
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015 1537

TrueNorth: Design and Tool Flow of a 65 mW
1 Million Neuron Programmable Neurosynaptic Chip

Filipp Akopyan, Member, IEEE, Jun Sawada, Member, IEEE, Andrew Cassidy, Member, IEEE,
Rodrigo Alvarez-Icaza, John Arthur, Member, IEEE, Paul Merolla, Nabil Imam, Yutaka Nakamura,

Pallab Datta, Member, IEEE, Gi-Joon Nam, Senior Member, IEEE, Brian Taba,
Michael Beakes, Member, IEEE, Bernard Brezzo, Jente B. Kuang, Senior Member, IEEE,

Rajit Manohar, Senior Member, IEEE, William P. Risk, Member, IEEE,
Bryan Jackson, and Dharmendra S. Modha, Fellow, IEEE

Abstract—The new era of cognitive computing brings forth
the grand challenge of developing systems capable of process-
ing massive amounts of noisy multisensory data. This type of
intelligent computing poses a set of constraints, including real-
time operation, low-power consumption and scalability, which
require a radical departure from conventional system design.
Brain-inspired architectures offer tremendous promise in this
area. To this end, we developed TrueNorth, a 65 mW real-time
neurosynaptic processor that implements a non-von Neumann,
low-power, highly-parallel, scalable, and defect-tolerant architec-
ture. With 4096 neurosynaptic cores, the TrueNorth chip contains
1 million digital neurons and 256 million synapses tightly inter-
connected by an event-driven routing infrastructure. The fully
digital 5.4 billion transistor implementation leverages existing
CMOS scaling trends, while ensuring one-to-one correspondence
between hardware and software. With such aggressive design
metrics and the TrueNorth architecture breaking path with pre-
vailing architectures, it is clear that conventional computer-aided
design (CAD) tools could not be used for the design. As a result,
we developed a novel design methodology that includes mixed
asynchronous–synchronous circuits and a complete tool flow for
building an event-driven, low-power neurosynaptic chip. The
TrueNorth chip is fully configurable in terms of connectivity
and neural parameters to allow custom configurations for a wide
range of cognitive and sensory perception applications. To reduce
the system’s communication energy, we have adapted existing
application-agnostic very large-scale integration CAD placement

Manuscript received February 8, 2015; revised May 22, 2015; accepted
July 21, 2015. Date of publication August 28, 2015; date of current ver-
sion September 17, 2015. This work was supported by Defense Advanced
Research Projects Agency under Contract HR0011-09-C-0002. This paper
was recommended by Associate Editor C. J. Alpert.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, P. Datta, B. Taba, W. P. Risk, B. Jackson, and D. S. Modha
are with IBM Research—Almaden, San Jose, CA 95120 USA (e-mail:
akopyan@us.ibm.com; sawada@us.ibm.com; andrewca@us.ibm.com;
arodrigo@us.ibm.com; arthurjo@us.ibm.com; pameroll@us.ibm.com;
ni49@us.ibm.com; pdatta@us.ibm.com; btaba@us.ibm.com;
risk@us.ibm.com; bryanlj@us.ibm.com; dmodha@us.ibm.com).

Y. Nakamura is with IBM Research–Tokyo, Tokyo 600-8028, Japan (e-mail:
xyutaka@jp.ibm.com).

G.-J. Nam and J. B. Kuang are with IBM Research—Austin, Austin, TX,
USA (e-mail: gnam@us.ibm.com; kuang@us.ibm.com).

M. Beakes and B. Brezzo are with the IBM’s T. J. Watson
Research Center, Yorktown Heights, NY, USA (e-mail: beakes@us.ibm.com;
brezzo@us.ibm.com).

R. Manohar is with Cornell University, Ithaca, NY 14850 USA (e-mail:
rajit@csl.cornell.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2474396

tools for mapping logical neural networks to the physical neu-
rosynaptic core locations on the TrueNorth chips. With that, we
have successfully demonstrated the use of TrueNorth-based sys-
tems in multiple applications, including visual object recognition,
with higher performance and orders of magnitude lower power
consumption than the same algorithms run on von Neumann
architectures. The TrueNorth chip and its tool flow serve as
building blocks for future cognitive systems, and give design-
ers an opportunity to develop novel brain-inspired architectures
and systems based on the knowledge obtained from this paper.

Index Terms—Asynchronous circuits, asynchronous commu-
nication, design automation, design methodology, image recogni-
tion, logic design, low-power electronics, neural networks, neural
network hardware, neuromorphics, parallel architectures, real-
time systems, synchronous circuits, very large-scale integration.

I. INTRODUCTION

THE REMARKABLE brain, structured with 100 billion
parallel computational units (neurons) closely coupled to

local memory (1000–10 000 synapses per neuron) and high-
fanout event-driven communication, attains exceptional energy
efficiency (consuming only 20 W), while achieving unpar-
alleled performance on perceptual and cognitive tasks. The
brain’s performance arises from its massive parallelism, oper-
ating at low-frequency (10 Hz average firing rate) and a
low-power density of 10 mW/cm2, in contrast to contem-
porary multi-Gigahertz processors with a power density of
100 W/cm2. The TrueNorth architecture [1], depicted in Fig. 1,
is the result of approximating the structure and form of organic
neuro-biology within the constraints of inorganic silicon tech-
nology. It is a platform for low-power, real-time execution of
large-scale neural networks, such as state-of-the-art speech and
visual object recognition algorithms [2].

The TrueNorth chip, the latest achievement of the Defense
Advanced Research Projects Agency (DARPA) SyNAPSE
project, is composed of 4096 neurosynaptic cores tiled in
a 2-D array, containing an aggregate of 1 million neu-
rons and 256 million synapses. It attains a peak com-
putational performance of 58 giga-synaptic operations per
second (GSOPS) and computational energy efficiency of 400
GSOPS per Watt (GSOPS/W) [3]. We have deployed the
TrueNorth chip in 1, 4, and 16-chip systems, as well as
on a compact 2"×5" board for mobile applications. The

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 1. TrueNorth architecture is inspired by the structure and function of
the (a) human brain and (b) cortical column, a small region of densely inter-
connected and functionally related neurons that form the canonical unit of the
brain. Analogously, the (c) neurosynaptic core is the basic building block of
the TrueNorth architecture, containing 256 input axons, 256 neurons, and a
64k synaptic crossbar. Composed of tightly coupled computation (neurons),
memory (synapses), and communication (axons and dendrites), one core occu-
pies 240 × 390 μm of (d) silicon. Tiling 4096 neurosynaptic cores in a 2-D
array forms a (e) TrueNorth chip, which occupies 4.3 cm2 in a (f) 28 nm low-
power CMOS process and consumes merely 65 mW of power while running
a typical computer vision application. The end result is an efficient approxi-
mation of cortical structure within the constraints of an (g) inorganic silicon
substrate.

TrueNorth native Corelet language, the Corelet programming
environment (CPE) [4], and an ever-expanding library of
composable algorithms [5] are used to develop applications
for the TrueNorth architecture. Prior project achievements
include the largest long-distance wiring diagram of the pri-
mate brain [6], which informed our architectural choices, as

well as a series of simulations using the scalable Compass
software simulator, which implements the TrueNorth logical
architecture. These simulations scaled from “mouse-scale”
and “rat-scale” on Blue Gene/L [7] to “cat-scale” on
Blue Gene/P [8] to “human-scale” on LLNL’s Sequoia 96-rack
Blue Gene/Q [9], [10].

Inspired by the brain’s structure, we posited the TrueNorth
architecture based on the following seven principles.
Each principle led to specific design innovations in order to
efficiently reduce the TrueNorth architecture to silicon.

1) Minimizing Active Power: Based on the sparsity of
relevant perceptual information in time and space,
TrueNorth is an event-driven architecture using asyn-
chronous circuits as well as techniques to make
synchronous circuits event-driven. We eliminated power-
hungry global clock networks, collocated memory and
computation (minimizing the distance data travels), and
implemented sparse memory access patterns.

2) Minimizing Static Power: The TrueNorth chip is imple-
mented in a low-power manufacturing process and is
amenable to voltage scaling.

3) Maximizing Parallelism: To achieve high performance
through 4096 parallel cores, we minimized core area by
using synchronous circuits for computation and by time-
division multiplexing the neuron computation, sharing
one physical circuit to compute the state of 256 neurons.

4) Real-Time Operation: The TrueNorth architecture uses
hierarchical communication, with a high-fanout cross-
bar for local communication and a network-on-chip for
long-distance communication, and global system syn-
chronization to ensure real-time operation. We define
real-time as evaluating every neuron once each millisec-
ond, delineated by a 1 kHz synchronization signal.

5) Scalability: We achieve scalability by tiling cores within
a chip, using peripheral circuits to tile chips, and locally
generating core execution signals (eliminating the global
clock skew challenge).

6) Defect Tolerance: Our implementation includes circuit-
level (memory) redundancies, as well as disabling and
routing around faulty cores at the architecture-level to
provide robustness to manufacturing defects.

7) Hardware–Software One-to-One Equivalence: A fully
digital implementation and deterministic global system
synchronization enable this contract between hardware
and software. These innovations accelerated testing and
verification of the chip (both pre- and post-tapeout),
as well as enhance programmability, such that identical
programs can be run on the chip and simulator.

Realizing these architectural innovations and complex
unconventional event-driven circuit primitives in the 5.4 billion
transistor TrueNorth chip required new, nonstandard design
approaches and tools. Our main contribution, in this paper,
is a novel hybrid asynchronous–synchronous flow to intercon-
nect elements from both asynchronous and synchronous design
approaches, plus tools to support the design and verification.
The flow also includes techniques to operate synchronous
circuits in an event-driven manner. We expect this type of
asynchronous–synchronous tool flow to be widely used in the

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1539

future, not only for neurosynaptic architectures but also for
event-driven, power efficient designs for mobile and sensory
applications.

To implement efficient event-driven communication circuits,
we used fully custom asynchronous techniques and tools.
In computational blocks, for rapid design and flexibility, we
used a more conventional synchronous synthesis approach.
To mitigate testing complexity, we designed the TrueNorth
chip to ensure that the behavior of the chip exactly matches
a software simulator [9], spike to spike, using a global syn-
chronization trigger. For deployment, we adapted existing very
large-scale integration (VLSI) placement tools in order to
map logical neural networks to physical core locations on the
TrueNorth chip for efficient run-time operation. The end result
of this unconventional architecture and nonstandard design
methodology is a revolutionary chip that consumes orders of
magnitude less energy than conventional processors which use
standard design flows.

In this paper, we present the design of the TrueNorth
chip and the novel asynchronous–synchronous design tool
flow. In Section II, we review related neuromorphic chips
and architectures. In Section III, we give an overview of the
TrueNorth architecture. In Section IV, we describe our mixed
asynchronous–synchronous design approach. In Section V, we
provide the chip design details, including the neurosynaptic
core and chip periphery, as well as their major components.
In Section VI, we discuss our design methodology, focusing
on interfaces, simulation, synthesis, and verification tools. In
Section VII, we report measured results from the chip. In
Section VIII, we present TrueNorth platforms that we built
and are currently using. In Section IX, we demonstrate some
example applications. In Section X, we describe tools for map-
ping neural networks to cores. In Sections XI and XII, we
propose future system scaling and present the conclusion.

II. RELATED WORK

Focusing on designs that have demonstrated working
silicon [11], here are some recent neuromorphic efforts.

The SpiNNaker project at the University of Manchester is a
microprocessor-based system optimized for real-time spiking
neural networks, where the aim is to improve the perfor-
mance of software simulations [12]. SpiNNaker uses a custom
chip that integrates 18 microprocessors in 102 mm2 using a
130 nm process. The architecture, being fully digital, uses an
asynchronous message passing network (2-D torus) for inter-
chip communication. Using a 48-chip board, SpiNNaker has
demonstrated networks with hundreds of thousands of neu-
rons and tens of millions of synapses, and consumes 25–36 W
running at real-time [13].

The Neurogrid project at Stanford University is a mixed
analog–digital neuromorphic system, where the aim is to emu-
late continuous-time neural dynamics resulting from the inter-
actions among biophysical components [14]. Neurogrid is a
16-chip system organized in a tree routing network, where neu-
rons on any chip asynchronously send messages to synapses on
other chips via multicast communication [15] and a local ana-
log diffuser network. Long-range connections are implemented
using a field-programmable gate array (FPGA) daughterboard.

Each chip in the system is 168 mm2 in a 180 nm process,
and has a 2D array of 64K analog neurons. Neurons on the
same chip share the same parameters (for example, modeling
a specific cell type in a layer of cortex). In total, Neurogrid
simulates one million neurons in real-time for approximately
3.1 W (total system power including the FPGA).

The BrainScaleS project at the University of Heidelberg is
a mixed analog–digital design, where the goal is to accelerate
the search for interesting networks by running 1000–10 000
times faster than real-time [16]. BrainScaleS is a wafer-scale
system (20 cm diameter in 180 nm technology) that has 200
thousand analog neurons and 40 million addressable synapses,
and is projected to consume roughly 1 kW. The architecture
is based on a network of high input count analog neural net-
work modules, each with 512 neurons and 128K synapses
in 50 mm2. The communication network at the wafer scale
is asynchronous, and connects to a high performance FPGA
system using a hierarchical packet-based approach.

Other mixed analog–digital neuromorphic approaches
include IFAT from University of California at San Diego [17],
and recent work from Institute for Neuroinformatics [18].
Other work has taken a fully synchronous digital
approach [19]. See [11] for one comparative view of
recent neuromorphic chip architectures.

To the best of the author’s knowledge, no previous work
has demonstrated a neuromorphic chip in working silicon at
a comparable scale to the TrueNorth chip (1 million neurons
and 256 million synapses) with comparable power efficiency
(65 mW power consumption). This differentiation is realized
by our circuit design emphasis on minimizing active/static
power, and compact physical design for increasing parallelism.
Also hardware–software one-to-one equivalence is a major
advantage for testing and application development, a feature
that is infeasible for systems based on analog circuits.

III. TRUENORTH ARCHITECTURE

The TrueNorth architecture is a radical departure from the
conventional von Neumann architecture. Unlike von Neumann
machines, we do not use sequential programs that map
instructions into a linear memory. The TrueNorth architecture
implements spiking neurons coupled together by the network
connecting them. We program the chip by specifying the
behavior of the neurons and the connectivity between them.
Neurons communicate with each other by sending spikes. The
communicated data may be encoded using the frequency, time,
and spatial distribution of spikes.

We designed the TrueNorth architecture to be extremely
parallel, event-driven, low-power, and scalable, using a neu-
rosynaptic core, as the basic building block of the architecture.
The left side of Fig. 2 shows a bipartite graph of neu-
rons, which is a small section of a larger neural network.
A TrueNorth core, shown on the right side, is a hardware rep-
resentation of this bipartite graph of neurons, with arbitrary
connectivity between the input and output layers of the graph.
A neurosynaptic core contains both computing elements, neu-
rons, for computing the membrane potential using various
neuron models, and memory to store neuron connectivity and
parameters. By physically locating the memory and the com-
putation close to each other, we localize the data movement,

1540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 2. Bipartite graph of a neural network (left), with arbitrary connections
between axons and neurons, and the corresponding logical representation of
a TrueNorth core (right).

increasing efficiency, and reducing the power consumption of
the chip. By tiling 4096 neurosynaptic cores on a TrueNorth
chip, we scale up to a highly-parallel architecture, where each
core implements 256 neurons and 64k synapses.

As shown in Fig. 2, a single neurosynaptic core consists
of input buffers that receive spikes from the network, axons
which are represented by horizontal lines, dendrites which
are represented by vertical lines, and neurons (represented
by triangles) that send spikes into the network. A connection
between an axon and a dendrite is a synapse, represented by
a black dot. The synapses for each core are organized into a
synaptic crossbar. The output of each neuron is connected to
the input buffer of the axon that it communicates with. This
axon may be located in the same core as the communicating
neuron or in a different core, in which case the communication
occurs over the routing network.

The computation of a neurosynaptic core proceeds accord-
ing to the following steps.

1) A neurosynaptic core receives spikes from the network
and stores them in the input buffers.

2) When a 1 kHz synchronization trigger signal called a
tick arrives, the spikes for the current tick are read from
the input buffers, and distributed across the correspond-
ing horizontal axons.

3) Where there is a synaptic connection between a hori-
zontal axon and a vertical dendrite, the spike from the
axon is delivered to the neuron through the dendrite.

4) Each neuron integrates its incoming spikes and updates
its membrane potential.

5) When all spikes are integrated in a neuron, the leak value
is subtracted from the membrane potential.

6) If the updated membrane potential exceeds the threshold,
a spike is generated and sent into the network.

All the computation must finish in the current tick, which
spans 1 ms. Although the order of spikes arriving from the
network may vary due to network delays, core computation
is deterministic within a tick due to the input buffers. In this
sense, the TrueNorth chip matches one-to-one with the soft-
ware simulator, which is one of the advantages of using a fully
digital neuron implementation.

The membrane potential Vj(t) of the jth neuron at tick t is
computed according to the following simplified equation:

Vj(t) = Vj(t − 1) +
255∑

i=0

Ai(t)wi,js
Gi
j − λj.

Fig. 3. Corners of two TrueNorth chips, with intrachip (green arrow) and
interchip (orange arrow) spike traces.

Here, Ai(t) is 1 if there is an incoming spike (stored temporar-
ily in the buffer) on the ith axon at time t, and wi,j is 1 if the
ith axon is connected to the jth dendrite. Otherwise, the values
are 0. We assign one of four types to each axon, and desig-
nate the type of the ith axon with Gi, an integer from 1 to 4.
The synaptic weight between any axon of type G and the jth
dendrite is given by the integer value sG

j . The integer value λj

is a leak, subtracted from the membrane potential at each tick.
When the updated membrane potential Vj(t) is larger than the
threshold value αj, the jth neuron generates a spike and injects
it into the network, and the state Vj(t) is reset to Rj. The actual
neuron equations implemented in the TrueNorth chip are more
sophisticated [20]. For example, we support: stochastic spike
integration, leak, and threshold using a pseudo random num-
ber generator (PRNG); programmable leak signs depending on
the sign of the membrane potential; and programmable reset
modes for the membrane potential after spiking. The axon
and synaptic weight constraints are most effectively handled
by incorporating the constraints directly in the learning proce-
dures (for example, back propagation). We find that training
algorithms are capable of finding excellent solutions using the
free parameters available, given the architectural constraints.

We created the TrueNorth architecture by connecting a large
number of neurosynaptic cores into a 2-D mesh network, creat-
ing an efficient, highly-parallel, and scalable architecture. The
TrueNorth architecture can be tiled not only at the core-level
but also at the chip-level. Fig. 3 demonstrates spike communi-
cation within one chip, as well as between two adjacent chips.
The green arrow shows a trace of an intrachip spike trav-
eling from the lower-left core to the upper-right core using
the on-chip routing network. To extend the 2-D mesh net-
work of cores beyond the chip boundary, we equipped the
TrueNorth chip with custom peripheral circuitry that allows
seamless and direct interchip communication (demonstrated
by the orange arrow in Fig. 3). As expected, the time and
energy required to communicate between cores physically
located on different chips is much higher than to communi-
cate between cores on the same chip. We will revisit this issue
in Section X.

To implement this architecture in a low-power chip, we
chose to use event-driven computation and communication.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1541

This decision led us to using a mixed asynchronous–
synchronous approach, as discussed in the next section.

IV. MIXED SYNCHRONOUS–ASYNCHRONOUS DESIGN

The majority of typical semiconductor chips only utilize
the synchronous design style due to a rapid design cycle and
the availability of computer-aided design (CAD) tools. In this
approach, all state holding elements of the design update their
states simultaneously upon arrival of the global clock edge. In
order to assure correct operation of synchronous circuits, a uni-
form clock distribution network has to be carefully designed to
guarantee proper synchronization of circuit blocks throughout
the entire chip. Such clock distribution networks have penal-
ties in terms of power consumption and area. Global clock
trees operate continuously with high slew rates to minimize
the clock skew between clocked sequential elements, and con-
sume dynamic power even when no useful task is performed
by the circuits. As a result, if used in an activity dependent
design such as our neurosynaptic architecture, these clock trees
would waste significant energy. Clock gating is a technique
commonly used to mitigate the power drawbacks of global
clock trees. However, clock gating is generally performed at
a very coarse level and requires complex control circuitry to
ensure proper operation of all circuit blocks. Another option
for synchronous designs is to distribute slow-switching clocks
across the chip and use phase-locked loops (PLLs) to locally
multiply the slow clocks at the destination blocks, but PLLs
have area penalties and are not natively activity-dependent.

In contrast, asynchronous circuits operate without a clock,
by using request/acknowledge handshaking to transmit data.
The data-driven nature of asynchronous circuits allows a cir-
cuit to be idle without switching activity when there is no work
to be done. In addition, asynchronous circuits are capable of
correct operation in the presence of continuous and dynamic
changes in delays [21]. Sources of local delay variations may
include temperature, supply voltage fluctuations, process vari-
ations, noise, radiation, and other transient phenomena. As
a result, the asynchronous design style also enables correct
circuit operation at lower supply voltages.

For the TrueNorth chip, we chose to use a mixed
asynchronous–synchronous approach. For all the communica-
tion and control circuits, we chose the asynchronous design
style, while for computation, we chose the synchronous design
style. Since TrueNorth cores operate in parallel, and are gov-
erned by spike generation/transmission/delivery (referred to
as events), it is natural to implement all the routing mech-
anisms asynchronously. The asynchronous control circuitry
inside each TrueNorth core ensures that the core is active only
when it is necessary to integrate synaptic inputs and to update
membrane potentials. Consequently, in our design there is no
need for a high-speed global clock, and communication occurs
by means of handshake protocols.

As for computational circuits, we used the synchronous
design style, since this method aids in implementing complex
neuron equations efficiently in a small silicon area, minimiz-
ing the leakage power. However, the clock signals for the
synchronous circuit blocks are generated locally in each core

Fig. 4. Asynchronous four-phase handshake.

by an asynchronous control circuit. This approach generates a
clock pulse only when there is computation to be performed,
minimizing the number of clock transitions and ensuring the
lowest dynamic power consumption possible.

For the asynchronous circuit design, we selected a quasi
delay-insensitive (QDI) circuit family. The benefits, as well
as the limitations of this asynchronous style have been thor-
oughly analyzed in [21]. The exception to the QDI design
style was for off-chip communication circuits, where we used
bundled-data asynchronous circuits to minimize the number
of interface signals. The QDI design style, based on Martin’s
synthesis procedure [22], decomposes communicating hard-
ware processes (CHP) into many fine-grained circuit elements
operating in parallel. These processes synchronize by com-
municating tokens over delay-insensitive channels that are
implemented using a four-phase handshake protocol. One
of the main primitives of such communication is a Muller
C-element [23]. A single-bit communication protocol is shown
in Fig. 4. Here, the sending process asserts the “data 0” line to
communicate a “0” value, shown by the rising transition (1),
which the receiving process then acknowledges with a rising
transition (2). Subsequently, the channel is reset with falling
transitions (3,4) to a neutral state. As seen in Fig. 4, sending
a “1” value, demonstrated on the next communication itera-
tion, is quite similar. The dotted arrows in Fig. 4 indicate the
causality of the handshake operations.

To implement QDI asynchronous pipelines we used
precharge half-buffers, and precharge full-buffers for compu-
tational operations based on their robust performance in terms
latency and throughput, even with complex logic. As for sim-
ple FIFO-type buffers and control-data slack matching, we
used weak-condition half-buffers, due to their short cycle time
(ten transitions per cycle) and small size in terms of transis-
tor count. These circuit primitives are described in detail by
Lines [24].

This novel mixed asynchronous–synchronous design
approach enables us to significantly reduce the active and
static power, by making the circuits event-driven, and tuning
them for low-power operation. Nonetheless, the circuits
operate at a high speed, making it possible to run the chip at
real-time. For each block, depending on the requirements, we
have used either synchronous or asynchronous design style,
as discussed in the next section.

V. TRUENORTH CHIP DESIGN

A. High-Level Chip Description

In this section, we discuss the detailed design of
the TrueNorth chip, implemented based on the presented

1542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 5. TrueNorth chip (left) consists of a 2-D grid of 64 × 64 neurosynaptic cores. At the edge of the chip (middle), the core grid interfaces with the
merge-split block and then with I/O pads. The physical layout of a single core (right) is overlaid with a core block diagram. See text for details on the data
flow through the core blocks. The router, scheduler, and token controller are asynchronous blocks, while the neuron and static random-access memory (SRAM)
controller blocks are synchronous.

architecture and the previously discussed circuit styles. We
first explain the overall chip design, introducing all the
TrueNorth blocks in this section, and then describe each
individual block in the following sections.

Fig. 5 shows the physical layout of a TrueNorth chip. The
full chip consists of a 64 × 64 array of neurosynaptic cores
with associated peripheral logic. A single core consists of the
scheduler block, the token controller block, the core SRAM,
the neuron block, and the router block.

The router communicates with its own core and the four
neighboring routers in the east, west, north, and south direc-
tions, creating a 2-D mesh network. Each spike packet carries
a relative dx, dy address of the destination core, a destina-
tion axon index, a destination tick at which the spike is to be
integrated, and several flags for debugging purposes. When a
spike arrives at the router of the destination core, the router
passes it to the scheduler, shown as (A) in Fig. 5.

The main purpose of the scheduler is to store input spikes in
a queue until the specified destination tick, given in the spike
packet. The scheduler stores each spike as a binary value in
an SRAM of 16 × 256-bit entries, corresponding to 16 ticks
and 256 axons. When a neurosynaptic core receives a tick, the
scheduler reads all the spikes Ai(t) for the current tick, and
sends them to the token controller (B).

The token controller controls the sequence of computations
carried out by a neurosynaptic core. After receiving spikes
from the scheduler, it processes 256 neurons one by one. Using
the membrane potential equation introduced in Section III: for
the jth neuron, the synaptic connectivity wi,j is sent from the
core SRAM to the token controller (C), while the rest of the
neuron parameters (D) and the current membrane potential (E)
are sent to the neuron block. If the bit-wise AND of the synap-
tic connectivity wi,j and the input spike Ai(t) is 1, the token
controller sends a clock signal and an instruction (F) indicating

axon type Gi to the neuron block, which in turn adjusts the
membrane potential based on sGi

j . In other words, the neuron
block receives an instruction and a clock pulse only when two
conditions are true: there is an active input spike and the asso-
ciated synapse is active. Thereby, the neuron block computes
in an event-driven fashion.

When the token controller completes integrating all the
spikes for a neuron, it sends several additional instructions to
the neuron block: one for subtracting the leak λi, and another
for checking the spiking condition. If the resulting membrane
potential Vi(t) is above the programmable threshold, the neu-
ron block generates a spike packet (G) for the router. The
router in turn injects the new spike packet into the network.
Finally, the updated membrane potential value (E) is written
back to the core SRAM to complete the processing of a single
neuron.

When a core processes all the neurons for the current tick,
the token controller stops sending clock pulses to the neu-
ron block, halting the computation. The token controller then
instructs the scheduler to advance its time pointer to the next
tick. At this point, besides delivering incoming spikes to the
scheduler, the neurosynaptic core goes silent, waiting for the
next tick.

The chip’s peripheral interfaces allow the extension of the
2-D grid of neurosynaptic cores beyond the chip boundaries.
Since the quantity of available I/O pins is limited, the merge-
split blocks at the edges of the chip merge spikes coming from
multiple buses into a single stream of spikes going out of the
chip. Conversely, this peripheral unit also distributes a stream
of incoming off-chip spikes to multiple buses in the core array.

Sections V-B–V-H introduce the blocks constituting the
TrueNorth chip. We first introduce the blocks that reside in
each TrueNorth neurosynaptic core, and then move to the
chip’s peripheral circuitry.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1543

Fig. 6. Neuron block diagram.

B. TrueNorth Core Internals: Neuron Block

The neuron block is the TrueNorth core’s main com-
putational element. We implemented a dual stochastic and
deterministic neuron based on an augmented integrate-and-fire
neuron model [20]. Striking a balance, the implementation
complexity is less than the Hodgkin–Huxley or Izhikevich
neuron models, however, by combining 1–3 simple neurons,
we are able to replicate all 20 of the biologically observed
spiking neuron behaviors cataloged by Izhikevich [25]. The
physical neuron block uses time-division multiplexing to com-
pute the states of 256 logical neurons for a core with a
single computational circuit. In order to simplify implemen-
tation of the complex arithmetic and logical operations, the
neuron block was implemented in synchronous logic, using a
standard application-specified integrated circuit (ASIC) design
flow. However, it is event-driven, because the token controller
only sends the exact number of clock pulses required for the
neuron block to complete its computation, as described in
Section V-F.

The block diagram shown in Fig. 6 depicts the five major
elements of the neuron block, with input/output parameters
from/to the core SRAM shown in blue. The synaptic input unit
implements stochastic and deterministic inputs for four differ-
ent weight types with positive or negative values sGi

j . The leak
and leak reversal units provide a constant bias (stochastic or
deterministic) on the dynamics of the neural computation. The
integrator unit sums the membrane potential from the previous
tick with the synaptic inputs and the leak input. The threshold
and reset unit compares the membrane potential value with
the threshold value. If the membrane potential value is greater
than or equal to the threshold value, the neuron block resets the
membrane potential and transmits a spike event. The random
number generator is used for the stochastic leak, synapse, and
threshold functions. The core SRAM, external to this block,
stores the synaptic connectivity and weight values, the leak
value, the threshold value, the configuration parameters, as
well as the membrane potential, Vj(t). At the beginning and
end of a neural computation cycle, the membrane potential is
loaded from and then written back to the core SRAM.

As previously mentioned, even though the neuron block was
implemented using synchronous design flow to take advantage
of rapid and flexible design cycles, it is fully event-driven to

Fig. 7. Internal structure of the router (top) composed from five QDI
asynchronous circuit blocks (bottom).

minimize the active power consumption. Additionally, multi-
plexing a single neuron circuit for multiple logical neurons
reduced the area of the block, while increasing the parallelism
and reducing the static power consumption.

C. TrueNorth Core Internals: Router

The TrueNorth architecture supports complex intercon-
nected neural networks by building an on-chip network of
neurosynaptic cores. The 2-D mesh communication network,
which is responsible for routing spike events from neurons
to axons with low latency, is a graph where each node is a
core and the edges are formed by connecting the routers of
nearest-neighbor cores together. Connections between cores,
where neurons on any module individually connect to axons
on any module, are implemented virtually by sending spike
events through the network of routers.

As illustrated in Fig. 7, each router is decomposed into six
individual processes: 1) from local; 2) forward east; 3) for-
ward west; 4) forward north; 5) forward south; and 6) to
local. There are five input ports—one that receives the rout-
ing packets from spiking neurons within the local core and
four others that receive routing packets from nearest-neighbor
routers in the east, west, north, and south directions of the 2-D
mesh. Upon receiving a packet, the router uses the informa-
tion encoded in the dx (number of hops in the x direction as a
9-bit signed integer) or dy (number of hops in the y direction
as a 9-bit signed integer as well) fields to send the packet out
to one of five destinations: the scheduler of the local core,
or nearest neighbor routers to the east, west, north, or south
directions. Thus, a spiking neuron from any core in the net-
work can connect to an axon of any destination core within
a 9-bit routing window by traversing the 2-D mesh network
through local routing hops. If a spike needs to travel further
than this routing window (up to 4 chips in either direction),
we use repeater cores.

Packets are routed first in the horizontal direction and the
dx field is decremented (eastward hop, dx > 0) or incremented
(westward hop, dx < 0) with each routing hop. When dx

1544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

becomes 0, the associated bits are stripped from the packet and
routing in the vertical direction initiates. With each vertical
hop, dy is decremented (northward hop, dy > 0) or incre-
mented (southward hop, dy < 0). When dy becomes 0, the
associated bits are stripped from the packet and the remaining
14 bits are sent to the scheduler of the local core. By pri-
oritizing routing a packet in the east/west directions over the
north/south directions, network deadlock through dependency
cycles among routers is precluded.

Because more than one message can contend for the same
router, its resources are allocated on a first-come first-serve
basis (simultaneously arriving packets are arbitrated) until all
requests are serviced. For any spike packet that has to wait
for a resource, it is buffered and backpressure is applied to
the input channel, guaranteeing that no spikes will be dropped.
Depending on congestion, this backpressure may propagate all
the way back to the generating core, which stalls until its spike
can be injected into the network. As a result, the communica-
tion time between a spiking neuron and a destination axon will
fluctuate due to on-going traffic in the spike-routing network.
However, we hide this network nondeterminism at the desti-
nation by ensuring that the spike delivery tick of each spike
is configured to be longer than the maximum communication
latency between its corresponding source and destination. In
order to mitigate congestion, each router has built-in buffer-
ing on all input and output channels in order to service more
spikes at a higher throughput. The router can route several
spikes simultaneously, if their directions are not interfering.

The router was constructed with fully asynchronous QDI
logic blocks depicted at the bottom of Fig. 7, and described
as follows.

1) A buffer block enables slack matching of internal signals
to increase router throughput.

2) A controlled split block routes its input data to one of
two outputs depending on the value of a control signal.

3) A nondeterministic merge block routes data from one
of two inputs to one output on a first-come first-serve
basis. An arbiter inside the block resolves metastabilities
arising from simultaneous arrival of both inputs.

4) Comparator blocks check the values of the dx and dy
fields of the packet to determine the routing direction.

5) Arithmetic blocks increment or decrement the value of
the dx and dy fields.

The implemented asynchronous design naturally enables
high-speed spike communication during times of (and in
regions of) bursty neural activity, while maintaining low-power
consumption during times of (and in regions of) sparse activ-
ity. With the mesh network constructed from the routers,
the TrueNorth chip implements hierarchical communication;
a spike is sent globally through the mesh network using a sin-
gle packet, which fans out to multiple neurons locally at the
destination core. This reduces the network traffic, enabling the
TrueNorth chip to operate in real-time.

D. TrueNorth Core Internals: Scheduler

Once the spike packet arrives at the router of the destination
core, it is forwarded to the core’s scheduler. The scheduler’s

function is to deliver the incoming spike to the right axon at
the proper tick. The spike packet at the scheduler input has the
following format (the dx and dy destination core coordinates
have been stripped by the routing network prior to the arrival
of the packet to the scheduler).

Here, delivery tick represents the least significant 4-bit of the
tick counter; destination axon index points to one of 256 axons
in the core; debug bits are used for testing and debugging
purposes. The delivery tick of an incoming spike needs to
account for travel distance and maximum network congestion,
and must be within the next 15 ticks after the spike generation
(represented by 4 bits).

1) Scheduler Operation: The scheduler contains spike
write/read/clear control logic and a dedicated 12-transistor
(12T) 16 × 256-bit SRAM. The 256 bitlines of the SRAM
correspond to the 256 axons of the core, while 16 wordlines
correspond to the 16 delivery ticks. The overall structure of
the scheduler is outlined in Fig. 8.

The scheduler performs a WRITE operation to the SRAM
when it receives a spike packet from the router. The sched-
uler decodes an incoming packet to determine when (tick)
and where (axon) a spike should be delivered. It then writes a
value 1 to the SRAM bitcell corresponding to the intersection
of the destination axon (SRAMs bitline) and the delivery tick
(SRAMs wordline). All other SRAM bits remain unchanged.
This requires a special SRAM that allows a WRITE opera-
tion to a single bit. The READ and CLEAR operations to
the SRAM are initiated by the token controller. At the begin-
ning of each tick, the token controller sends a request to the
scheduler to read all the spikes for the current tick (corre-
sponding to an entire wordline of the SRAM); these spikes
are sent to the token controller. After all spikes are integrated
for all 256 neurons in the core, the token controller requests
the scheduler to clear the wordline of the SRAM correspond-
ing to the current tick. Since the incoming spikes may arrive
from the router at any time, the scheduler is designed to per-
form READ/CLEAR operations in parallel with a WRITE
operation, as long as these operations are targeting different
wordlines.

2) Scheduler SRAM: The SRAM used in the scheduler has
a special interface to store spikes that are coming from the
router (one at a time), while in parallel reading and clearing
spikes corresponding to the current tick for the entire 256
axon array. The WRITE operation is performed by asserting
the write wordline and bitline. The bitcell at the intersection
of these lines will be updated with a value 1, while the rest of
the SRAM is unchanged. The READ operation is initiated by
asserting one of 16 read ports; this operation reads the entire
256 bits of the corresponding wordline. Similarly, the CLEAR
operation is performed by asserting one of the 16 clear ports,
which sets all the bitcells in the corresponding wordline to
the value 0. The details of the physical implementation for
the scheduler SRAM are described in Section V-E.

3) Scheduler Decoders: The asynchronous decoders of the
scheduler were implemented using 256 C-elements on the

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1545

Fig. 8. Overall scheduler structure. Note that the scheduler SRAM is rotated
90◦ with respect to the bitcell orientation shown in Fig. 9.

bitline side and 16 C-elements on the wordline side. From
the spike packet, the bitline decoder receives the axon num-
ber (represented in 8 bits by a 1-of-4 coding scheme), and
asserts one of the 256 bitlines. Similarly, the wordline decoder
receives the delivery tick of a spike (represented in 4 bits
by a 1-of-4 coding scheme) and asserts one of the 16 word-
lines using custom self-timed control blocks. The decoders
process incoming spikes one at a time to avoid race condi-
tions. A 16-bit AND-tree combines ready signals from the
control blocks, enabling the router to forward the next incom-
ing spike. The ready signals prevent the router from sending
the next spike until the previous one is successfully written to
the SRAM.

4) Scheduler Control Blocks: The scheduler control blocks
(Cblocks) asynchronously regulate the READ, WRITE, and
CLEAR operations to the scheduler SRAM. Cblocks receive
incoming spike requests directly from the wordline decoder in
a one-hot manner. The Cblock that receives a value 1 from
the decoder initiates a WRITE to the corresponding word-
line, as soon as the SRAM is ready (WRITE_enable = 1).
Only one Cblock is allowed to perform READ and CLEAR
operations in a given tick. The privilege of performing these
operations is passed sequentially to the subsequent Cblock at
the end of every tick using an asynchronous token. When the
token controller asserts sch_set or sch_clear, the Cblock that
possesses the asynchronous token performs the READ and
CLEAR operations, respectively. If a WRITE is requested at
the Cblock with the token, the scheduler reports an error to the
neuron block, since this would imply a READ-WRITE con-
flict in the scheduler SRAM. The neuron block acknowledges
this scenario with the error_processed signal.

The scheduler’s logic was implemented using the asyn-
chronous design style to minimize the dynamic power con-
sumption. The asynchronous approach is beneficial here, since
spike packets may arrive from the router at any time with
variable rate. The scheduler also serves the function of a syn-
chronizer by aligning spikes and releasing them to axons at
the proper tick. This synchronization is critical to maintain

Fig. 9. SRAM bitcells. (a) 12T scheduler SRAM Cell (simplified). (b) 6T core
SRAM cell.

the hardware–software one-to-one equivalence by masking
the nondeterminism of the routing network, while enabling
real-time operation.

E. TrueNorth Core Internals: SRAMs

Each TrueNorth core has two SRAM blocks. One resides in
the scheduler and functions as the spike queue storing incom-
ing events for delivery at future ticks. The other is the primary
core memory, storing all synaptic connectivity, neuron parame-
ters, membrane potential, and axon/core targets for all neurons
in the core.

1) Scheduler SRAM: The scheduler memory uses a fully
custom 12T bitcell (see Section V-D for block details and
sequencing information). Unlike a standard bitcell, the 12T
cell performs three operations, with a port for each: READ,
WRITE, and CLEAR. All signals are operated full swing, tran-
sitioning fully between GND and VDD, requiring no sense
amplifiers. The READ operation fetches the state of a row of
cells, requiring a read wordline, WRD, and a read bitline, BRD.
The WRITE operation sets one bitcell (selecting both row and
column) to 1, requiring a word select, WWR, and a bit select,
BWR. The CLEAR operation resets the state of a row of cells
to 0, requiring only a clear wordline, WCLR.

The 12T cell is structured similar to a set–reset latch, com-
posed of a pair of cross-coupled NOR gates, which maintain an
internal state, Q, and its inverse, Q [Fig. 9(a)]. For a CLEAR
operation, the WCLR input to nor1 is pulled to 1, driving Q
to 0, which drives Q to 1. For a WRITE operation, an input
to nor0 is pulled to 1, driving Q to 0, which drives Q to 1.
For this operation, the cell ANDs its row and column selects
(WWR and BWR); however, in the physical implementation, we
integrate the AND and NOR logic (and0 and nor0) into a sin-
gle six transistor gate to save area (not shown). For a READ
operation, we access a stack of two NFETs. When WRD and
Q are 1, the stack pulls BRD to 0. When Q is 1 (Q is 0), the
stack is inactive and does not pull BRD down and it remains
1 (due to a precharge circuit).

2) Core SRAM: The primary core memory uses a
0.152 μm2 standard 6-transistor (6T) bitcell [26] [Fig. 9(b)].
The standard SRAM cell uses READ and WRITE operations,
sharing both wordlines and bitlines. The bitcell consists of
a cross-coupled inverter pair and two access transistors. The
SRAM module uses a standard sense amplifier scheme, reduc-
ing the voltage swing on bitlines during a READ operation and
saving energy.

1546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

The SRAM is organized into 256 rows by 410 columns
(not including redundant rows and columns). Each row corre-
sponds to the information for a single neuron in the core (see
Section V-F). The neuron’s 410 bits correspond to its synap-
tic connections, parameters and membrane potential Vj(t), its
core and axon targets, and the programmed delivery tick.

Both SRAMs were designed to minimize the power con-
sumption and the area, while meeting the necessary perfor-
mance requirement. For example, we reduced the size of the
FETs in the SRAM drivers, lowering the signal slew rate to
3.5 V/ns in order to save power. We also arranged the physical
design floorplan in a way that minimizes the distance between
the SRAM and the computational units, reducing the data
movement and the dynamic power consumption. Additionally,
we used redundant circuit structures to improve the yield, since
the majority of the manufacturing defects occur in the SRAMs.

F. TrueNorth Core Internals: Token Controller

Now that we have introduced the majority of the core
blocks, the missing piece is their coordination. To that end,
the token controller orchestrates which actions occur in a core
during each tick. Fig. 10 shows a block diagram of the token
controller. At every tick, the token controller requests 256 axon
states from the scheduler corresponding to the current tick.
Next, it sequentially analyzes 256 neurons. For each neuron,
the token controller reads a row of the core SRAM (corre-
sponding to current neuron’s connectivity) and combines this
data with the axon states from the scheduler. The token con-
troller then transitions any updates into the neuron block, and
finally sends any pending spike events to the router.

Algorithmically, the control block performs the following
events at each tick.

1) Wait for a tick.
2) Request current axon activity Ai(t) from the scheduler.
3) Initialize READ pointer of the core SRAM to row 0.
4) Repeat for 256 neurons, indexed as j:

a) read neuron data from the current SRAM row;
b) repeat for 256 axons, indexed as i:

i) send compute instructions to the neuron block
only if spike Ai(t) and synaptic connection wi,j

are both 1; otherwise skip;
c) apply leak;
d) check threshold, reset membrane potential if appli-

cable;
e) send spike to the router, if applicable;
f) write back the membrane potential to the core

SRAM;
g) increment the SRAM READ pointer to next row.

5) Request to clear current axon activity Ai(t) in the
scheduler SRAM.

6) Report any errors.
This algorithm, known as the “dendritic approach,” enables

storing all the data for a neuron in a single core SRAM row
and only reading/writing each row once per tick. The dendritic

Fig. 10. Token controller overview (asynchronous registers shown as gray
squares).

approach sets a constant bound on the number of RAM oper-
ations, decoupling the SRAM read power consumption from
the synaptic activity. In contrast, the more common “axonal
approach” built into the Golden Gate neurosynaptic core [27],
handles every input spike as an event that triggers multiple
SRAM operations.

Internally, to process each neuron, the token controller
sends a token through a chain of asynchronous shift registers
(267 registers) and corresponding logic blocks. In the asyn-
chronous register array, 256 registers contain data about which
neurons need to be updated. The remaining registers handle
the control logic between the scheduler, the core SRAM, and
the router (in case of any spikes). At each stage, a shift reg-
ister may generate a timed pulse to a given block, send an
instruction and generate a clock pulse for the neuron block,
or directly pass the token to the next register. Asynchronous
registers responsible for executing synaptic integration instruc-
tions in the neuron block have an input port that checks that
a given synapse is active and that there is a spike on that
axon before generating an instruction and a trigger pulse for
the associated neuron. If there is no synaptic event, the token
advances to the next register, conserving energy and time.

Under extreme spike traffic congestion in the local routing
network, the asynchronous token may not traverse the ring
of registers within one tick, resulting in a timing violation.
In such a scenario, a system-wide error flag is raised by the
token controller indicating to the system that spike data may
be lost and the computational correctness of the network is
not guaranteed at this point, although the chip will continue
to operate.

Depending on the application, dropping spike data may or
may not be problematic for the system. Sensory information
processing systems are designed to be robust at the algorith-
mic level. The system must be robust to variance in the input
data in order to operate in realistic conditions. Similarly, addi-
tive noise should not destroy system performance. Thus, while
losing data is undesirable, the system performance should
degrade gracefully, and not catastrophically. Importantly, how-
ever, when data is lost, the errors are flagged by the system
to notify the user.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1547

When an error condition is detected, there are several
approaches to correcting the situation. First, the user may retry
the computation with a longer tick, a useful method when run-
ning faster than real-time. For real-time systems, however, the
appearance of an error condition generally means that there is a
problem in the network that needs to be corrected. This means
either: 1) adjusting the I/O bandwidth requirements of the net-
work or 2) changing the placement to reduce the interchip
communication (see Section X).

The token controller comprises both asynchronous and syn-
chronous components to coordinate actions of all core blocks.
However, the token controller design is fully event-driven with
commands and instructions generated to other blocks only
when necessary, while keeping the core dormant, if there is
no work to be done. The Token controller is a key to lowering
active power consumption and implementing the high-speed
design required for real-time operation. The token controller
description completes the overview of blocks inside of a
TrueNorth core.

G. TrueNorth Chip Periphery: Merge-Split Blocks and
Serializer/Deserializer Circuits

Now we move from the design of an individual core, to the
design of the peripheral circuitry that interfaces the core array
to the chip I/O. The core array has 64 bi-directional ports on
each of the four edges of the mesh boundary, corresponding to
a total of 8320 wires for east and west edges and 6272 wires
for north and south.1 Due to the limited number of I/O pads
(a few hundred per side), it is infeasible to connect the ports
from the core array directly off chip without some form of
time multiplexing.

To implement this multiplexing, we designed a merge-split
block that interfaces 32 ports from the core array to the chip
I/O, shown in Fig. 11. At the center of the design is the core
array that has 256 bidirectional ports at its periphery, corre-
sponding to the edge of the on-chip routing network. Groups of
32 ports interface to a merge-split block which multiplex and
demultiplex packets to a single port before connecting to the
pad ring. In total, there are eight merge-split blocks around the
chip periphery. The merge-split was designed so that adjacent
chips can directly interface across chip boundaries, thereby
supporting chip tiling. Specifically, spikes leaving the core
array are tagged with their row (or column) before being
merged onto the time-multiplexed link. Conversely, spikes
that enter the chip from a multiplexed link are demulti-
plexed to the appropriate row (or column) using the tagged
information. To maintain a high throughput across chip bound-
aries, the merge-split blocks implement internal buffering via
asynchronous FIFOs.

The merge-split is made from two independent paths: 1) a
merge-serializer path that is responsible for sending spikes
from the core array to the I/O and 2) a deserializer-split path

1Each uni-directional port uses 32- and 24-bit for east–west and north–
south edges, respectively. These ports are encoded using 1-in-4 codes plus an
acknowledge signal, corresponding to 65 and 49 wires, respectively. The north
and south ports require fewer bits since the router data path in the vertical
direction drops the dx routing information.

Fig. 11. Top level blocks of the TrueNorth chip architecture.

Fig. 12. Two-phase bundled data protocol used for interchip communication.
To maximize I/O bandwidth, we send data on both rising and falling edges
of the req signal (double data rate), and use bundled data.

that is responsible for receiving spikes from the I/O and send-
ing them to the core array. The merge-serializer path operates
as follows. First, spikes packets leaving the core array enter
a Merge, where they are tagged with an additional 5 bits to
indicate which of the 32 ports they entered on. Logically, the
Merge is a binary tree built from two-input one-output cir-
cuits with arbitration that combine 32 ports to a single port.
Finally, this single port enters a Serializer circuit that converts
the packet into an efficient bundled-data four-phase protocol
suitable for off-chip communication, shown in Fig. 12.

The converse path consists of a deserializer-split. Here,
spike packets arrive from the off-chip link using the bundled-
data four-phase protocol. These packets are first converted
back into a delay-insensitive four-phase protocol via the dese-
rializer circuit. Next, the split block steers the packet to the
appropriate row (or column) based on the tagged informa-
tion that originated from the adjacent chip. Logically, the split
is a binary tree built from one-input two-output steering cir-
cuits. Note that the row (or column) tag is stripped off before
entering the core array.

The router and the merge-split blocks operate in tandem, and
we implemented both of them using an asynchronous design
style. The QDI approach minimizes routing power consump-
tion when the circuits are idle and maximizes throughput when

1548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

the routing structures have to handle many spikes in flight
at the same time. When no spikes are in flight, the router and
the merge-split blocks remain dormant and consume only a
minimal amount of leakage power. The asynchronous design
style also allows us to operate at a lower voltage and in the
presence of longer switching delays.

By extending the 2-D mesh network beyond the chip
boundary, the merge-split blocks enable efficient scaling to
multichip systems with tens of millions of neurons. The asyn-
chronous handshake interface of the TrueNorth chip does not
require high-speed clocks or any external logic for interchip
communication, reducing the power requirement further.

H. TrueNorth Chip Periphery: Scan Chains and I/O

Here, we cover the TrueNorth chip’s interface for program-
ming and testing. The TrueNorth chip is programmed through
scan chains. Each neurosynaptic core has eight scan chains
with a multiplexed scan interface. Three chains are used to
read, write, and configure the core SRAM. Four additional
chains are utilized to program the parameters of neurosynap-
tic cores such as axon types and PRNG seed values, as well
as to test the synchronous logic. The last chain is a bound-
ary scan isolating the asynchronous circuits and breaking the
acknowledge feedback loop to test the asynchronous logic
independently from the synchronous logic.

The scan chain runs at a modest speed of 10 MHz,
without PLLs or global clock trees on the chip. In order
to speed up the programming and testing of the chip, we
added several improvements to the scan infrastructure. First,
64 neurosynaptic cores in a single row share a scan inter-
face, reducing the chip I/O pin count used for scanning,
while allowing cores in different rows to be programmed in
parallel. Second, neurosynaptic cores in the same row may
be programmed simultaneously with identical configuration,
or sequentially programmed with unique configurations. This
technique allows identical test vectors to be scanned into all
neurosynaptic cores to run chip testing in parallel. Third, the
TrueNorth chip sends out the exclusive-OR of the scan out-
put vectors from neurosynaptic cores selected by the system.
This property enables accelerated chip testing by checking the
parity of the scan output vectors from multiple cores, while
also having the ability of scanning out each individual core,
if necessary.

This section completes the discussion of the TrueNorth
chip design details. One of our key innovations is the adop-
tion of asynchronous logic for activity-dependent blocks,
while using conventional synchronous logic, driven by locally-
generated clocks, for computational elements. In the following
section, we discuss the custom hybrid design methodology
that we developed to implement this state-of-the-art mixed
asynchronous–synchronous chip.

VI. CHIP DESIGN METHODOLOGY

A. TrueNorth Tool Flow

The combination of asynchronous and synchronous cir-
cuits in the TrueNorth chip poses a unique challenge in its
design methodology. In the design approaches discussed in

Fig. 13. TrueNorth design tool flow.

this section, we show how we combined conventional ASIC
and custom design tools to design this chip.

The overall design flow is summarized in Fig. 13. The logic
design of the synchronous circuits in the TrueNorth chip was
specified using the Verilog hardware description language. The
synchronous logic goes through the standard synthesis and
place and route procedures. However, asynchronous circuit
design and verification are not supported by commercial chip
design tools. Instead we used a mix of academic tools [28] and
tools developed internally. For asynchronous design we used
CHP [29] hardware description language and handshaking
expansions [30] for high-level description. We then employed
asynchronous circuit toolkit (developed at Cornell University,
which evolved from CAST [31]) to aid in transforming the
high-level logic into silicon, utilizing a transistor stack descrip-
tion format, called production rules. Though several techniques
exist for automated asynchronous circuit synthesis [32], we
performed this step manually to obtain highly-efficient circuit
implementations for the TrueNorth chip.

The logic simulation of our hybrid design was carried
out by a combination of a commercial Verilog simulator,
Synopsys verilog compiler simulator (VCS), for synchronous
circuits and a custom digital simulator, production rule sim-
ulator (PRSIM) [33], for asynchronous circuits. PRSIM sim-
ulates production rules and communicates with VCS using
the Verilog procedural interface (VPI) [34]. When signal
values change across the asynchronous–synchronous circuit
boundaries, PRSIM and VCS notify each other via the VPI
interface.

The input to PRSIM is a netlist based on production rules.
A set of production rules can be viewed as a sequence of
events/firings. All events are stored in a queue, and when
the preconditions of an event become true, a timestamp is
attached to that event. If the timestamp of an event coincides
with PRSIM’s running clock, the event (production rule) is
executed. The timestamps of events can be deterministic or
can follow a probability distribution. The probability distri-
butions may be random or long-tailed (i.e., most events are
scheduled in the near future, while some events are far in the

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1549

future). Such flexibility allows PRSIM to simulate the behav-
ior of synchronous circuits, as well as of asynchronous circuits
at random or deterministic timing. Whenever an event is exe-
cuted, PRSIM performs multiple tests to verify correct circuit
behavior. These tests include the following.

1) Verify that all events are noninterfering. An event is non-
interfering if it does not create a short circuit under any
conditions in the context of the design.

2) Verify proper codification on synchronous buses and
asynchronous channels.

3) Verify the correctness of expected values of a channel
or a bus (optional).

4) Verify that events are stable. In an asynchronous context,
an event is considered stable when all receivers acknowl-
edge each signal transition before the signal changes
its value again. PRSIM is also capable of evaluating
energy, power, and the transient effects of temperature
and supply voltage on gate delays.

Since the TrueNorth chip is a very large design, simulating
the logic of the entire chip is impractical (due to time and
memory limitations). Instead, we dynamically load and sim-
ulate (using VCS and PRSIM) only the neurosynaptic cores
that are actively used for a given regression. Overall, we ran
millions of regression tests to verify the logical correctness of
our design.

The physical design of the TrueNorth chip was carried out
by a combination of commercial, academic and in-house tools,
depending on the target circuit. On one hand, the blocks using
conventional synchronous circuits were synthesized, placed,
routed, and statically-timed with commercial design tools
(Cadence Encounter). On the other hand, the asynchronous
circuits were implemented exercising a number of in-house
and academic tools. The high-level logic description of asyn-
chronous circuits in the CHP language was manually decom-
posed into production rules. We then used an academic tool to
convert production rules into a parameterized transistor netlist.
These transistor-level implementations of the asynchronous
circuits were constructed based on a custom cell library
built in-house. With the help of in-house tools and Cadence
Virtuoso, the mask design engineers created the physical
design (layout) of the asynchronous implementations. Each
step of converting the asynchronous logic design from CHP
to silicon was verified by equivalence and design rule checkers.

QDI asynchronous circuits are delay-insensitive, with an
exception of isochronic forks [21], which are verified by
PRSIM. Thus, these circuits do not require conventional static
timing analysis (STA). However, a signal integrity issue, such
as a glitch may result in a deadlock of an asynchronous design.
As a result, we took several precautions to improve signal
integrity and eliminate glitches. In particular, we minimized
the wire cross talk noise, reduced gate-level charge sharing,
maximized slew rates and confirmed full-swing transitions
on all asynchronous gates. In order to avoid glitching, we
enforced several rules throughout the asynchronous design.
First, the signal slew rates of asynchronous gates must be
faster than 5 V/ns. Second, noise from charge sharing on
any output node, plus cross talk noise from neighboring wires
must not exceed 200 mV (with the logic nominally running

at 1 V supply) to protect succeeding gates from switching
prematurely [35]. In order to verify these conditions, we simu-
lated the physical design of all asynchronous circuits using the
Synopsys HSIM and Hspice simulators. When these conditions
were violated, we exercised various techniques to mitigate
the issues, including precharging, buffer insertion, and wire
shielding.

Signal integrity in asynchronous circuits is one of the
crucial issues to be addressed during design verification. It
requires an iterative process alternating between simulation
and circuit-level updates, similar to the timing closure process
for synchronous circuits. However, signal integrity verification
is generally more time-consuming, because electrical circuit
simulation takes longer than STA. The necessity for sig-
nal integrity analysis in the context of a large asynchronous
design (over 5 billion total transistors on the TrueNorth chip)
motivates a co-simulation tool that performs electrical sim-
ulation of the targeted asynchronous blocks (both pre- and
post-physical design), while the remainder of the design is
simulated logically, at a faster speed.

We utilized a custom tool, Verilog-HSIM-PRSIM cosim-
ulation environment (COSIM), which enables co-simulation
of an arbitrary mix of synchronous and asynchronous circuit
families at various levels of abstraction. COSIM automati-
cally creates an interface between the Verilog simulator VCS,
the PRSIM asynchronous simulator, and the HSIM transistor-
level simulator using VPI. The tool supports simultaneous
co-simulation of high-level behavioral descriptions (Verilog,
very high speed integrated circuit hardware description lan-
guage, CHP), RTL netlists and transistor-level netlists using
digital simulators (VCS, PRSIM) and an analog transistor-level
simulator (HSIM). COSIM contains preloaded communication
primitives, including Boolean signals, buses, and asynchronous
channels. Whenever a connection needs to be made between
different levels of abstraction, the tool detects the type of
the interface required, and automatically generates the Verilog
code that performs the necessary connection. Furthermore,
COSIM has an extensive module library to send, receive, probe
and check correctness of communication channels.

B. Timing Design

As discussed earlier, the TrueNorth chip contains several
synchronous blocks, including the core computation circuits,
memory controller, and scan chain logic. We followed a stan-
dard synthesis approach for each individual synchronous block
(Fig. 13), however, this presented two unique challenges for
system integration. First, there are no automated CAD tools
that support mixed asynchronous–synchronous designs, and in
particular the interface timing requirements between blocks.
And second, we could not use hierarchical STA for timing
paths between blocks at the core level, due to the presence of
asynchronous blocks in the design.

In order to overcome these challenges, we defined the
following interface design methodology.

1) Synchronous to Synchronous Blocks: We divided the tim-
ing period between the two blocks and interconnecting
wire, and assigned timing constraints to each of the
blocks for standard STA.

1550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 14. Mutually exclusive asynchronous/synchronous timing operations.

Fig. 15. Token controller/neuron detailed timing diagram: d1 and d4 are
set by the first programmable delay line; d2 and d5 are set by the second
programmable delay line; and d3 and d6 are the duration of an asynchronous
handshake and an OR tree propagation delay (∼1 ns). tsetup = (d6b + d1 +
d2 + d3 + d4) and thold = (d5 + d6a).

2) Asynchronous to Asynchronous Blocks: These interfaces
use native QDI asynchronous handshaking and do not
require additional timing constraints.

3) Synchronous to Asynchronous Blocks: Data is set by the
synchronous block one clock cycle prior to consumption
by the asynchronous block. Consumption is triggered by
the asynchronous token controller following completion
of the synchronous clock cycle.

4) Asynchronous to Synchronous Blocks: Data is set by the
token controller and then the token controller sends a
clock pulse (controlled by programmable delays) to latch
the data. This interface has a delay assumption described
in Fig. 15 in more detail.

Fig. 14 shows the mutually exclusive timing of the mixed
synchronous/asynchronous timing domains. Synchronous and
asynchronous transactions occur on different cycles, as dic-
tated by the token controller, and both types of cycles are
bounded by an asynchronous handshake in the token con-
troller. So for any two interfacing blocks, the token controller
assures that the asynchronous signals are static during a cycle
while the synchronous signals transition, and the synchronous
signals are static during a cycle while the asynchronous signals
transition.

The token controller generates the synchronous clock and
data according to the timing diagram of Fig. 15. In order
to mitigate the risk of a timing violation, we use two pro-
grammable delay lines (based on delay cells in the standard

Fig. 16. TrueNorth chip die photo with package substrate.

cell library) to configure the position of the rising clock edge
in increments of 0.27 ns, as shown in Fig. 10. This governs
the setup and hold times of the data going into the neuron
block.

In general, the interfaces between the
asynchronous–synchronous boundaries require special
care to assure the correct circuit behavior. Without auto-
mated tools to handle this, it is important to limit the
asynchronous–synchronous interfaces to the block and unit
boundaries to make the design and verification manageable.

C. Manufacturing Considerations

The TrueNorth chip, shown in Fig. 16, was fabricated using
Samsung’s 28 nm LPP CMOS process technology. This sil-
icon fabrication process was tuned for low-power devices.
In order to further reduce power consumption of the chip,
we used field-effect transistors with longer channel lengths.
In our design, for all asynchronous state-holding gates, we
used combinational feedback [33] instead of staticizers [36]
to minimize switching power consumption, as well as due to
process technology limitation of only few discrete transistor
gate lengths.

At 4.3 cm2 in die area and 5.4 billion transistors, the
TrueNorth chip is larger than a typical ASIC chip, and manu-
facturing defects could have been a serious issue. To minimize
the risk of defects at the design mask level, we utilized high-
yield manufacturing rules during the physical design. We also
implemented various redundancy and testing structures on the
TrueNorth chip. For example, at the circuit level, the core
SRAM has ten redundant columns and 16 redundant rows to
improve the yield. We also placed dummy cells around the
SRAM cell arrays to improve the lithographic rendering qual-
ity. Finally, we applied Monte Carlo simulation to the SRAM
circuits to verify sufficiently high yield.

Testing and debugging were some of the reasons why we
designed the TrueNorth chip to be one-to-one equivalent with
its software simulator. In the event of failure, we can compare
the chip’s behavior to that of the simulator, quickly isolating
the deviation and identify the faulty cores. This is one advan-
tage of using digital circuits over analog circuits in designing
artificial neurons.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1551

The arrangement of our communication network addresses
the yield issues that may arise during fabrication. Faulty cores
can be disabled and routed around, allowing the majority of
the chip to remain functional in the face of defects. In the less
likely case of a faulty router, the entire row and column of
cores associated with a given router would have to be disabled,
since spikes traveling to any core on the given row/column
may pass throughout the defective router and potentially dead-
lock the system. In these cases, the configuration of the
TrueNorth chip must be adjusted by the chip’s software to
avoid the faulty cores. Therefore, due to the high level of on-
chip core redundancy, the chip still remains functional, losing
only a fraction of the available cores.

The takeaway point is that while designing the TrueNorth
chip we used a number of architectural, circuit-level, as
well as manufacturing process-related techniques to make
the chip power-efficient and resilient to manufacturing
defects.

VII. MEASURED TRUENORTH CHIP DATA

We tested the TrueNorth chip for logical correctness and
extensively characterized it for performance and power con-
sumption [1], [3]. Naturally, the performance and efficiency
of the TrueNorth chip varies with the neural activity, routing
network connectivity, and operating voltage. Here we present
some important technical characteristics of the TrueNorth chip.
As explained in Section IV, based on the TrueNorth chip’s
event-driven implementation, we are able to operate the chip
at lower voltages without running into timing violations that
one would encounter using a common synchronous design
approach. Overall, the TrueNorth chip is operational from
1.05 V down to 0.7 V, with total power consumption rang-
ing from 42 mW in the low corner (0.70 V, 0 Hz firing rate,
0 synapses/neuron) to 323 mW in the high corner (1.05 V,
200 Hz firing rate, 256 synapses/neuron). As an example, to
show the chip’s low-power capability, we pick an operating
point of 0.75 V. At this supply voltage, the maximum com-
putational speed of the chip is 58 GSOPS and the maximum
computational energy efficiency is 400 GSOPS/W.2 While run-
ning a typical complex recurrent neural network at 0.75 V with
20 Hz average firing rate and 128 active synapses per neu-
ron at real-time (1 kHz tick), the TrueNorth chip consumes
only 65 mW and delivers 46GSOPS/W. We also demonstrated
the TrueNorth chip properly functioning faster than real-time
(tick > 1 kHz). In our experiments we measured up to 21×
real-time operation, dependent on the activity rates, synaptic
density, and voltage levels.

Fig. 17 shows a breakdown of the components of the overall
TrueNorth chip power (@ 0.8 V) for three complex recurrent
networks with 128 synapses per neuron average, and three
different average firing rates. Such complex networks approxi-
mate a worst-case scenario for power consumption as the cores
are randomly placed on the chip. Random placement signifi-
cantly increases internal communication power as compared
with the application examples where communicating cores

2Measured using a recurrent network with neuron firing rates in the range
of 0–200 Hz and synaptic connectivity varying between 0–100%.

Fig. 17. Total TrueNorth chip power breakdown (@ 0.8 V) for three complex
recurrent networks with 128 synapses per neuron average, and three different
average firing rates.

tend to be near each other (the placement can be optimized
as in Section X). Computation and communication are both
event driven, thus active power scales with firing rate. In [3],
we measured two to three orders of magnitude speedup in
execution time and five orders of magnitude lower energy con-
sumption for a set of computer vision neural networks run on
TrueNorth, over the same networks run on a dual 2.4 GHz
E5-2440 processor x86 system, as well as a Blue Gene/Q
system with up to 32 compute cards.

From the above data, one can see that the TrueNorth chip
is a very power-efficient (65 mW typical) and highly-parallel
neurosynaptic chip that runs complex neural networks in real-
time. Next, we present the TrueNorth-based systems that we
used for collecting the test data, as well as for running the
visual recognition applications described in Section IX.

VIII. TRUENORTH PLATFORMS

We architected the TrueNorth chip with scalability as one
of the major requirements. Like the cores within a chip, the
chips themselves are designed to be tiled into a scalable 2-D
array without any modification to the underlying routing algo-
rithm or the need for off-chip interface circuits. This way we
can create large networks of neurosynaptic cores with many
interconnected neurons. From a logical point of view, there
is no difference whether the communication between neurons
occurs on the same chip or across many chips.

Using these principles, we built a single-chip testing sys-
tem for characterizing the TrueNorth chips, as well as several
multichip systems, with various arrangements of the TrueNorth
chips [3]. We also built a mobile single TrueNorth chip system
(NS1e), which is designed as a stand-alone, compact, low-
power, flexible delivery platform for real-time spiking neural
network applications. The multichip systems include a 4 × 1
chip platform and a 4 × 4 chip platform [3]. The total system
power, while running the grid classifier application on the 4×4
platform at real time was 7.2 W, of which the TrueNorth array
(@ 1.0 V) consumed 2.5 W. These TrueNorth systems are
currently being successfully used for the neural applications
described in Section IX.

The direct communication between chips in all direc-
tions on multichip boards occurs by means of asynchronous

1552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

bundled-data protocol, as explained in Section V-G. The
TrueNorth pads are allocated and aligned in a manner that
allows simple tiling and direct chip-to-chip signal connec-
tion. The communication interface signals from the peripheral
chips are routed to off-board connectors to allow further scal-
ing that creates a larger 2-D mesh of neurosynaptic cores by
tiling (or densely stacking) the TrueNorth boards. These off-
board connectors may be mated directly to similar connectors
on other boards for further seamless chip communication or
through FPGA-based data-port expanders to create an even
larger scale routing infrastructure.

The key for building more complex TrueNorth systems in
the future, as proposed in Section XI, is the TrueNorth chip’s
power efficiency, which relaxes the system power delivery con-
straints and significantly decreases (or potentially eliminates)
the cooling requirements.

IX. TRUENORTH CHIP APPLICATIONS

Applications for the TrueNorth architecture are developed
using the CPE, an object-oriented, compositional language
and development environment for building neurosynaptic
software that is efficient, modular, scalable, reusable, and
collaborative [4]. We previously demonstrated a variety of
corelet applications, including speaker recognition, musi-
cal composer recognition, digit recognition, hidden Markov
model sequence modeling, collision avoidance, and eye
detection [5].

Corelet programs describe neurosynaptic cores in a logi-
cal format that is agnostic to the physical location of each
core in the actual hardware, allowing the same corelet to be
deployed on different hardware configurations without mod-
ifying the source code. However, for any given hardware
configuration, every logical core must be mapped to a unique
physical core on a TrueNorth chip. These physical core place-
ments can be optimized to minimize bandwidth and active
power using application-agnostic algorithms, as described in
Section X.

To demonstrate these optimizations, we present a selection
of streaming video applications (Fig. 18), all of which can
process video at 30 frames/s in real-time [3].

1) Haar-Like Features: Haar-like features, popular for face
recognition [37], are differences of summed intensity
in adjacent rectangles. We extract ten Haar-like fea-
ture maps—eight sensitive to vertical or horizontal
edges with various phases, plus two center-surround
features—from each 200×100-pixel frame.

2) Local Binary Patterns: Local binary patterns (LBPs) are
simple texture features used in biometrics, robot naviga-
tion, and magnetic resonance imaging analysis [38]. We
extract 20-bin LBP feature histograms from subpatches
covering a 200×100-pixel frame.

3) Saccade Generator: Mammalian visual attention directs
a succession of quick eye movements called saccades to
salient targets in the field of view [39]. Our application
identifies saccade targets in an HD image by combin-
ing various feature maps into a single saliency map,
performing a winner-take-all operation to find the most

Fig. 18. Examples of streaming video applications. Left: features extracted
from (a) one frame of a moving-camera video. (b) Haar-feature response map
for horizontal lines. (c) Eight LBP histograms extracted from eight subpatches.
Middle: (d) consecutive saccades, targeted to peaks of a (e) saliency map.
(f) K-means classifier predictions for a person (top, fourth bar) or bicyclist
(bottom, fifth bar); bar height denotes prediction strength for five foreground
classes and a null class (sixth bar). Right: (g) grid classifier detects and
classifies five types of foreground objects in each frame of an HD video
with a vertical aspect ratio (green box = person, magenta = bicyclist, and
yellow = car).

salient pixels, and using inhibition of return to prevent
consecutive saccades from looking at the same place.

4) K-Means Classifier: Once a saccade generator has suc-
cessfully detected and centered a salient object in a
32×32-pixel patch, our first classifier example uses
K-means clustering to identify up to one foreground
object per frame [40].

5) Grid Classifier: To detect and classify all objects in an
entire image simultaneously, our second two classifier
examples tile the image with a grid of identically trained
patch classifiers. Grid classifier B [Fig. 18(g)] is tuned
to maximize classification accuracy, using 16 chips to
obtain an out-of-sample precision of 0.85 and 0.75 recall
on the DARPA Neovision2 Tower dataset, a multiobject
detection and classification task based on a collection
of fixed-camera HD videos containing moving and sta-
tionary people, bicyclists, cars, buses, and trucks [41].
Grid Classifier A trades a small amount of accuracy for
much lower chip area and energy consumption, requir-
ing only 7 chips to obtain a 0.82 precision and 0.71
recall.

The total TrueNorth power while running each of these
applications at real-time is listed in the final column of Table I.
While the primary application that we present is our solution
to the NeoVision visual-object-recognition task, which con-
tains what/where pathways analogous to the mammalian visual
cortex, TrueNorth is a general-purpose computing architec-
ture whose design space is not confined strictly to biologically
motivated algorithms. Thus, while the bio-inspired NeoVision
application demonstrates depth, applications like Haar fea-
tures, LBP histograms, and K-means are intended to show
breadth across a range of designs. For a case study on how con-
ventional computer-vision algorithms like Haar features can
efficiently map to the TrueNorth architecture in a saliency-map
application (see [42]).

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1553

TABLE I
OPTIMIZATION RESULTS AND MEASURED TOTAL TRUENORTH CHIP POWER RESULTS

X. ALGORITHM MAPPING: CORE PLACEMENT

The power consumption of a TrueNorth system running a
program depends on how the program is mapped on the chip.
The energy required to communicate a spike between cores
or even between chips increases with the distance between
the source and the destination. Mapping logically connected
cores to physically adjacent cores on the same chip can dra-
matically reduce the power consumption of the overall system.
We adopted an existing VLSI design automation tool to solve
this problem.

The problem of mapping neurosynaptic cores to mini-
mize spike communication power can be formulated as a
wire-length minimization problem in VLSI placement [43]

min W(x, y)

s.t. Di(x, y) ≤ Mi, for each tile i

where W(x, y) is a wire-length function and Di(x, y) and Mi

encode placement legality constraints for floor-planning tile i.
For neurosynaptic core placement, Di(x, y) is a potential func-
tion representing the sum of core areas in tile i, and Mt is the
maximum potential value (i.e., the maximum number of cores)
allowed in a tile.

To define a wire-length function for neurosynaptic core
placement, we represent the network as a graph G = (V, E)

whose nodes V = {v1, v2, . . . , vn} denote cores, and edges
E = {e1, e2, . . . , em} denote nets connecting cores. For nets
between cores on the same chip, the active power per spike
is a linear function of the Manhattan distance between the
source and the destination. Nets connecting cores on differ-
ent chips consume substantially higher power while bridging
chip boundaries. Accordingly, our net wire-length model has
separate terms for within-chip (non) and off-chip (noff) nets

W(x, y) =
∑

e∈non

[|xi − xj| + |yi − yj|
]

+
∑

e∈noff

E ∗ [|cxi − cxj| + |cyi − cyj|
]

where xi and yi are the respective x- and y-coordinates of the
core vi, E is a large constant penalty for off-chip communi-
cation between neighboring chips, and cxi and cyi denote the
coordinates of chip boundaries. The off-chip term is simply the
penalty constant multiplied by the number of chip boundaries
a spike must traverse.

Recall from Section V-G, each merge operation combines
32 buses down to one bus, followed by a two times serializa-
tion, resulting in a 64 times reduction in boundary bandwidth.

In addition, there is a greater than ten times disparity in fre-
quency between the internal NoC frequency and the I/O pad
frequency. Combined, the spike bandwidth is over 640 times
lower at the chip boundary than internal to the chip.

In addition to its static wire-length W(x, y), each edge ei

is assigned a weight wi that is proportional to the number
of spikes communicated across that edge. Minimizing total
weighted wire-length for a network of neurosynaptic cores is
equivalent to minimizing active communication power of a
TrueNorth system.

To perform the minimization, we use IBM CPLACE [44],
an analytical placer used to design high performance server
microprocessors, gaming chips, and other ASICs. When plac-
ing each network, we use four different global placement
algorithms and use the result with the minimum wire length
as the actual implementation.3 In practice, all four methods
produce efficient placement results.

1) Multilevel Partitioning-Driven Algorithm [46]: This
method recursively partitions the placement area into
subregions and minimizes the crossing nets called “cuts”
among the subregions. This process is repeated for each
subregion until the area becomes small enough.

2) Analytical Constraint Generation Algorithm [47]: The
partitioning-based algorithm is enhanced with cell-
distribution constraints determined by an analytical free
space calculation.

3) Hierarchical Quadratic Placement Algorithm [48]: The
analytical top-down quadratic partitioning algorithm by
Vygen [49] is enhanced with a semi-persistent bottom-
up clustering algorithm.

4) Quadric-Based Force-Directed Analytical Algori-
thm [44]: The force-directed analytical placer is one
of the most popular placement algorithms, balancing
wire-length minimization with density constraints to
yield a high quality solution.

Table I lists placement optimization results and measured
total power for various applications mapped to either the
single-chip TrueNorth testing board or the 4×4 TrueNorth
board, corresponding to networks on the order of 0.6–16 mil-
lion neurons and 150 million to 4 billion synapses. For grid
classifier B, a 16-chip network mapped to the 4×4 board, opti-
mizing core placement reduces average static hop distance
by a factor of 24× to only 6.7 hops (Fig. 19), and reduces

3Note that the physical mapping problems are easily ported into the place-
ment bookshelf contest formats [45]. Therefore, if you are interested in trying
your own placement implementation, please contact the authors.

1554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

Fig. 19. Hop distribution of spikes using unoptimized (left) or optimized
(right) core placement of grid classifier B.

Fig. 20. Maximum spikes per tick for each port using unoptimized (left) or
optimized (right) core placement of grid classifier B on the 4×4 TrueNorth
board.

the number of static cross-chip routes by a factor of 55×.
Optimization reduces maximum spike traffic from about 10K
spikes/tick on some ports down to 2500 spikes/tick on all ports
(Fig. 20). This optimization first ensures the boundary traffic
is low enough to avoid congestion delay, while maintaining
real-time operation. Further optimization reduces the energy
consumption.

The minimum wire length solution also implicitly addresses
the worst-case spike travel time by reducing congestion, as
well as by reducing the number of long wire paths, both within
and across chip boundaries, as shown in the hop distance
distributions in Fig. 19.

This optimization technique of mapping logical cores to
physical TrueNorth cores is invaluable for the software design
methodology, improving the efficiency of TrueNorth pro-
grams run on hardware. It both reduces network bandwidth
requirements and minimizes active communication power.

XI. FUTURE LARGE SCALE TRUENORTH SYSTEMS

This section discusses our perspective for scaling the
TrueNorth architecture to massive neurosynaptic systems
using the existing TrueNorth hardware described earlier. The
extremely low-power profile of the TrueNorth chip enables us
to envision large-scale neurosynaptic systems approaching the
scale of a mammalian brain.

Many neural networks employ both short and long
connections for communication between neurons.
On a TrueNorth-based large-scale system, short distance

communication is handled by the core crossbars and asyn-
chronous routers at the intrachip level. For longer distance
communication, which may connect neurons that are physi-
cally located far apart from each other in the system, we use
robust asynchronous channels to communicate between chips.
As for the ultralong distance connections, we use conventional
communication protocols. As one design solution, we can
create a tree-like topology of Ethernet nodes. On each node,
programmable-logic is used to convert asynchronous spike
information from the periphery of a 2-D mesh network of
TrueNorth chips to a TCP/IP packet format, which can be
sent over the Ethernet.

With low-power consumption being the major characteristic
of our neurosynaptic chips, TrueNorth chips may be densely
packed together without cooling or power distribution con-
cerns. Our preliminary calculations show that 4096 chips may
be packed into a single rack, creating a 4 billion neuron sys-
tem. The estimated power consumption for the TrueNorth
chips on such a system is 300 W. For communication to the
outside world, as mentioned earlier, and for fast configura-
tion purposes, TrueNorth systems need to employ FPGAs and
network interfaces. As a result of this power consumption
overhead, we estimate the total power of a 4 billion neuron
system at a few kilowatts. Scaling such a TrueNorth system
further to 96 racks will deliver 412 billion neurons with 1014

synapses, which is comparable to a human brain in terms of
the number of neurons and synapses. At this scale, the power
consumption attributed to the TrueNorth chips is estimated to
be 29 kW, although the total system power is likely to be
a few hundred kilowatts due to communication and configu-
ration devices. Such a system should be able to compute in
real-time the 1014 synapse model, which was previously sim-
ulated by the BlueGene/Q Sequoia 7.9 MW system 1542×
slower than real-time [10].

XII. CONCLUSION

In this paper, we presented the design and tool flow innova-
tions of the groundbreaking TrueNorth chip that implements
our brain-inspired, event-driven, non-von Neumann architec-
ture. The TrueNorth chip is the world’s first 1 million neuron,
256 million synapse fully-digital neurosynaptic chip, imple-
mented in a standard-CMOS manufacturing process. The
chip is highly-parallel, defect-tolerant, and operates at real-
time with an extremely low typical power consumption of
65 mW. Inside our low-power TrueNorth chip, we implement
architectural innovations and complex unconventional event-
driven circuit primitives to adhere to our seven main design
principles.

We covered the mixed asynchronous–synchronous design
approach, and the methodology that we developed while cre-
ating the TrueNorth chip. This novel tool flow, along with the
event-driven techniques that we demonstrated, give designers
an opportunity to mix asynchronous and synchronous circuits
in order to make their future state-of-the-art designs more flex-
ible and energy efficient. We now turn to the CAD research
community for collaboration in automating and improving this
tool flow further.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1555

In contrast to general purpose von Neumann machines,
which are optimized for high-precision integer and floating-
point operations, TrueNorth broadly targets sensory informa-
tion processing, machine learning, and cognitive computing
applications using synaptic operations. However, like the early
von Neumann machines, the task is now to create efficient
neurosynaptic systems and optimize them in terms of program-
ming models, algorithms, and architectural features. Using
the TrueNorth chip, we can create large-scale and low-power
cognitive systems as a result of the architecture’s scalability
property. We have already built the first multichip TrueNorth-
based neurosynaptic platforms (with up to 16 million neurons
and 4 billion synapses) and demonstrated example applica-
tions, such as visual object recognition, running on these
platforms at real-time with orders of magnitude lower power
consumption than conventional processors. With such out-
standing technical characteristics, TrueNorth systems signifi-
cantly advance the field of cognitive research and revolutionize
the current state of real-world multisensory systems, creating
new opportunities for applications ranging from robotics to
battery-powered consumer electronics to large-scale analytics
platforms.

ACKNOWLEDGMENT

The authors would like to thank several collabora-
tors: A. Agrawal, C. Alpert, A. Amir, A. Andreopoulos,
R. Appuswamy, S. Asaad, C. Baks, D. Barch, R. Bellofatto,
D. Berg, H. Baier, T. Christensen, C. Cox, S. Esser,
M. Flickner, D. Friedman, S. Gilson, C. Guo, S. Hall,
R. Haring, C. Haymes, J. Ho, T. Horvath, K. Inoue, S. Iyer,
J. Kusnitz, S. Lekuch, Z. Li, J. Liu, M. Mastro, E. McQuinn,
S. Millman, R. Mousalli, D. Nguyen, H. Nguyen, T. Nguyen,
N. Pass, K. Prasad, C. Ortega-Otero, Z. Saliba, K. Schleupen,
J.-s. Seo, B. Shaw, K. Shimohashi, A. Shokoubakhsh, F. Tsai,
J. Tierno, K. Wecker, S.-y. Wang, I. Vo, and T. Wong. The
views, opinions, and/or findings contained in this paper/pre-
sentation are those of the author(s)/presenter(s) and should not
be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

REFERENCES

[1] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, Aug. 2014.

[2] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[3] A. S. Cassidy et al., “Real-time scalable cortical computing at 46
giga-synaptic OPS/watt with ∼ 100× speedup in time-to-solution
and ∼ 100, 000× reduction in energy-to-solution,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal. (SC), New Orleans, LA,
USA, 2014, pp. 27–38.

[4] A. Amir et al., “Cognitive computing programming paradigm: A Corelet
language for composing networks of neuro-synaptic cores,” in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), Dallas, TX, USA, 2013,
pp. 1–10.

[5] S. K. Esser et al., “Cognitive computing systems: Algorithms and appli-
cations for networks of neurosynaptic cores,” in Proc. IEEE Int. Joint
Conf. Neural Netw. (IJCNN), Dallas, TX, USA, 2013, pp. 1–10.

[6] D. S. Modha and R. Singh, “Network architecture of the long distance
pathways in the Macaque brain,” Proc. Nat. Acad. Sci. USA, vol. 107,
no. 30, pp. 13485–13490, 2010.

[7] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical simu-
lator,” in Proc. Supercomput., Reno, NV, USA, 2007, pp. 1–12.

[8] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: Cortical simulations with 109 neurons,
1013 synapses,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal. (SC), Portland, OR, USA, 2009, pp. 1–12.

[9] R. Preissl et al., “Compass: A scalable simulator for an architecture for
cognitive computing,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., Salt Lake City, UT, USA, 2012, pp. 1–11.

[10] T. M. Wong et al., “1014,” IBM Res. Div., Almaden Res. Center,
San Jose, CA, USA, Tech. Rep. RJ10502, 2012.

[11] J. Hsu, “How IBM got brainlike efficiency from the
TrueNorth chip,” IEEE Spectr., vol. 51, no. 10, pp. 17–19,
Sep. 2014. [Online]. Available: http://spectrum.ieee.org/computing/
hardware/how-ibm-got-brainlike-efficiency-from-the-truenorth-chip

[12] E. Painkras et al., “SpiNNaker: A 1-W 18-core system-on-chip for
massively-parallel neural network simulation,” IEEE J. Solid-State
Circuits, vol. 48, no. 8, pp. 1943–1953, Aug. 2013.

[13] E. Stromatias, F. Galluppi, C. Patterson, and S. Furber, “Power analysis
of large-scale, real-time neural networks on SpiNNaker,” in Proc. IEEE
Int. Joint Conf. Neural Netw. (IJCNN), Dallas, TX, USA, 2013, pp. 1–8.

[14] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, May 2014.

[15] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat, and K. Boahen, “A
multicast tree router for multichip neuromorphic systems,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 3, pp. 820–833, Mar. 2014.

[16] J. Schemmel et al., “Live demonstration: A scaled-down version of
the BrainScaleS wafer-scale neuromorphic system,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Seoul, Korea, 2012, p. 702.

[17] J. Park, S. Ha, T. Yu, E. Neftci, and G. Cauwenberghs, “A 65k-neuron
73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-
and-fire array transceiver,” in Proc. IEEE Biomed. Circuits Syst.
Conf. (BioCAS), Lausanne, Switzerland, 2014, pp. 675–678.

[18] S. Moradi and G. Indiveri, “An event-based neural network architecture
with an asynchronous programmable synaptic memory,” IEEE Trans.
Biomed. Circuits Syst., vol. 8, no. 1, pp. 98–107, Mar. 2013.

[19] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains
in the nano-CMOS era: Spiking neurons, learning synapses and neural
architecture optimization,” Neural Netw., vol. 45, pp. 4–26, Sep. 2013.

[20] A. S. Cassidy et al., “Cognitive computing building block: A versatile
and efficient digital neuron model for neurosynaptic cores,” in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), Dallas, TX, USA, 2013,
pp. 1–10.

[21] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Proc. ARVLSI, Sydney, NSW, Australia, 1990, pp. 263–278.

[22] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proc. Design Autom. Conf.,
Anaheim, CA, USA, 2003, pp. 508–513.

[23] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,”
in Proc. Int. Symp. Theory Switch., Cambridge, MA, USA, 1959,
pp. 204–243.

[24] A. M. Lines, “Pipelined asynchronous circuits,” Dept.
Comput. Sci., California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. CaltechCSTR:1998.cs-tr-95-21, 1998.

[25] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[26] Y. Shin et al., “28nm high-metal-gate heterogeneous quad-core CPUs
for high-performance and energy-efficient mobile application processor,”
in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC),
San Francisco, CA, USA, 2013, pp. 154–155.

[27] J. V. Arthur et al., “Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Brisbane QLD, Australia, 2012, pp. 1–8.

[28] D. Fang, S. Peng, C. LaFrieda, and R. Manohar, “A three-tier asyn-
chronous FPGA,” in Proc. Int. VLSI/ULSI Multilevel Interconnect. Conf.,
Fremont, CA, USA, 2006, pp. 1–8.

[29] A. J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” Distrib. Comput., vol. 1, no. 4, pp. 226–234,
Dec. 1986.

[30] R. Manohar, “An analysis of reshuffled handshaking expansions,” in
Proc. 7th Int. Symp. ASYNC, Salt Lake City, UT, USA, Mar. 2001,
pp. 96–105.

[31] A. J. Martin and M. Nystrom, “CAST: Caltech asynchronous synthesis
tools,” in Proc. 4th Asynchronous Circuit Design Work. Group Workshop,
Turku, Finland, Jun. 2004.

1556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 10, OCTOBER 2015

[32] S. M. Burns and A. J. Martin, “Syntax-directed transla-
tion of concurrent programs into self-timed circuits,” Dept.
Comput. Sci., California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. CaltechCSTR:1988.cs-tr-88-14, 1988.

[33] R. Manohar, “Asynchronous VLSI systems,” Class Materials for
ECE 574, Cornell Univ., Ithaca, NY, USA, 1999.

[34] IEEE Standard for Verilog Hardware Description Language,
IEEE Standard 1364-2005, 2006.

[35] K. L. Shepard and V. Narayanan, “Noise in deep submicron digital
design,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
San Jose, CA, USA, 1996, pp. 524–531.

[36] M. Nystrom, “Asynchronous pulse logic,” Ph.D. dissertation, Dept.
Eng. Appl. Sci., California Inst. Technol., Pasadena, CA, USA, 2001.

[37] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. Comput. Vis. Pattern Recognit., Kauai, HI,
USA, 2001, pp. I-511–I-518.

[38] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[39] A. Andreopoulos and J. K. Tsotsos, “50 years of object recogni-
tion: Directions forward,” Comput. Vis. Image Und., vol. 117, no. 8,
pp. 827–891, Aug. 2013.

[40] A. Coates and A. Y. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in Proc. Int. Conf. Mach.
Learn. (ICML), Bellevue, WA, USA, 2011, pp. 921–928.

[41] R. Kasturi et al., “Performance evaluation of neuromorphic-vision object
recognition algorithms,” in Proc. 22nd Int. Conf. Pattern Recognit.
(ICPR), Stockholm, Sweden, Aug. 2014, pp. 2401–2406.

[42] A. Andreopoulos et al., “Visual saliency on networks of neurosynap-
tic cores,” IBM J. Res. Develop., vol. 59, nos. 2–3, pp. 9:1–9:16,
Mar./May 2015.

[43] J. Cong and G.-J. Nam, Modern Circuit Placement: Best Practices and
Results. Boston, MA, USA: Springer, 2007.

[44] N. Viswanathan et al., “RQL: Global placement via relaxed quadratic
spreading and linearization,” in Proc. ACM/IEEE Design Autom. Conf.,
San Diego, CA, USA, 2007, pp. 453–458.

[45] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ISPD2005 placement contest and benchmark suite,” in Proc. Int. Symp.
Phys. Design, San Francisco, CA, USA, 2005, pp. 216–220.

[46] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisection
alone produce routable placements?” in Proc. ACM/IEEE Design Autom.
Conf., Los Angeles, CA, USA, 2000, pp. 693–698.

[47] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia, “Effective free space
management for cut-based placement via analytical constraint genera-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22,
no. 10, pp. 1343–1353, Oct. 2003.

[48] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng, “A
fast hierarchical quadratic placement algorithm,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 25, no. 4, pp. 678–691,
Apr. 2006.

[49] J. Vygen, “Algorithms for large-scale flat placement,” in Proc.
ACM/IEEE Design Autom. Conf., Anaheim, CA, USA, 1997,
pp. 746–751.

Filipp Akopyan (M’04) was born in Moscow, Russia. He received the bach-
elor’s degree in electrical engineering from Rensselaer Polytechnic Institute,
Troy, NY, USA, in 2004, and the Ph.D. degree in electrical and computer
engineering (with a minor in applied mathematics) from Cornell University,
Ithaca, NY, USA, in 2011.

He joined the IBM Brain-Inspired Computing Group led by D. Modha.
During his IBM tenure, he was one of the lead engineers who cre-
ated the world’s most advanced neuromorphic chip, TrueNorth, as part
of the DARPA SyNAPSE program, and he is a key contributor to the
DARPA Cortical Processor program. One of his main contributions was
leading the complex task of designing, simulating and verifying mixed
synchronous—asynchronous circuits to implement the TrueNorth chip cor-
rectly and efficiently. He has also been designing low-power cognitive systems
and advancing neural algorithm development for various multisensory appli-
cations. He has authored several highly cited publications, with over 400 total
citations, in the areas of asynchronous design, signal processing, neuromorphic
computing, and low-power chip design.

Dr. Akopyan was a recipient of numerous awards and honors in the fields
of electrical and computer engineering.

Jun Sawada (M’01) received the B.S. and M.S. degrees in mathematics from
Kyoto University, Kyoto, Japan, and the Ph.D. degree in computer sciences
from the University of Texas at Austin, Austin, TX, USA, for the study in
formal verification of hardware, VLSI microarchitecture, automated theorem
proving and automated reasoning.

He has been a Research Staff Member at IBM Research—Austin, Austin,
TX, USA, since 2000. At IBM, he participated in many chip development
projects, including the ones for power microprocessors and BlueGene super-
computers, and pioneered the application of formal verification technologies
to large-scale microprocessor designs. Recently, he has been researching on
the neurosynaptic chip and system designs, and co-lead the development team
of the TrueNorth chip.

Andrew Cassidy (M’97) received the M.S. degree in electrical and com-
puter engineering from Carnegie Mellon University, Pittsburgh, PA, USA, in
2003, and the Ph.D. degree in electrical and computer engineering from Johns
Hopkins University, Baltimore, MD, USA, in 2010.

He is a member of the Cognitive Computing group at IBM Research—
Almaden, San Jose, CA, USA, and is engaged in the DARPA funded
SyNAPSE project. His expertise is in non-traditional computer architecture,
and he is experienced in architectural optimization, design, and implemen-
tation, particularly for machine learning algorithms and cognitive computing
applications. He has authored over 25 publications in international journals
and conferences.

Rodrigo Alvarez-Icaza received the B.S. degree in mechanical and elec-
trical engineering from Universidad Iberoamericana, and the Ph.D. degree
in neuromorphic engineering and biological systems from the University of
Pennsylvania, Philadelphia, PA, USA, under the supervision of Dr. K. Boahen,
and Stanford University, Stanford, CA, USA.

He co-founded an Internet startup after completing the B.S. degree,
and later spent a year of independent research in the fields of robotics
and A.I., eventually focusing on nontraditional neural networks. He also
researched sensory-motor learning based on activity-dependent growth of
neural connections, with the long-term ambition of embedding the compu-
tation in application-specific hardware. This work led to a teaching position
at Universidad Iberoamericana, where he founded the Robotics Laboratory.
He is currently with IBM Research.

John Arthur (M’05) received the B.S.E. degree in electrical engineering from
Arizona State University, Tempe, AZ, USA, in 2000, and the Ph.D. degree in
bioengineering from the University of Pennsylvania, Philadelphia, PA, USA,
in 2006.

He is a Research Scientist in the Brain-Inspired Computing Group at
IBM Research—Almaden, San Jose, CA, USA. His current research interests
include neuromorphic and neurosynaptic systems, building many of the largest
hardware spiking neural systems, such as TrueNorth. He held a post-doctoral
position in bioengineering at Stanford University, Stanford, CA, USA, until
2010, where he was involved in the Neurogrid Project, which aims to provide
neuroscientists with a desktop supercomputer for modeling large networks of
spiking neurons.

Paul Merolla received the B.S. degree in electrical engineering from the
University of Virginia, Charlottesville, VA, USA, in 2000, and the Ph.D.
degree in bioengineering from the University of Pennsylvania, Philadelphia,
PA, USA, in 2006.

He was a post-doctoral scholar with Stanford’s Brains in Silicon
Laboratory, Stanford University, Stanford, CA, USA, from 2006 to 2010. He
is currently a Research Scientist with IBM’s Brain-Inspired Computing Group,
IBM Research—Almaden, San Jose, CA, USA. His research is focused on
building more intelligent computers, drawing inspiration from neuroscience
and machine learning. He has been a lead designer on over 10 neuromorphic
chips, including Neurogrid (a sixteen-chip system that emulates one-million
analog neurons in real time) and more recently, IBM’s cognitive computing
chips, as part of the DARPA SyNAPSE program. His current research inter-
ests include developing algorithms for these chips aimed at solving real world
problems.

Nabil Imam received the Ph.D. degree from Cornell University, Ithaca, NY,
USA, in 2014.

Since then, he has been a member of the Brain-Inspired Computing Group,
IBM Research—Almaden, San Jose, CA, USA. His current research interests
include analysis of neural algorithms instantiated within hippocampal and
olfactory system microcircuits with the goal of constructing various forms of
attractor networks within neuromorphic hardware, brain-inspired approaches
to machine learning, in the structural analysis of brain networks, and in the
study of neural coding across different spatial and temporal scales.

AKOPYAN et al.: TrueNorth: DESIGN AND TOOL FLOW OF A 65 mW 1 MILLION NEURON PROGRAMMABLE NEUROSYNAPTIC CHIP 1557

Yutaka Nakamura received the B.S. degree from the Department of
Mechanical Engineering, Waseda University, Tokyo, Japan, in 1985.

He then joined IBM Japan, Tokyo, Japan. In 2012, he joined IBM
Research—Tokyo, Tokyo. His current research interests include memory
circuit design, redundancy repair, ECC, and neuromorphic chip/system.

Pallab Datta (M’08) received the Ph.D. degree from Iowa State University,
Ames, IA, USA, in 2005, under the supervision of Prof. A. K. Somani.

He was with NeuroSciences Institute, La Jolla, CA, USA, and Los Alamos
National Laboratory, Los Alamos, NM, USA, and a Visiting Researcher with
INRIA—Sophia-Antipolis, Valbonne, France. He is currently a member of
the Brain-Inspired Computing Group, IBM Research—Almaden, San Jose,
CA, USA, where he is involved in large-scale simulations using the IBM
Neuro Synaptic Core Simulator (Compass) as part of the DARPA-funded
SyNAPSE Project. He is involved in the development of the Corelet program-
ming language, for programming the reconfigurable neuromorphic hardware,
and algorithms and applications with networks of neurosynaptic cores for
building cognitive systems. He has authored works in several international
journals and conferences. His current research interests include neuromorphic
architecture and simulations, high performance and distributed computing,
machine learning, optimization techniques, and graph theory.

Dr. Datta is a member of ACM.

Gi-Joon Nam (S’99–M’01–SM’06) received the B.S. degree in computer
engineering from Seoul National University, Seoul, Korea, and the M.S. and
Ph.D degrees in computer science and engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2001.

From 2001 to 2013, he was with the IBM Research—Austin, Austin,
TX, USA, in the physical design space, particularly placement and timing
closure flow. Since 2014, he has been managing physical synthesis depart-
ment primarily targeted for IBM’s P and Z microprocessors and system
application-specific integrated circuit designs. His current research interests
include computer-aided design algorithms, combinatorial optimization, very
large-scale integration system designs, and computer architecture.

Dr. Nam is a Senior Member of ACM.

Brian Taba received the B.S. degree in electrical engineering from Caltech,
Pasadena, CA, USA, in 1999, and the Ph.D. degree in bioengineering (neuro-
morphic engineering) from the University of Pennsylvania, Philadelphia, PA,
USA, under the supervision of Dr. K. Boahen, in 2005.

Since 2013, he has been a Software Engineer with the Brain-Inspired
Computing Group, IBM. His current research interests include computa-
tion and neural systems, a multidisciplinary approach to study the brain that
combines engineering with neurobiology.

Michael Beakes (M’94) is a Senior Scientist with IBM’s T. J. Watson
Research Center, Yorktown Heights, NY, USA. Throughout his career, he
has concurrently played the roles of a designer, methodology/tool developer,
and team leader for the custom analog/mixed-signal integrated circuit design
community. He is also a mentor and an advisor for grade school and high
school technology and robotics programs. Michael received bachelor degrees
in physics and electrical engineering, and has a masters degree in computer
engineering.

Bernard Brezzo receive the Diploma degree in electronics engineering from
Conservatoire National des Arts et Metiers, Paris, France.

He is a Senior Engineer with IBM’s T.J. Watson Research Center, Yorktown
Heights, NY, USA. His current research interests include high-performance
computing, FPGA emulation, and IBM cognitive computing as part of the
DARPA’s SyNAPSE project.

Jente B. Kuang (SM’01) received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan, in 1982, the M.S. degree
in electrical engineering from Columbia University, New York, NY, USA, in
1986, and the Ph.D. degree in electrical engineering from Cornell University,
Ithaca, NY, USA, in 1990, respectively.

From 1982 to 1984, he served as an Electronics Instructor with the
Electronics Training Center, Army Missile Command, Taiwan. He was a
Research Assistant with the Compound Semiconductor Research Group and
National Submicron Facility, Cornell University from 1986 to 1990. He joined
IBM in 1990. Since then, he has been researching on a variety of research
and product development projects for bipolar, BiCMOS, and CMOS devices
and circuits, including the design of flash memories, SRAMs, register files,
and high-speed low-power digital circuits. He was a Research Staff Member
with IBM Austin Research Laboratory, Austin, TX, USA, until 2015. In 2015,
he joined PowerCore Technology Corporation, the U.S. Subsidiary of Suzhou
PowerCore Company Ltd., as the President and the Director of the design
center located in Austin, TX, USA.

Rajit Manohar (SM’97) received the B.S., M.S., and Ph.D. degrees from
Caltech, Pasadena, CA, USA, in 1994, 1995, and 1998, respectively.

He has been with Cornell University, Ithaca, NY, USA, since 1998, where
he is currently a Professor of Electrical and Computer Engineering, and where
his group conducts research on asynchronous design. He founded Achronix
Semiconductor to commercialize high-performance asynchronous FPGAs.

Dr. Manohar was a recipient of an NSF CAREER award, six best paper
awards, seven teaching awards, and was named one of MIT Technology
Review’s top 35 young innovators under 35 for his contributions to low power
microprocessor design.

William P. Risk (M’86) currently serves as a Technical Project Manager for
the DARPA SyNAPSE project. In addition to helping manage the program,
he works on visualization neurosynaptic simulations and neuromorphic chip
behavior. For this purpose, he built BrainWall, a 65-million pixel display
system. Prior to joining the SyNAPSE program, he was a Research Staff
Member at IBM Research—Almaden, San Jose, CA, USA, specializing in
laser and optics.

Bryan Jackson received the Advanced B.A. degree from Occidental College,
Los Angeles, CA, USA, and the Ph.D. degree from the University of
California, Berkeley, Berkeley, CA, USA.

He joined IBM in 2008 under the DARPA funded SyNAPSE program. In
2010, he became a Research Staff Member and Technical Project Manager
for Hardware Design in the Cognitive Computing (SyNAPSE) Group at IBM
Research—Almaden, San Jose, CA, USA. In 2013, he became Manager of
the Cognitive Computing Hardware Team. This team is tasked with designing,
building, and testing new silicon architectures under the SyNAPSE program.

He is currently manager of IBM’s Brain Inspired Hardware Group at IBM
Research—Almaden. In this role, he led the team of hardware engineers
that designed, built, and tested the world’s largest neuromorphic processor,
TrueNorth.

Dharmendra S. Modha (M’92–F’11) received the B.Tech. degree in com-
puter science and engineering from IIT Bombay, Maharashtra, India, and the
Ph.D. degree in electrical and computer engineering from the University of
California at San Diego, San Diego, CA, USA.

He is an IBM Chief Scientist for brain-inspired computing. He has made
significant contributions to IBM businesses via innovations in caching algo-
rithms for storage controllers, clustering algorithms for services, and coding
theory for disk drives. He is an IBM Master Inventor. He is a cognitive
computing pioneer and leads a highly successful effort to develop brain-
inspired computers. His work has been featured in The Economist, Science,
New York Times, Wall Street Journal, The Washington Post, BBC, CNN, PBS,
Discover, MIT Technology Review, Associated Press, Communications of the
ACM, IEEE SPECTRUM, Forbes, Fortune, and Time, amongst others. His work
has been featured on covers of Science (twice), Communications of the ACM,
and Scientific American. He has authored over 60 papers and holds over 100
patents.

Dr. Modha was a recipient of the ACM’s Gordon Bell Prize,
USENIX/FAST Test of Time Award, best paper awards at ASYNC and
IDEMI, First Place in the Science/NSF International Science and Engineering
Visualization Contest, IIT Bombay Distinguished Alumni Award, and was a
Runner-Up for the 2014 Science Breakthrough of the Year. In 2013 and 2014,
he was named the Best of IBM. EE Times named him amongst 10 Electronic
Visionaries to watch. At IBM, he received the Pat Goldberg Memorial
Best Paper award twice, an Outstanding Innovation Award, an Outstanding
Technical Achievement Award, and a Communication Systems Best Paper
Award. In 2010, he was elected to the IBM Academy of Technology. In 2014,
he was appointed an IBM Fellow. He is a fellow of the World Technology
Network.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

