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Relations to neural networks*
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*Lots of images from Internet were used to prepare this presentation



The only rule is, there are no rules:
• HD vectors as input to neural networks
• Neural networks for producing HD vectors
• HD Computing/VSA connections to randomized neural networks
• Use of HD Computing/VSA primitives in neural networks design
• Explaining neural networks with HD Computing/VSA
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HD vectors as input to 
neural networks



Types of input
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• HD vectors as a way to represent input to a network
• Natural, as neural networks are also working with distributed representations

• Data to be fed to a neural network are high-dimensional and sparse
• HD vectors can form more compact representation

• Input of varying size 
• Composite data structures
• HD vectors are fixed size input

• Natural language processing
• A lot of structure in language which can be potentially represented in HD vectors

• Expansion of the applicability of neural networks 
• Relieves the pressure of forming the task 

• With fixed size input
• A sequence suitable for recurrent neural networks



• Representation of n-gram
statistics as before

• Text classification
‒ 4 datasets
‒ 9 ML algorithms

• Figures for neural network
‒ 3 datasets
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P.  Alonso, K. Shridhar, D. Kleyko, E. Osipov, and M. Liwicki, “HyperEmbed: Tradeoffs Between Resources and Performance in NLP Tasks with Hyperdimensional Computing enabled 
Embedding of n-gram Statistics”, International Joint Conference on Neural Networks (IJCNN). 2021.

Embedding n-gram statistics: Text classification



Composite data structures: Varying length sequences
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T. Bandaragoda, D. De Silva, D. Kleyko, E. Osipov, U. Wiklund, and D. Alahakoon, “Trajectory Clustering of Road Traffic in Urban Environments using Incremental Machine Learning in 
Combination with Hyperdimensional Computing”, IEEE Intelligent Transportation Systems Conference (ITSC), 2019.

• Trajectory is considered as a bag of n-grams
• Trajectories are of variable length

• A tri-gram of locations {l1, l2, l3} 
is represented as HD vector:
• ρ2(l1) ⊕ ρ1(l2) ⊕ ρ0( l3)

Self-Organizing Map



Composite data structures: Vehicle Behavior Prediction

7

F. Mirus, P. Blouw, T. C. Stewart, J. Conradt, “An Investigation of Vehicle Behavior Prediction Using a Vector Power 
Representation to Encode Spatial Positions of Multiple Objects and Neural Networks”, Frontiers in Neurorobotics, 2019.

• HD vectors to encapsulate spatial 
information of multiple objects using
the binding operation
‒ Number of objects is a variable

• HD vectors as input to a LSTM for seq
-to-seq  prediction of vehicle positions
‒ 5s into the future

• Best result in crowded and potentially
dangerous driving situations



Composite data structures: Natural-to Formal-Language Generation
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K. Chen, Q. Huang, H. Palangi, P. Smolensky, K. D. Forbus, J. Gao, “Mapping Natural-language Problems to Formal-language Solutions using Structured Neural Representations”, 
International Conference on Machine Learning (ICML), 2020.

• Tensor Product Representations-based binding
• Claim: the use of TPRs allows explicit capturing 

of relational structure to support reasoning

• Represent input data as superposition
of tensors representing role-filler pairs
• Structured representations of inputs are mapped 

to the structured representations of outputs

• Represent output data as tensor

• The model is not straightforward
• But demonstrated to obtain good results on 2 datasets
• MathQA
• AlgoLisp



Neural networks for 
producing HD vectors 



Types of output
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• Transforming data to HD vectors might be a non-trivial task
• Unstructured and of non-symbolic nature: images
• Stimulates the interface between neural networks and HD computing/VSA in the other 

direction

• Transform activations of neural network 
layer(s) to HD vectors
• Pre-trained convolutional neural networks

• Increase the dimensionality
• Change the format of representations

• Purposefully train a network
• Define cost function



Binary HD vectors from images
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• Image hashing networks
• Deep Quantization Network
• Deep Cauchy Hashing Network
• Deep Triplet Quantization Network

• Datasets
• CIFAR-10
• NUSWIDE_81

A. Mitrokhin, P. Sutor, D. Summers-Stay, C. Fermuller, Y. Aloimonos, “Symbolic Representation and Learning with Hyperdimensional Computing”, Frontiers in Robotics and AI, 2020.



• Bunch of image descriptors 
• DELF
• NetVLAD (NV)
• AlexNet (AN)
• DenseVLAD (DV) 

• Place recognition datasets from mobile robotics
• Random projection controls dimensionality

• Form HD vector from holistic image descriptors:

• Form HD vector from local image descriptors:
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Aggregation of Image Descriptors

P. Neubert, S. Schubert, “Hyperdimensional Computing as a Framework for Systematic Aggregation 
of Image Descriptors,” Conference on Computer Vision and Pattern Recognition (CVPR), 2021. the best k matchings



Binary HD vectors from images
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• Memory-augmented networks
• Controller – Convolutional network
• Key-value memory

• Content addressable memory
• Explicit memory

• Few-shot learning

• Evaluation
• Omniglot dataset
• Phase-change memory devices

G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini, A. Sebastian, A. Rahimi,
“Robust High-dimensional Memory-augmented Neural Networks”,  Nature Communications, 2021.



Binary HD vectors from images
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• Memory-augmented networks
• Controller – Convolutional network
• Key-value memory

• Content addressable memory
• Explicit memory

• Few-shot learning

• Evaluation
• Omniglot dataset
• Phase-change memory devices

G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini, A. Sebastian, A. Rahimi,
“Robust High-dimensional Memory-augmented Neural Networks”,  Nature Communications, 2021.



HD Computing/VSA 
connections to randomized 

neural networks



Randomness in neural networks
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• Stochastic assignment of a subset of the networks’ weights
• Simpler (often linear) optimization problem

• Several broad families of models:
• Randomized kernel Approximations

• Chris’s Lecture for Module 8
• Randomized feed-forward networks
• Randomized connected recurrent networks

• Two fundamental ideas:
• Randomization defines feature map lifting 

the input into a high-dimensional space 
• Resulting optimization problem is cast as a 

standard linear (regularized) least-squares

S. Scardapane and D. Wang, “Randomness in Neural Networks: an Overview,” Data Mining and Knowledge Discovery, 2017.



Randomly connected neural networks
Recurrent neural networks:

• Echo State Networks, ESN
• Liquid State Machines, LSM
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Feed-forward neural networks:
• Random Vector Functional Link Networks, RVFL
• Extreme Learning Machines, ELM



Random Vector Functional Link Networks
• Three layers:
• input
• hidden
• output

• Random and fixed connections

• Non-linear activation function – tanh(x)

• Readout connections: RLS

18
B. Igelnik, Y. Pao, “Stochastic Choice of Basis Functionsin Adaptive Function Approximation and the Functional-Link Net,” IEEE Transactions on Neural Networks, 1995.

, Win , WoutWout



Density-based encoding
• Connections input to  hidden layers 
• Projection (lifting) to HD space
• Random projection

• Transform scalars to HD vectors via 
density-based encoding
• Thermometer codes

• Chris’s Lecture for Module 8

• Binding operation with HD 
for weight and mapped scalar
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Randomized neural networks via HD computing/VSA
• Weight matrix is random and bipolar
• Interpreted as a set of HD vectors

• Binding operation with HD vectors for weight and mapped scalar
• Associating each feature with its HD vector

• Bundling all associations -> linear activation of hidden layer

• Non-linear activation function -> 
bundling operation in a limited range
• Clipping as a nonlinearity function

20

tanh(x) clipping(x), k=3



intRVFL architecture
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D. Kleyko, M. Kheffache, E. P. Frady, U. Wiklund, and E. Osipov, “Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks,” 
IEEE Transactions on Neural Networks and Learning Systems, 2021.



intRVFL example
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• Hidden layer (Reservoir) contains only integers in the limited range [-k, k]
• One neuron requires log2(2k+1) bits ->  k=3 – 3 bits 



intRVFL evaluation: classification on 121 datasets
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M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?” 
Journal of Machine Learning Research, 2014.

• 121 datasets for classification from UCI Machine Learning Repository
• Number of examples: min – 10; max – 130064; median – 683;
• Number of features: min – 3; max – 262; median – 16;
• Number of classes: min – 2; max – 100; median – 3;

• Features were normalized to be in [0, 1] range

• Average accuracy of the best classifier (Random Forest): 0.82
• Average accuracy of the linear classifier: 0.73



Evaluation: results unlimited resources
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• Grid search:
• Number of hidden neurons (N) was varied in 

the range [50, 1500] with step 50 
• Regularization parameter was in the range 2[−10,5]

• κ varied between {1, 3, 5, 7}
• Floating point read-out matrix via RLS
• Average accuracy conventional RVFL: 0.76
• Average accuracy intRVFL: 0.80
• Extra experiments:

• RVFL with direct weights to input features: 0.76
• RVFL with quantized features: 0.76 
• RVFL with optimized input projection: 0.71
• RVFL with N for proposed approach: 0.75
• intRVFL with RVFL’s N: 0.78



Evaluation: results limited resources
• Fixed energy budget on FPGA
• “Poorman’s” bounded optimality
• Effectively it limits n

• Finite precision RVFL (8-bits)

• Average accuracy fixed point RVFL: 0.65

• Average accuracy intRVFL: 0.73

25
A. Rosato, R. Altilio, and M. Panella, “Finite Precision Implementation of Random Vector Functional-Link Networks,” in International Conference on Digital Signal Processing, 2017.



Echo State Networks
• An approach to Recurrent Neural Networks
• Three layers
• input
• hidden
• output

• Non-linear activation function – tanh(x) 
• Random and fixed connections
• Recurrent connections between 

hidden neurons, W

26

H. Jaeger, “Tutorial on Training Recurrent Neural Networks, Covering BPTT, RTRL, EKF and the Echo State Network Approach,” 
Technical Report GMD Report 159, German National Research Center for Information Technology, 2002.



Integer Echo State Networks
• Reservoir contains

only integers in the 
limited range [-k, k]

• One neuron requires
log2(2k+1) bits
• k=3 – 3 bits 
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tanh(x) clipping(x), k=3

A. Rodan, P. Tino, “Minimum Complexity Echo State Network,” 
IEEE Transactions on Neural Networks, 2011.
D. Kleyko, E. P. Frady, M. Kheffache, E. Osipov, “Integer Echo State Networks: Efficient 
Reservoir Computing for Digital Hardware,” 
IEEE Transactions on Neural Networks and Learning Systems, 2020.



intESN evaluation: Time-series classification
• 800 neurons
• 3 datasets
• 3.9 times faster 

than ESN

28
D. Dua, C. Graff, “UCI Machine Learning Repository,”  University of California, Irvine, School of Information and Computer Sciences, 2019.



intESN evaluation: Time-series classification
• 800 neurons
• 3 datasets
• 3.9 times faster 

than ESN

29
D. Dua, C. Graff, “UCI Machine Learning Repository,”  University of California, Irvine, School of Information and Computer Sciences, 2019.



Random vector for each class
• Neural netowrks can learn useful 

representation without modifying 
the weights of the output layer

• Hadamard matrix as a weight matrix

30
E. Hoffer, I. Hubara, and D. Soudry, “Fix Your Classifier: the Marginal Value of Training the Last Weight Layer,” in International Conference on Learning Representations (ICLR), 2018. 
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Learning next to nothing
• Fix fractions of convolutional layers of deep CNNs

• Allow only a small portion 
of the weights to be learned

• Performance can be 
on a par with learning
all of them

31

A. Rosenfeld and J. K. Tsotsos, “Intriguing Properties of Randomly Weighted Networks: Generalizing while Learning Next to Nothing,” 
in IEEE Conference on Computer and Robot Vision (CRV), 2019, pp. 9–16. 



Use of HD Computing/VSA 
primitives in 

neural networks design



Composite data structures: Natural-to Formal-Language Generation

33

K. Chen, Q. Huang, H. Palangi, P. Smolensky, K. D. Forbus, J. Gao, “Mapping Natural-language Problems to Formal-language Solutions using Structured Neural 
Representations”, International Conference on Machine Learning (ICML), 2020.

• Tensor Product Representations-based binding
‒ Claim: the use of TPRs allows explicit capturing 

of relational structure to support reasoning

• Represent input data as superposition
of tensors representing role-filler pairs
‒ Both codebooks are learned

• Represent output data as tensor

• The model is pretty complicated
‒ But claimed to obtain good results on 2 datasets



Binary HD vectors from images
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• Memory-augmented networks
• Controller – Convolutional network
• Key-value memory

• Content addressable memory
• Explicit memory

• Few-shot learning

• Evaluation
• Omniglot dataset
• Phase-change memory devices

G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini, A. Sebastian, A. Rahimi,
“Robust High-dimensional Memory-augmented Neural Networks”,  Nature Communications, 2021.



Superposition of many neural networks into one
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Problem(s): 
• Online learning of multiple tasks

• Catastrophic forgetting
• Memory constrained environments

Approach: 
• Use random

HD vectors as context  
for tasks

• Use binding operation 
to associate with task’s 
set of parameters Wk

• Store models in 
superposition

B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, B. A. Olshausen, “Superposition of Many Models into One,” Advances in Neural Information Processing Systems (NeurIPS), 2019.



Explaining neural networks 
with HD Computing/VSA



Qualitative: Binarized CNNs
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• Why one can effectively capture 
the features in data with 
binary weights and activations?
• Continuous vectors are 

well-approximated by binary vectors

• HD geometry
• Binarization approximately 

preserves the direction of 
high-dimensional vectors 

• Weight-activation dot products are
approximately proportional

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, “Binarized Neural Networks,” Advances in Neural Information Processing Systems (NIPS), 2016. 
A. G. Anderson, C. P. Berg, “The High-Dimensional Geometry of Binary Neural Networks,” International Conference on Learning Representations (ICLR), 2018.



Quantitative: Capacity theory
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• What affects the accuracy?
• D, N, L

• Can we predict retrieval accuracy? 

• Assumptions:
• The distributions are normal
• The distributions for “distractor” symbols are all the same
• The distributions for different symbols are independent

E. P. Frady, D. Kleyko, F. T. Sommer, “A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks,” Neural Computation, 2018.

N=512; D=32; L varies 

2018 NeCo paper presented T1 describing 
the capacity of VSAs and some ESNs cases

T1



Extensions of T1

39

• Need to extend the theory:

• T1:

• T2:
• The distributions are normal
• The distributions for “distractor” symbols are all the same
• The distributions for different symbols are independent

• T3:
• The distributions are normal
• The distributions for “distractor” symbols are all the same
• The distributions for different symbols are independent

D. Kleyko, A. Rosato, E. P. Frady, M. Panella, F. T. Sommer, “Perceptron Theory for Predicting the Accuracy of Neural Networks,” arXiv, 2020.



From memory buffer to classification with neural networks

• Desire to get under the hood of neural networks

• Dissect the holistic functionality of neural 
network into two parts: 
• Multi-layer encoding stage –> corresponds to x

in the memory buffer task
• Single-layer classification by perceptron -> similar 

to the regression-based perceptron in the memory 
buffer task

40

V. Papyan,  X. Y. Han,  D. L. Donoho, “Prevalence of Neural Collapse During the Terminal Phase of Deep Learning Training,” 
Proceedings of the National Academy of Sciences, 2020.



Pretrained deep networks on ImageNet with T2
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Correlation coefficient: 0.933 Correlation coefficient: 0.940 

Kernel distributionsNormal distributions



ImageNet subproblems on individual models
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• We want to remove the bias

• Sub-problems of different size 
by randomly sampling from 
the  ImageNet

• Prediction for sub-problems 

• Bias for each model



ImageNet adjusted predicted accuracy
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• Compensation for each network is based  
on the sub-problems on individual networks 

• The compensations have almost removed 
bias and unsystematic deviations 
between the accuracies

Correlation coefficient: 0.998 



ImageNet subproblems with T3
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• Compensation needs to observe 
accuracies of smaller sub-problems

• Solution: independence assumption
• Numerical integration is challenging
• Sub-problems of size 4



Predictions via Monte Carlo sampling
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• It is hard to calculate integral in T3 

• We try to estimate it by MC sampling
• Correlation coefficient: 0.98

• Constant offset
• No normalization constant



The only rule is, there are no rules:
• HD vectors as input to neural networks
• Neural networks for producing HD vectors
• HD Computing/VSA connections to randomized neural networks
• Use of HD Computing/VSA primitives in neural networks design
• Explaining neural networks with HD Computing/VSA
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Takeaways



Relations to neural networks

Denis Kleyko


