1)/2
extra bits/cycle for each sub-word.

• Sub-words introduce multiple iterations on the dataset.
This necessitates storing datasets and could require large
memories: such as ≈ 106 char in the training text for
LANG that would require ≈ 1 MB. For a full-width
Encoder, this is not necessary as a single-pass through
the dataset suffices for both training and testing.

• A central property of HDC is that only a few
MAP-operations need to be performed versus
conventional ML algorithms. Therefore, as discussed in
Section VII, a full-width Encoder is likely to consume
less than half of the total power (i.e. PFullEnc < PT ot/2).
So, the total power with a sub-word Encoder P ′T ot must

Fig. 6. (a) Item Memory block diagram (b) Continuous Item Memory (CIM)
(c) Associative Memory block diagram (d) Summary of resources for the
2048-dim processor implemented (e) Interconnecting multiple processors to
improve accuracy at the expense of energy and latency.

have P ′T ot > PT ot − PFullEnc > PT ot/2. Further,
both memories remain unchanged and the Associative
Memory’s popcount module (Fig. 6(c)) is the
critical-path (hence tC L K is unchanged). Finally, the
total cycles/prediction (say TT ot for full-width) is
dominated by the encoding cycles. Thus, sub-word total
cycles/prediction satisfies T ′tot ≥2 Ttot (at least 2 sub-
words, or 2 iterations) and sub-word energy/prediction
will be greater: P ′T ot × T ′T ot > (PT ot/2)×
(2 TT ot) = PT ot TT ot .

VI. ASIC IMPLEMENTATION

A completely digital ASIC implementation with standard
logic cells, memory blocks and conventional Computer-Aided
Design (CAD) toolflow is described.

A. Item Memory

Continuous Item Generation: Assigning orthogonal
vectors to integers or values from an ordered set may

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 449

not be appropriate. Ideally, two close numbers should have
a correspondingly strong correlation in their hyper-vectors.
A possible solution (by [49]) is to assign points on a line con-
necting two exactly orthogonal vectors. Then any collection of
3 hyper-vectors A, B, C (representing integers a ≤ b ≤ c) will
satisfy the triangle law dH (A, B) + dH (B, C) = dH (A, C).
Equivalently, one can begin with a randomly generated origin
vector HD0 and a direction vector Y with (D/2)-bits being 1.
The smallest integer, usually 0, is mapped to HD0 and the
largest integer, say M , is mapped to HD0 ⊕ Y (Fig. 6(b)). For
all other integers n, flip D/2/M additional bits along direction
Y from the hyper-vector assigned to n−1. The only restriction
is that M divides D/2.

A Read-Only Memory (ROM) was chosen to store the
constant item hyper-vectors generated offline (Fig. 6(a)). This
is the simplest possible implementation suited for this prelim-
inary design. For the applications in the benchmark (Table I),
1024 orthogonal items suffice. Item hyper-vectors are divided
into 8-bit sub-words and stored separately in 256 instances of
ROM1024×8. Fig. 6(a) shows a 2048-dim Item Memory with
an 11-bit address (addr); the address space is partitioned with
ROM vectors in the lower half and continuous items in the
upper half.

B. Associative Memory

The Associative Memory stores the learned vectors for a
later comparison and retrieval (see Fig. 6(c)). During train-
ing, the write_en signal enables only the address location
pointed by label_in for writing. The output from the
Encoder (encoder_out) is saved into the corresponding
register. During testing, the encoder_out contains the test
hyper-vector whose hamming distance is computed to each
class in parallel. The number of mismatches is computed by
an element-wise XOR followed by counting the number of 1s
using popcount logic.

A simple module was designed that can store 32 classes and
each class vector has a separate popcount logic attached.
popcount counts the number of 1s in a 256-bit sub-word
in one cycle, and thus 8 cycles are required for the entire
2048-dim hyper-vector. Since the amount of storage required
is small (32× 2048-dim hyper-vectors is about 8 KB),
flip-flops were used instead of SRAMs.

C. Encoder

Fig. 6(d) provides a simplified block-diagram of the entire
2048-dim processor. The designed Encoder has only as much
resources as required by the benchmark applications. A total
of 7 HLU Layers are split into two groups G1 and G2. HLU
Layers 1 and 2 form group G1, where Accumulator 1 performs
superposition of the Layer 2 outputs. HLU Layers 3 to 7
form group G2 where Accumulator 2 performs superposition
of the Layer 7 outputs. ENABLEREG-1 and ENABLEREG-2
are 256-bit shift registers implementing the control signals
for enabling Accumulator 1 and Accumulator 2 respectively.
To allow dual-stage encoding, ENABLEREG-1 from group
G1 provides a global enable signal for all logic in G2
as well. Note that the HLU Layer interconnections are not

Fig. 7. Accuracy with multi-processor configuration.

fully general: the item hyper-vector can only go to Layer 1,
Layers 1 and 2 are fully-connected, and Layers 3 to 7 are
fully-connected with Layer 2 and Accumulator 1.

The control signals for the HLU Layers op, A, B
are scanned into appropriate registers of the HLU Layer.
To program the processor, all HLU Layers are configured
within 130 cycles. ENABLEREG are also loaded before com-
putation begins. Each HLU Layer requires 8 bits of control,
which totals to 64 bits. Once the machine is programmed,
inputs can be consumed sequentially to train/test on the
generated hyper-vector.

D. Multi-Processor Configuration

A simple configuration of multiple processors results in
increased effective dimension (see Fig. 7). To demonstrate
this, consider LANG using 27 input characters (lower-case
alphabets and whitespace). Suppose two instances of the
2048-dim processor (with the same items in the IM) are
used for LANG. The 27 input symbols are randomly mapped
to 27 of 1024 available items in the first processor’s HD
Mapper 1. The second processor’s HD Mapper 2 chooses a
new map of 27 symbols to 1024 items. On average, the two
maps have about 272/1024 = 0.71 common symbol-item
pairs. Hence, they almost certainly compute with completely
different items which is equivalent to the computation on a
4096-dim datapath with freshly generated items.

Fig. 6(e) shows a system of three 2048-dim processors
interconnected to simulate De f f = 6144. Class hyper-vectors
are trained and stored locally in each processor. The mapping
of labels to addresses for the AM must be the same for all
three HD Mappers. During testing, the test-vector is encoded
locally and the distances to the stored class hyper-vectors are
computed locally by each processor. For each class, these local
distances are added to generate a total distance. The class with
smallest total distance is returned as prediction.

A Serial Peripheral Interface (SPI) module can be
used for transmitting local distances to adjacent processors
(see Fig. 6(e)). The AM could add local distances to those
from its SPI slave before transmitting to its SPI master. The
processors are connected linearly and the last processor com-
putes the total class distances along with the final prediction.

It is better to design with smaller dimensions, as one can
easily increase the effective dimensions with interconnection
(but not vice versa). All applications that are better than

450 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

TABLE V

QUALITY OF RESULTS (QOR) REPORT FOR 2048-DIM PROCESSOR

Fig. 8. (a) Area and (b) Power breakdown. (c) 1-chip Energy/Prediction for
the benchmark.

baseline for the 5-chip setting are also better for D = 2048.
Hence, choosing D = 2048 is optimal.

VII. ASIC RESULTS

A. 28nm-Synthesized Processor

The HDC model was trained and tested for all applications
in the benchmark. A System-Verilog RTL description of the
datapath was synthesized using standard digital logic in the
28nm High-K/Metal-gate (HKMG) node provided by TSMC,
under a clock-cycle constraint of tC L K ≤ 2.4 ns.

1) Hardware Complexity: The power consumption of the
synthesized logic was estimated at the (0.8 V, 25◦C, TT)
corner for all apllications. Table V lists the main results of the
designed hardware. The primary goal is to quantify the effects
of the generic architecture alone on the processor performance.
Hence no specialized library cells or circuits were utilized to
optimize for area or power consumption.

Fig. 8 shows the component-wise breakdown of area and
power consumption. The power consumption of LANG is
shown in Fig. 8(b). Other applications resulted in a similar
breakdown of power consumption. The Item Memory is the
largest component as it stores over a thousand hyper-vectors.
The principal contributor to the Encoder’s size is the integer
counters in its two accumulators. Each component of the
accumulator hyper-vector needs a 22-bit register compared to

single-bit registers elsewhere. The major contribution in the
Associative Memory is the dedicated popcount logic for
each class, adding to overall area and power consumption.
Most importantly, the two memory components are the main
contributors to overall power and area. More efficient imple-
mentations, such as analog content-addressable memory [15],
would reduce the overall cost significantly.

2) Energy Efficiency: Fig. 8(c) shows the energy per pre-
diction on a single-processor system. This suffices for LANG,
EMG, DNA, CARDIO and PAGE with energy efficiency better
than 0.8 μJ/pred. For all applications, a single-processor
system consumes less than 1.6μJ/pred. For comparison, [67]
implements a 10, 000-dim HD algorithm for EMG on the
4-core PULPv3 processor [68], operated at 0.5 V, to give
an energy efficiency of 2.10 mW ×10ms/pred. = 21μJ/pred.
A 5-chip implementation of EMG on this processor (De f f =
10240) consumes only 4.03μJ/pred (5.2× improvement).
However, PULPv3 operates at near-threshold range (VD D =
0.5 V) and generates internal body-biasing to optimize for
energy efficiency, whereas no circuit optimizations are used
here. The total ROM size in this design (256 KB) also exceeds
PULP’s L2-cache of 64 KB.

VIII. CONCLUSION

The generic abstraction (Section V-A.3) shows that one
can develop a simple architecture that can be programmed
easily (only 8 HLU Layers requiring 130 cycles to program)
to handle a large variety of supervised applications. A simple
HDC system synthesized in 28nm predicts an energy effi-
ciency better than 1.5 μJ/pred for all benchmark applications.
This indicates that a fabricated HDC chip could meet the
extremely high energy-efficiency requirements necessary for
human-centric IoT.

The choice of distance metric is a crucial factor in deter-
mining the overall performance. An advanced datapath using
cosine similarity instead of hamming distance would improve
accuracy significantly [28], [32]. Similarly, re-training [36]
and using hierarchical HDC algorithms [19] can improve the
accuracy of under-performing applications significantly. These
could be incorporated in a future HDC system by adding
additional control structures and features to the fundamental
generic machine developed in this work.

As a preliminary design of a generic processor, both
the memories are rudimentary. Reference [15] indicates
an improvement of at least 10× in associative mem-
ory energy/pred. when using analog over digital circuits.
ROM-based Item Memory is very expensive as it stores
thousands of high-dimensional vectors. Onboard generation of
pseudo-random vectors (such as using RRAMs in [17]) would
be a great improvement as well.

The datasets used in the benchmark could be improved in
the future. The benchmark datasets are from public reposito-
ries, as access to high-quality data, especially for body-sensing
or industrial applications, requires special licensing, legal
commitments and privacy assurances. Finally, an algorithmic
exploration using newer and better ML algorithms than the
most recent literature on the benchmark datasets could be done
as well.

DATTA et al.: PROGRAMMABLE HYPER-DIMENSIONAL PROCESSOR ARCHITECTURE FOR HUMAN-CENTRIC IoT 451

ACKNOWLEDGMENT

This work is sponsored by “Energy Efficient Computing:
from Devices to Architecture” (E2CDA-NRI), a funded center
of Nanoelectronics Research Initiative (NRI), a Semiconductor
Research Corporation (SRC) program co-sponsored by the
National Science Foundation (NSF). The authors are grate-
ful to Taiwan Semiconductor Manufacturing Comparny Ltd.
(TSMC) for providing the technology libraries used in this
work, and to Commission on Higher Education (CHED)-
Philippine-California Advanced Research Institutes (PCARI)
for facilitating this joint work of collaboration between Uni-
versity of California Berkeley and University of Philippines
Diliman.

The authors would like to thank Bruno Olshausen and Pentti
Kanerva (UC Berkeley) for insightful discussions, Mohsen
Imani (UC San Diego) for providing data files used in training
and classification, Youbin Kim (UC Berkeley) for proofreading
the final manuscript, and all the reviewers for providing
thorough comments and reviews.

REFERENCES

[1] C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond.
Manuf., vol. 24, no. 2, pp. 202–207, May 2011.

[2] S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in
electronics,” Nature Electron., vol. 1, no. 8, pp. 442–450, 2018.

[3] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov. 2005.

[4] T. N. Theis and H.-S. P. Wong, “The end of Moore’s law: A new
beginning for information technology,” Comput. Sci. Eng., vol. 19, no. 2,
pp. 41–50, Mar./Apr. 2017.

[5] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and
analytics: From big data to big impact,” MIS Quart., vol. 36, no. 4,
pp. 1165–1188, 2012.

[6] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: Architecture, applications, and approaches,” Wireless
Commun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

[7] Y.-B. Kim, “Challenges for nanoscale MOSFETs and emerging nano-
electronics,” Trans. Elect. Electron. Mater., vol. 11, no. 3, pp. 93–105,
Jun. 2010.

[8] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s law through
energy efficient integrated circuits,” Proc. IEEE, vol. 98, no. 2,
pp. 253–266, Feb. 2010.

[9] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
38th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 365–376.

[10] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automat. Stud., vol. 34, no. 34,
pp. 43–98, 1956.

[11] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 9,
pp. 2508–2521, Sep. 2017.

[12] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for
combined learning and classification of ExG signals,” Proc. IEEE,
vol. 107, no. 1, pp. 123–143, Jan. 2019.

[13] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cogn. Comput., vol. 1, no. 2, pp. 139–159, Oct. 2009.

[14] P. Kanerva, Sparse Distributed Memory. Cambridge, MA, USA: MIT
Press, 1988.

[15] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 445–456.

[16] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proc.
Int. Symp. Low Power Electron. Design (ISLPED), 2016, pp. 64–69.

[17] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube
fets and resistive ram: Hyperdimensional computing case study,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 492–494.

[18] H. Li et al., “Hyperdimensional computing with 3D VRRAM
in-memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in IEDM Tech. Dig., Dec. 2016,
pp. 16.1.1–16.1.4.

[19] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdi-
mensional computing for energy efficient classification,” in Proc. 55th
Annu. Design Autom. Conf. (DAC), 2018, pp. 108:1–108:6.

[20] A. DasGupta, “Normal approximations and the central limit theorem,”
in Fundamentals of Probability: A First Course. New York, NY, USA:
Springer, 2010, pp. 213–242.

[21] M. Okamoto, “Some inequalities relating to the partial sum of binomial
probabilities,” Ann. Inst. Stat. Math., vol. 10, no. 1, pp. 29–35, 1959.

[22] P. Kanerva, “Some properties of the space {0, 1}n ,” in Sparse Distributed
Memory. Cambridge, MA, USA: MIT Press, 1988, ch. 1, pp. 18–22.

[23] T. A. Plate, “Holographic reduced representations,” IEEE Trans. Neural
Netw., vol. 6, no. 3, pp. 623–641, May 1995.

[24] T. Vatanen, J. J. Väyrynen, and S. Virpioja, “Language identification
of short text segments with N-Gram models,” in Proc. LREC, 2010,
pp. 1–8.

[25] J. F. da Silva and G. P. Lopes, “Identification of document language is
not yet a completely solved problem,” in Proc. Int. Conf. Comput. Intell.
Modelling Control Automat. Int. Conf. Intell. Agents Web Technol. Int.
Commerce (CIMCA), Nov. 2006, p. 212.

[26] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” Comput. Speech Lang., vol. 13, no. 4,
pp. 359–394, Oct. 1999.

[27] A. Moin et al., “An EMG gesture recognition system with flexible high-
density sensors and brain-inspired high-dimensional classifier,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[28] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “HDNA: Energy-
efficient DNA sequencing using hyperdimensional computing,” in Proc.
IEEE EMBS Int. Conf. Biomed. Health Inform. (BHI), Mar. 2018,
pp. 271–274.

[29] N. Chamidah and I. Wasito, “Fetal state classification from cardiotocog-
raphy based on feature extraction using hybrid k-means and support vec-
tor machine,” in Proc. Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS),
Oct. 2015, pp. 37–41.

[30] A. M. Bagirov, J. Ugon, D. Webb, and B. Karasözen, “Classification
through incremental max–min separability,” Pattern Anal. Appl., vol. 14,
pp. 165–174, May 2011.

[31] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in Ambient Assisted Living and Home Care
(IWAAL) (Lecture Notes in Computer Science), vol. 7657, J. Bravo,
R. Hervás, and M. Rodríguez, Eds. Berlin, Germany: Springer, 2012.

[32] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD: Hyperdimen-
sional computing for efficient speech recognition,” in Proc. IEEE Int.
Conf. Rebooting Comput. (ICRC), Nov. 2017, pp. 1–8.

[33] Y. Kim, M. Imani, and T. Rosing, “ORCHARD: Visual object recog-
nition accelerator based on approximate in-memory processing,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,
pp. 25–32.

[34] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2012, pp. 3642–3649.

[35] J. M. Rabaey, “The human Intranet–Where swarms and humans meet,”
IEEE Pervasive Comput., vol. 14, no. 1, pp. 78–83, Jan. 2015.

[36] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recogni-
tion using hyperdimensional computing,” in Proc. 8th Int. Conf. Internet
Things (IOT), 2018, pp. 38:1–38:6.

[37] J. Bose, S. B. Furber, and J. L. Shapiro, “An associative memory for the
on-line recognition and prediction of temporal sequences,” in Proc. IEEE
Int. Joint Conf. Neural Netw. (IJCNN), vol. 2, Jul. 2005, pp. 1223–1228.

[38] O. J. Räsänen and J. P. Saarinen, “Sequence prediction with sparse
distributed hyperdimensional coding applied to the analysis of mobile
phone use patterns,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 9, pp. 1878–1889, Sep. 2016.

[39] O. Rasanen and S. Kakouros, “Modeling dependencies in multiple
parallel data streams with hyperdimensional computing,” IEEE Signal
Process. Lett., vol. 21, no. 7, pp. 899–903, Jul. 2014.

[40] D. Kleyko, E. Osipov, N. Papakonstantinou, and V. Vyatkin, “Hyperdi-
mensional computing in industrial systems: The use-case of distributed
fault isolation in a power plant,” IEEE Access, vol. 6, pp. 30766–30777,
2018.

452 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

[41] Y. Khan et al., “Flexible hybrid electronics: Direct interfacing of soft
and hard electronics for wearable health monitoring,” Adv. Funct. Mater.,
vol. 26, no. 47, pp. 8764–8775, Dec. 2016.

[42] A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “One-shot learning
for iEEG seizure detection using end-to-end binary operations: Local
binary patterns with hyperdimensional computing,” in Proc. IEEE Bio-
med. Circuits Syst. Conf. (BioCAS), Oct. 2018, pp. 1–4.

[43] A. Burrello, L. Cavigelli, K. Schindler, L. Benini, and A. Rahimi,
“Laelaps: An energy-efficient seizure detection algorithm from long-
term human iEEG recordings without false alarms,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 752–757.

[44] Y. Ma, M. Hildebrandt, V. Tresp, and S. Baier, “Holistic representations
for memorization and inference,” in Proc. UAI, 2018, pp. 403–413.

[45] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,” Sci. Robot., vol. 4, no. 30, p. eaaw6736, 2019.

[46] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen,
“Superposition of many models into one,” Feb. 2019, arXiv:1902.05522.
[Online]. Available: http://arxiv.org/abs/1902.05522

[47] D. Franklin. (2017). NVIDIA Jetson TX2 Delivers Twice the Intelligence
to the Edge. [Online]. Available: https://devblogs.nvidia.com/jetson-tx2-
delivers-twice-intelligence-edge/

[48] A. Troy and O. Hanson. (2017). UT-HASH: A Hash Table for C
Structures. [Online]. Available: https://troydhanson.github.io/uthash/

[49] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey,
“Hyperdimensional biosignal processing: A case study for emg-based
hand gesture recognition,” in Proc. IEEE Int. Conf. Rebooting Comput.
(ICRC), Oct. 2016, pp. 1–8.

[50] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 27:1–27:27, 2011.

[51] (2018). Kann. [Online]. Available: https://github.com/attractivechaos/
kann

[52] INA226 High-Side or Low-Side Measurement, Bi-Directional Current
and Power Monitor With I2C Compatible Interface, Texas Instrum.,
Dallas, TX, USA, Jun. 2011.

[53] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation
engine for the ARM architecture,” in Proc. Int. Conf. Compil., Archit.,
Synth. Embedded Syst., Seoul, South Korea, Oct. 2006, pp. 261–270.

[54] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous distributed systems,” 2016, arXiv:1603.04467. [Online].
Available: https://arxiv.org/abs/1603.04467

[55] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” J. Mach. Learn. Res., vol. 19, no. 1,
pp. 797–801, 2018.

[56] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-HD: Fast flexible
FPGA-based framework for refreshing hyperdimensional computing,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA),
2019, pp. 53–62.

[57] A. Coates and A. Y. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in Proc. 28th Int. Conf.
Mach. Learn. (ICML), 2011, pp. 921–928.

[58] G. E. Batista, R. C. Prati, and M. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 20–29, 2004.

[59] H. V. Jagadish, S. K. Rao, and T. Kailath, “Array architectures for
iterative algorithms,” Proc. IEEE, vol. 75, no. 9, pp. 1304–1321,
Sep. 1987.

[60] U. Eckhardt and R. Merker, “Hierarchical algorithm partitioning at
system level for an improved utilization of memory structures,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1,
pp. 14–24, Jan. 1999.

[61] S. V. Rajopadhye, “Synthesizing systolic arrays with control signals from
recurrence equations,” Distrib. Comput., vol. 3, no. 2, pp. 88–105, 1989.

[62] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross, “Warp: An inte-
grated solution of high-speed parallel computing,” in Proc. ACM/IEEE
Conf. Supercomput., Nov. 1988, pp. 330–339.

[63] K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits
in folded pipelined DSP architectures,” IEEE J. Solid-State Circuits,
vol. 27, no. 1, pp. 29–43, Jan. 1992.

[64] P. Cappello, “A processor-time-minimal systolic array for cubical mesh
algorithms,” IEEE Trans. Parallel Distrib. Syst., vol. 3, no. 1, pp. 4–13,
Jan. 1992.

[65] T. Komarek and P. Pirsch, “Array architectures for block matching
algorithms,” IEEE Trans. Circuits Syst., vol. 36, no. 10, pp. 1301–1308,
Oct. 1989.

[66] H. V. Jagadish and T. Kailath, “A family of new efficient arrays
for matrix multiplication,” IEEE Trans. Comput., vol. 38, no. 1,
pp. 149–155, Jan. 1989.

[67] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini, “PULP-
HD: Accelerating brain-inspired high-dimensional computing on a paral-
lel ultra-low power platform,” in Proc. 55th Annu. Design Autom. Conf.
(DAC), 2018, pp. 111:1–111:6.

[68] D. Rossi et al., “A self-aware architecture for PVT compensation and
power nap in near threshold processors,” IEEE Design Test, vol. 34,
no. 6, pp. 46–53, Dec. 2017.

Sohum Datta received the bachelors’ degree in
electrical engineering from IIT Kanpur, Kanpur,
India, in 2015, and the masters’ degree in computer
science from the University of California at Berkeley
(UC Berkeley) in 2018, where he is currently pur-
suing the Ph.D. degree in computer science with the
Department of Electrical Engineering and Computer
Sciences (EECS), advised by Prof. Jan M. Rabaey.
His main interests are brain-inspired memory
and cognitive models, stochastic computing, and
energy-efficient implementation of such systems.

Ryan A. G. Antonio received the B.Sc. degree in
computer engineering from the University of the
Philippines Diliman (UP Diliman) in 2016, where
he is currently pursuing the M.Sc. degree in elec-
trical engineering with the Microelectronics and
Microprocessors Laboratory. His current research
interests are hardware architectures for hyperdimen-
sional computing, machine learning, and asynchro-
nous circuit designs.

Aldrin R. S. Ison received the B.Sc. degree in
electronics and communications engineering from
the University of the Philippines Diliman (UP Dil-
iman) in 2016, where he is currently pursuing the
M.Sc. degree in electrical engineering with the
Microelectronics and Microprocessors Laboratory.
His research interests include spectrum sensing and
hardware architectures for edge computing.

Jan M. Rabaey is currently a Professor with the
EECS Department, Graduate School, University of
California at Berkeley (UC Berkeley), after being
the holder of the Donald O. Pederson Distinguished
Professorship at UC Berkeley for over 30 years.
Before joining the Faculty of UC Berkeley, he was
a Research Manager with IMEC, Belgium, from
1985 to 1987. He is also the founding Director of
the Berkeley Wireless Research Center (BWRC) and
the Berkeley Ubiquitous SwarmLab and has served
as the Electrical Engineering Division Chair at UC

Berkeley twice. In 2019, he became the CTO of the System-Technology
Co-Optimization (STCO) Division, IMEC. He has been involved in a broad
variety of start-up ventures, including Cortera Neurotechnologies, of which
he was a Co-Founder. He has made high-impact contributions to a number of
fields, including advanced wireless systems, low-power integrated circuits,
mobile devices, sensor networks, and ubiquitous computing. His current
interests include the conception of the next-generation distributed systems,
as well as the exploration of the interaction between the cyber and the
biological world.

Dr. Rabaey is a member of the Royal Flemish Academy of Sciences and
Arts of Belgium. He received honorary doctorates from Lund University,
Sweden, the University of Antwerp, Belgium, and Tampere University,
Finland. He was a recipient of major awards, among which the IEEE Mac Van
Valkenburg Award, the European Design Automation Association (EDAA)
Lifetime Achievement Award, the Semiconductor Industry Association (SIA)
University Researcher Award, and the SRC Aristotle Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

