Reinforcement Learning

Reinforcement Learning

Reinforcement Learning:

Learning behaviors from reward signals

Types of Learning

ess

Unsupervised

Extracting statistical structure from unlabeled data

Amount of Feedback more

Learning with ground truth feedback

Types of Learning

less

Unsupervised

Extracting statistical structure from unlabeled data

ICA

Sparse Coding Boltzmann Machines Hopfield Networks PCA

Supervised

Learning with ground truth feedback

Perceptrons CNNs Deep Learning

Types of Learning

less

Unsupervised

Extracting statistical structure from unlabeled data

ICA

Sparse Coding Boltzmann Machines Hopfield Networks PCA

Amount of Feedback

Reinforcement

Learning behaviors from reward signals

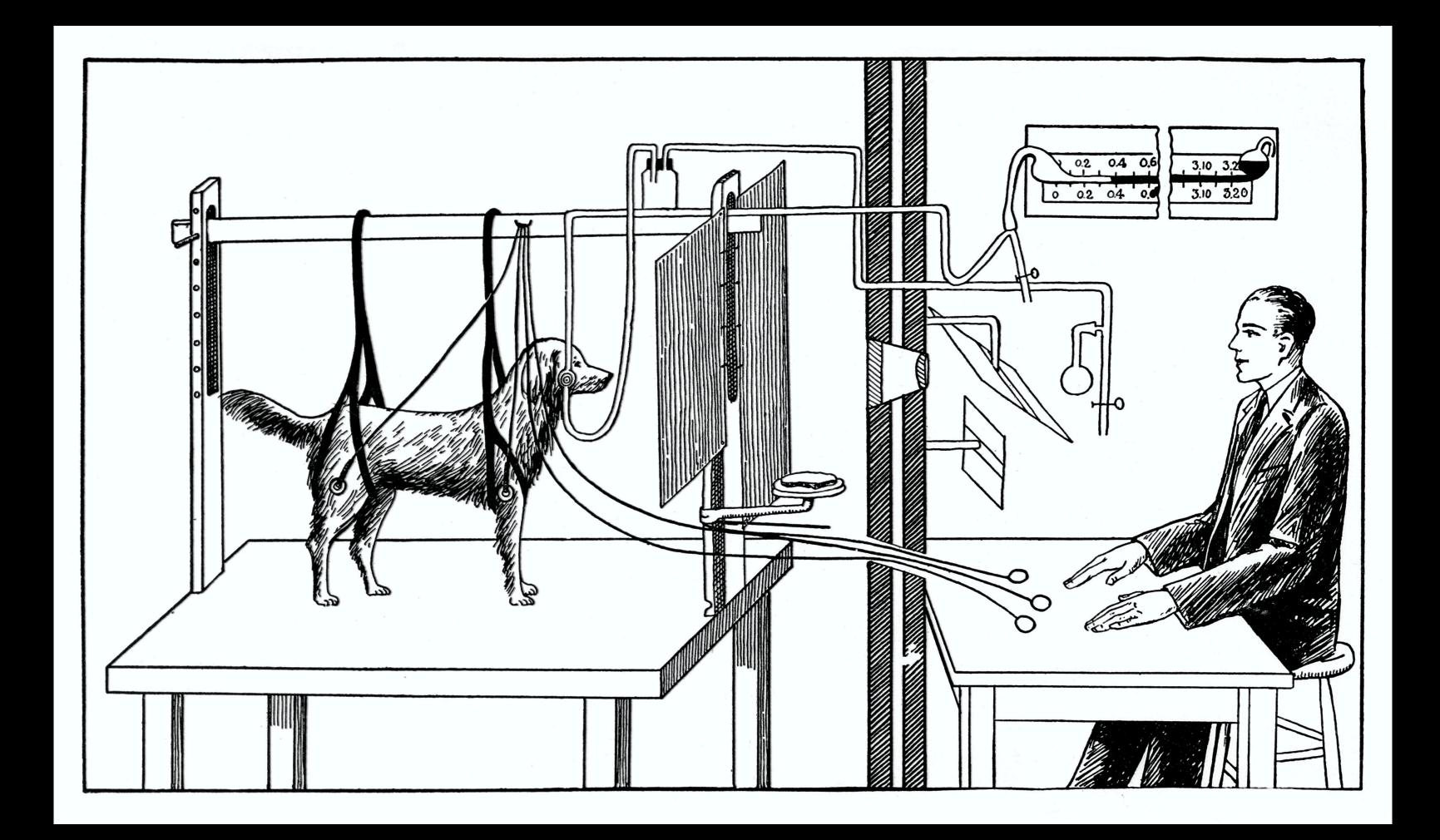
Supervised

more

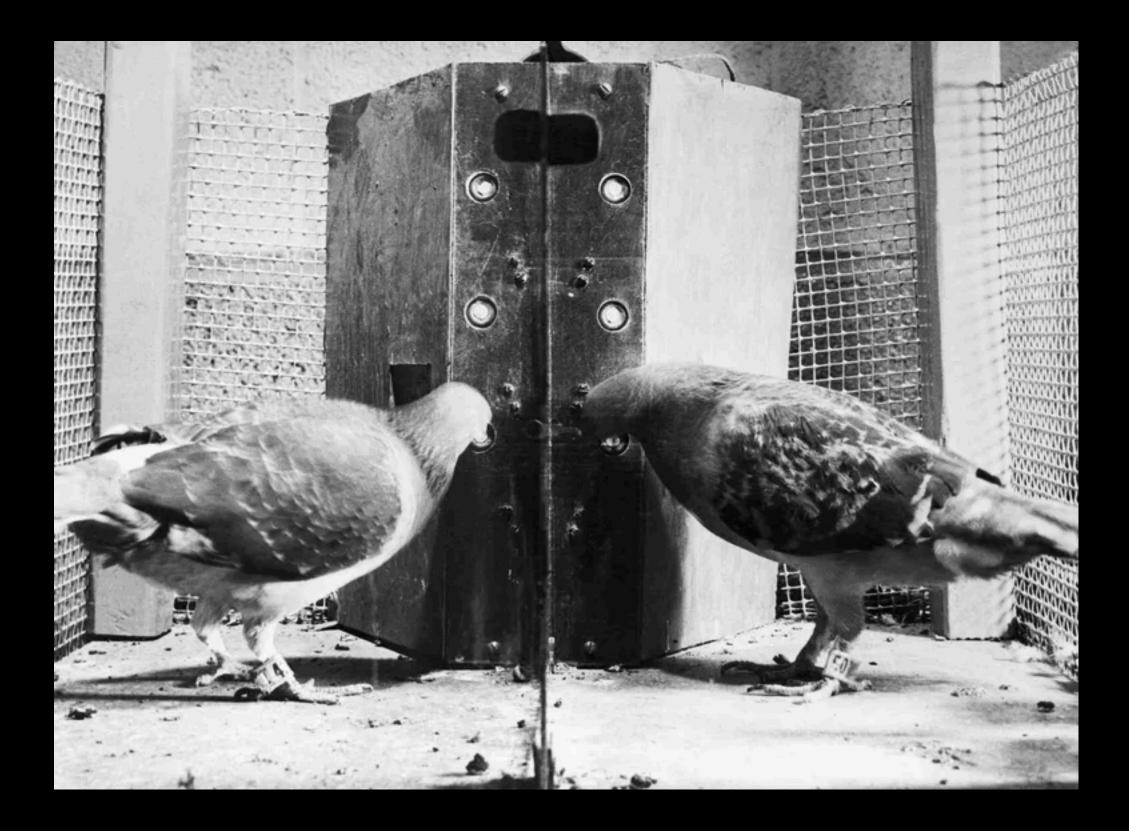
Learning with ground truth feedback

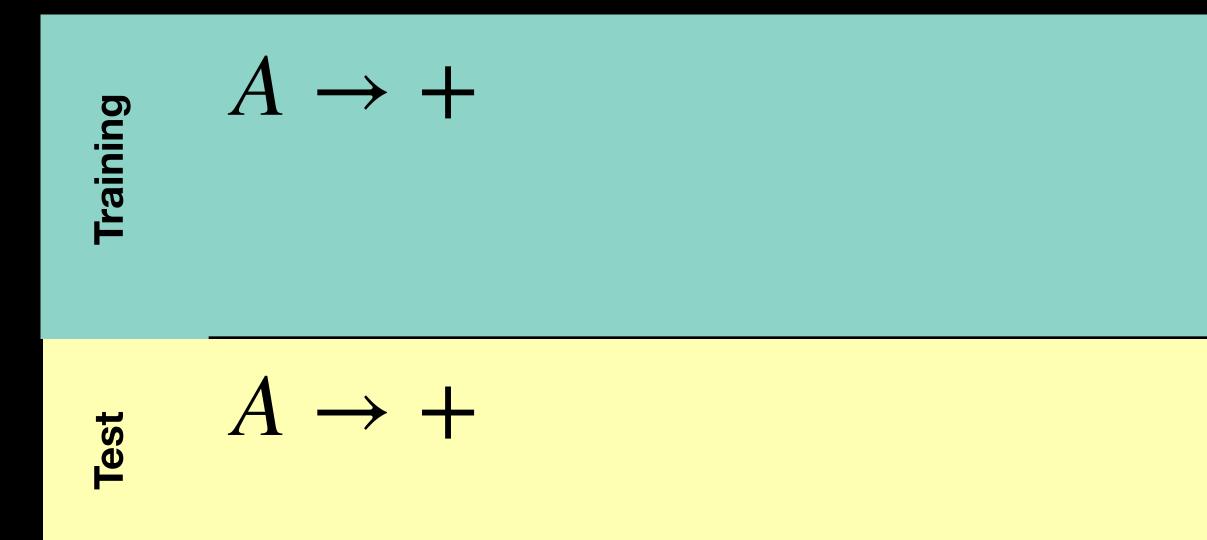
Perceptrons CNNs Deep Learning

Conditioning and Reinforcement



Conditioning and Reinforcement

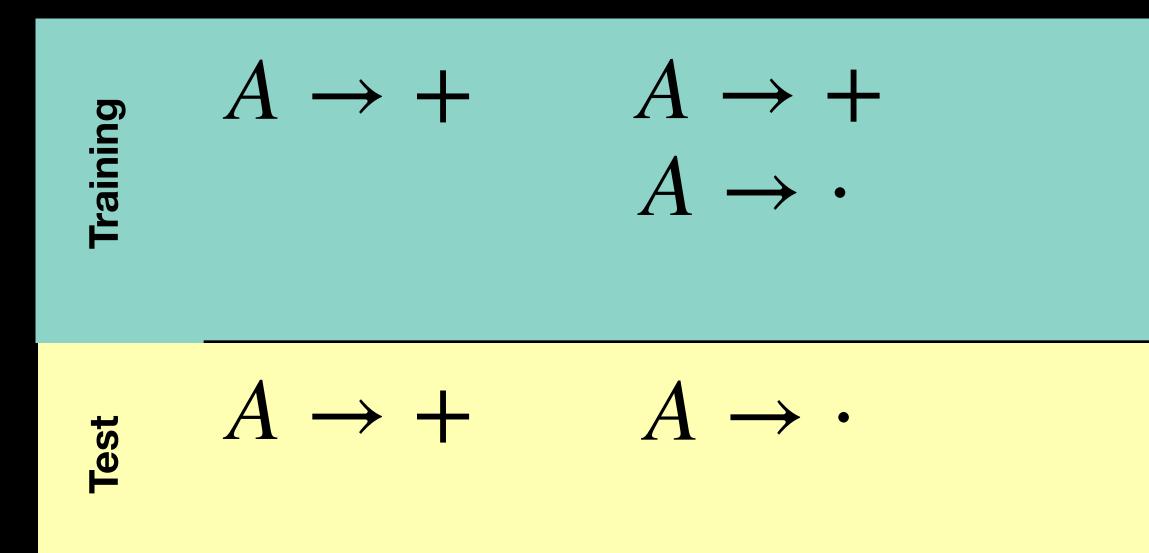




Pavlovian

Partial

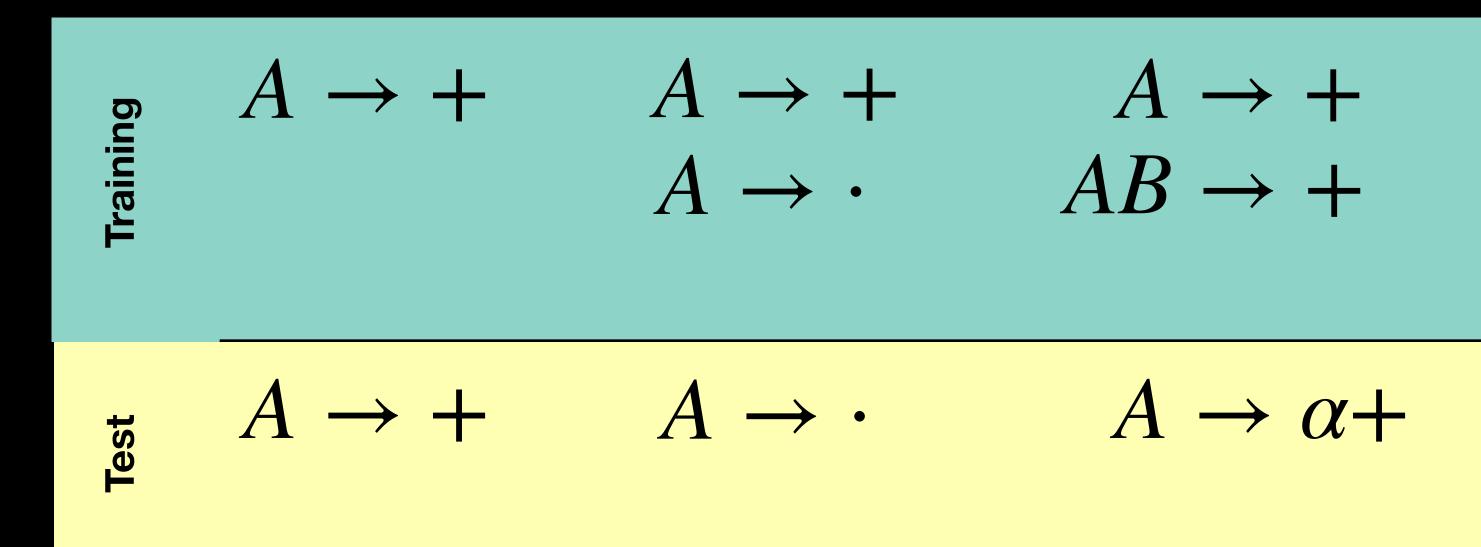
Blocking



Pavlovian

Partial

Blocking

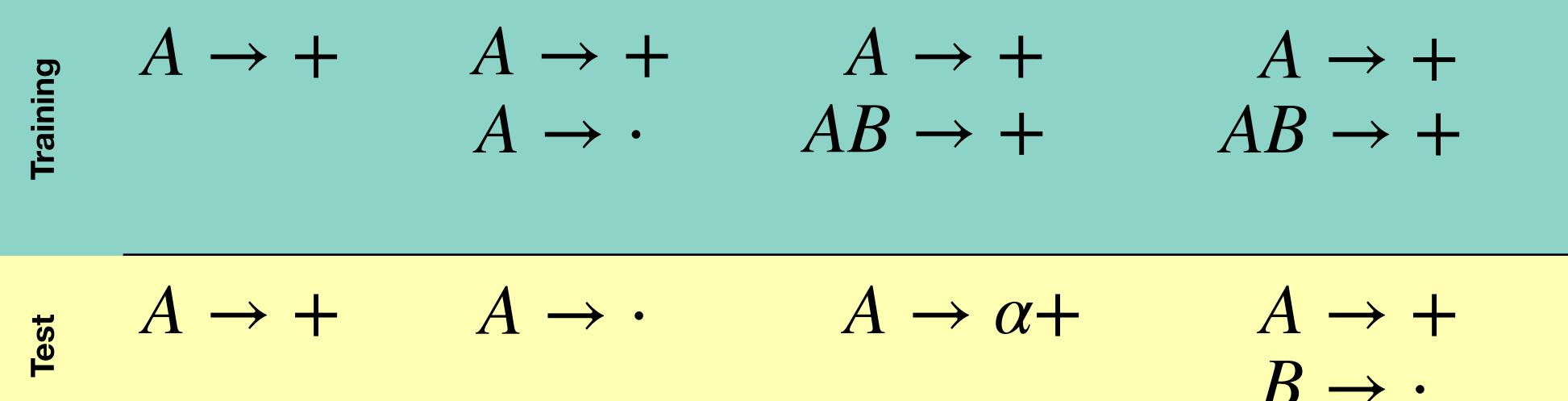


Pavlovian

Extinction

Partial

Blocking



Pavlovian

Extinction

$$\begin{array}{c} A \rightarrow + \\ B \rightarrow \cdot \end{array}$$

Partial

Blocking



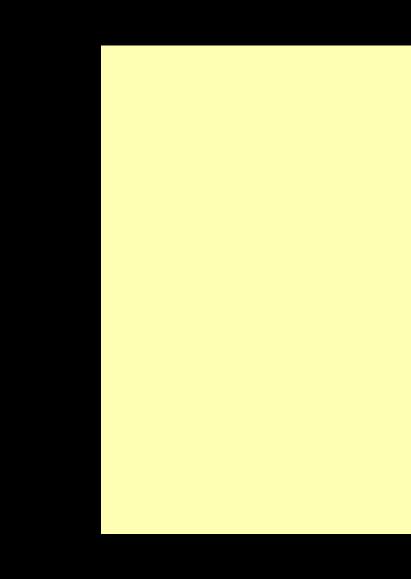
Pavlovian

Extinction

Partial

Blocking

- Stimulus Variable *S*:
- Actual Reward *r*:
- Expected Reward \mathcal{V} :
- \mathcal{W} : Weights



- Stimulus Variable *S*:
- Actual Reward *r*:
- \mathcal{V} : Expected Reward
- \mathcal{W} : Weights

Model $v = w^{\mathsf{T}}s$

- Stimulus Variable *S* :
- Actual Reward *r* :
- Expected Reward \mathcal{V}
- \mathcal{W} : Weights

Model $v = w^{\mathsf{T}}s$

Objective $\min \sum_{n=1}^{\infty} \frac{1}{2} (r-v)^2$

- Stimulus Variable *S* :
- Actual Reward *r* :
- Expected Reward V:
- \mathcal{W} : Weights

Model $v = w^{\mathsf{T}}s$

Objective $\min \sum_{n=1}^{\infty} \frac{1}{2} (r-v)^2 \qquad \begin{array}{l} \delta = r-v \\ w \to w + \epsilon \delta s \end{array}$

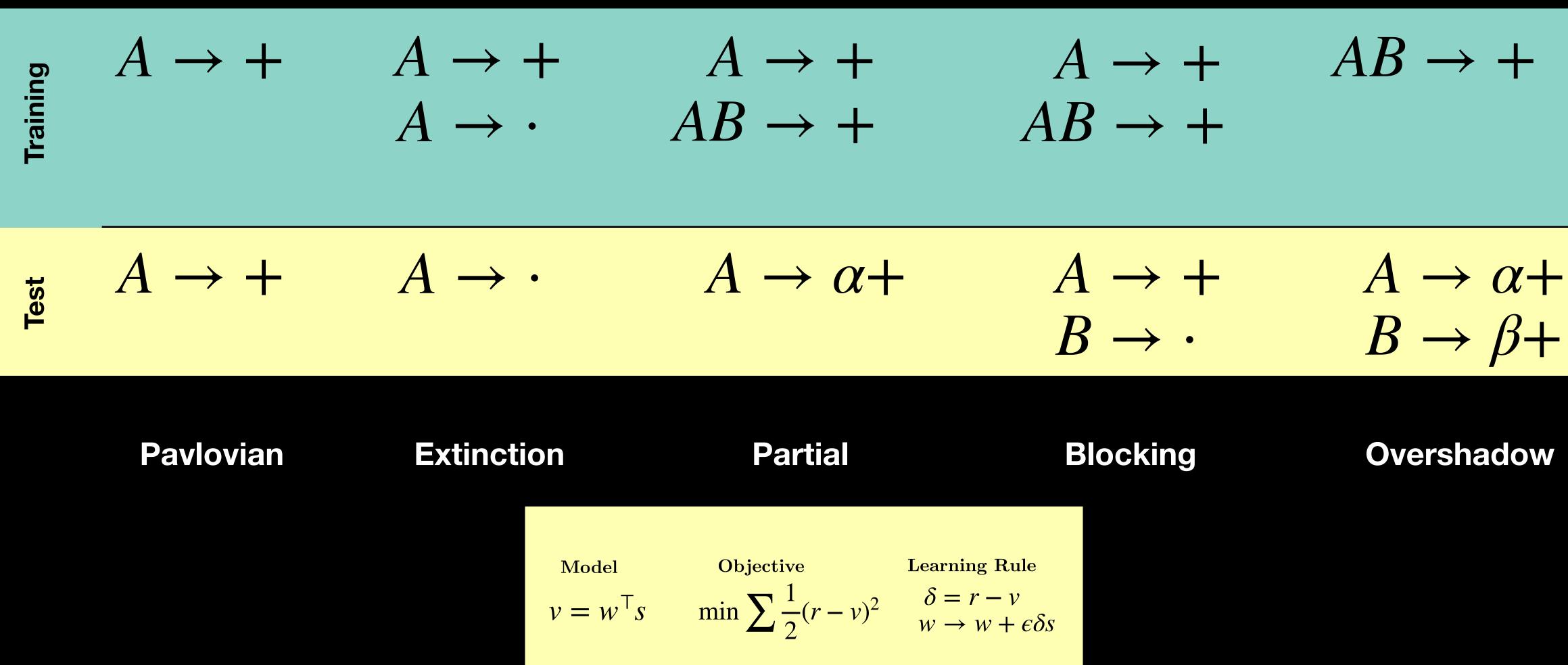
Learning Rule

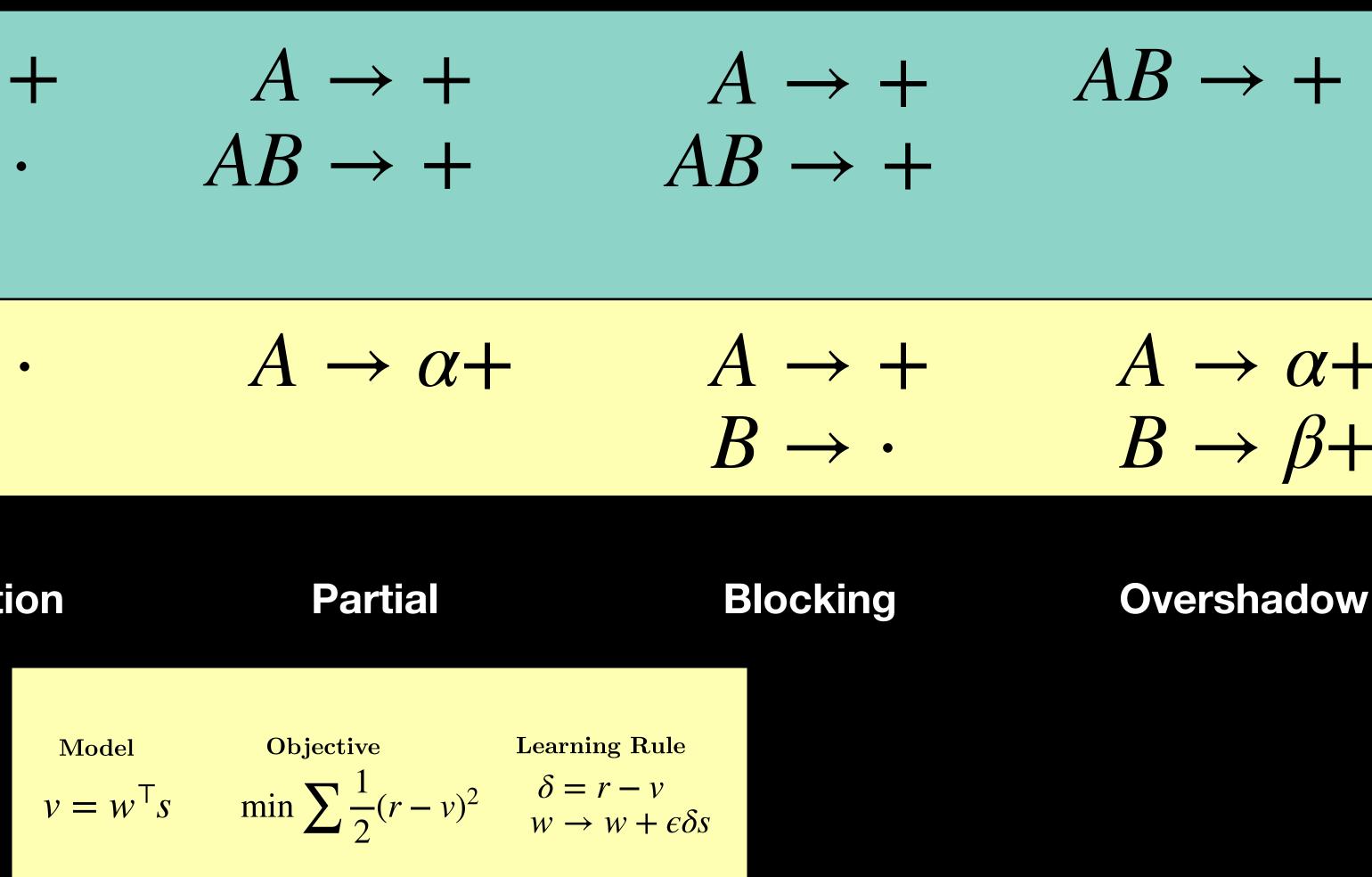
- Stimulus Variable *S* :
- Actual Reward
- Expected Reward V
- \mathcal{W} : Weights

Model $v = w^{\mathsf{T}}s$

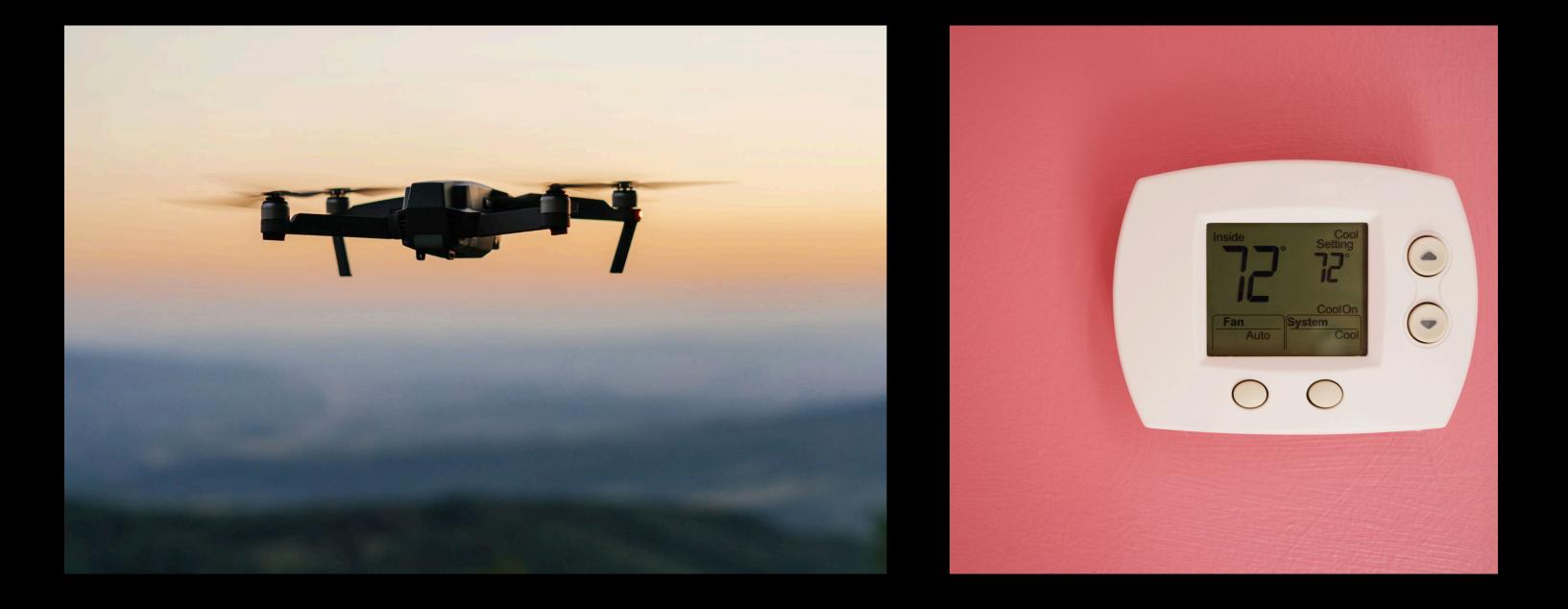
Objective Learning Rule $\min \sum_{r \to 1} \frac{1}{2} (r - v)^2$ $\delta = r - v$ $w \to w + \epsilon \delta s$

Prediction Error

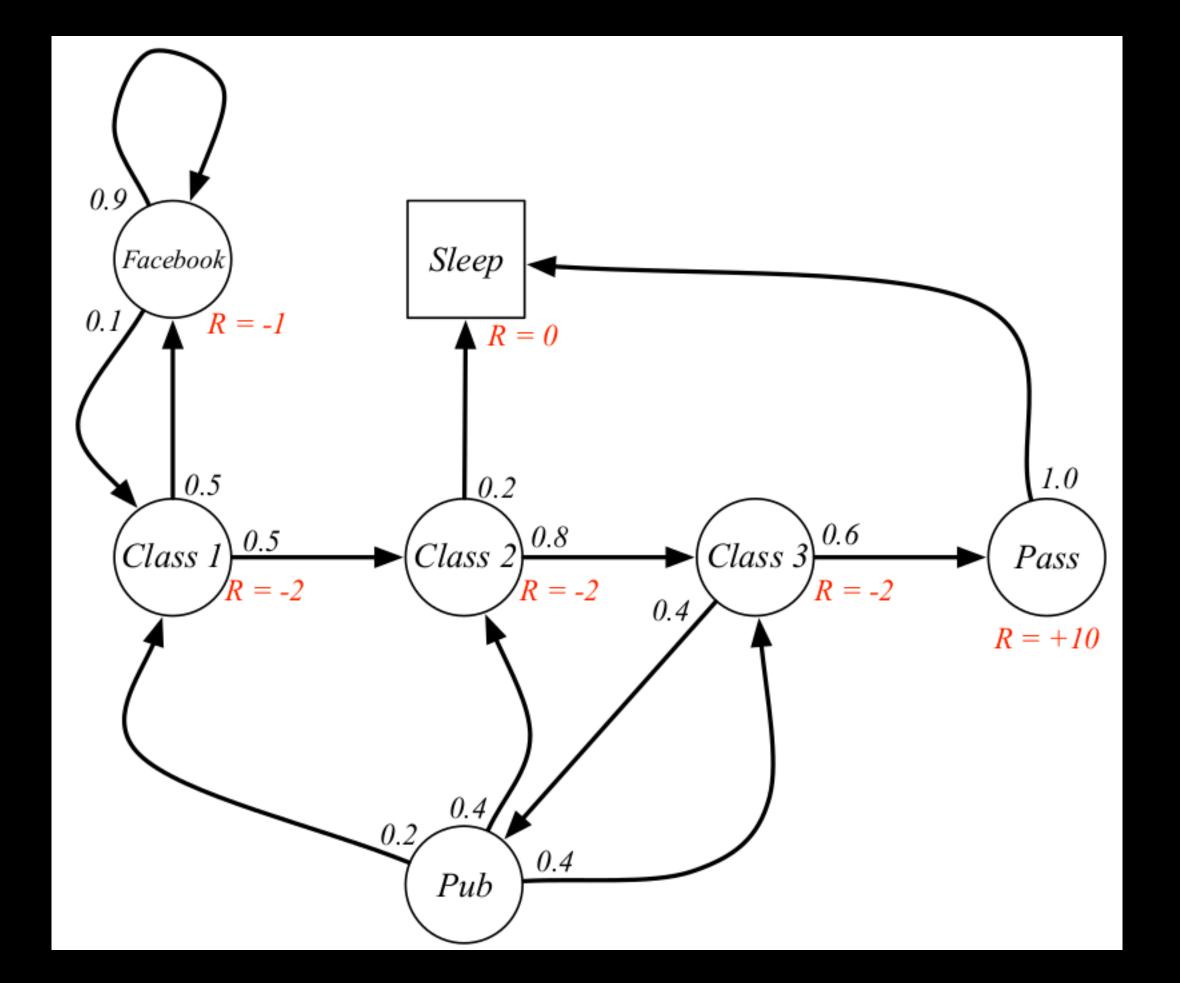




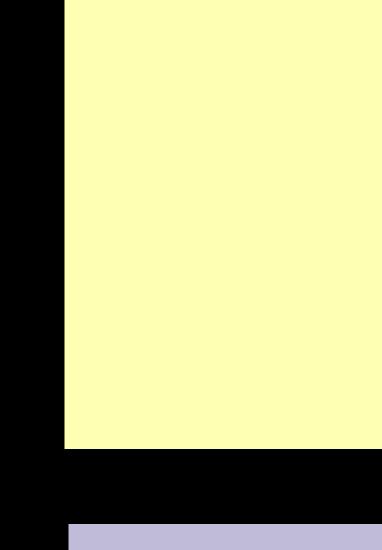
Bringing an Agent in the Loop



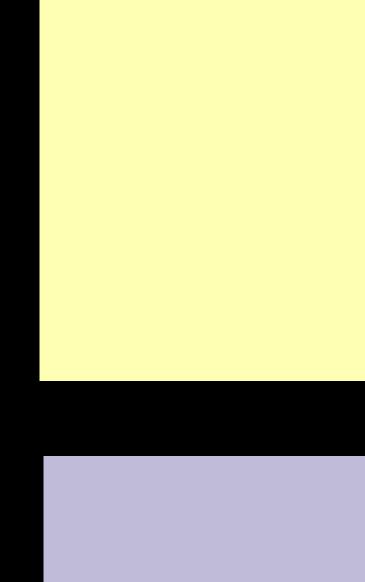
Bringing an Agent in the Loop



- Stimulus Variable *S* :
- Actual Reward *r* :
- Expected Reward \boldsymbol{V}
- \mathcal{W} : Weights



- Stimulus Variable S_t :
- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights



- Stimulus Variable S_t :
- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Total Expected Reward $V_t = \mathbb{E} \sum_{i=1}^{\infty} \gamma^i r_{t+i}$ *i*=0

- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Total Expected Reward $V_t = \mathbb{E} \left[\sum_{i=1}^{\infty} \gamma^i r_{t+i} \right]$ L i=0

$$V_t = r_t +$$

Bellman Equation

 $+ \gamma \mathbb{E} \left[V_{t+1} \right]$

- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Model $\hat{V}_t = w_t^{\mathsf{T}} s_t$

Total Expected Reward $V_t = \mathbb{E} \left| \sum_{i=1}^{\infty} \gamma^i r_{t+i} \right|$ L i=0

$$V_t = r_t +$$

Bellman Equation

 $\vdash \gamma \mathbb{E} \left[V_{t+1} \right]$

- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Model $\hat{V}_t = w_t^{\mathsf{T}} s_t$

Total Expected Reward $V_t = \mathbb{E} \left| \sum_{i=1}^{\infty} \gamma^i r_{t+i} \right|$ L i=0

$$V_t = r_t +$$

Sutton & Barto, 1990

Objective

$$\min\sum_{t=1}^{t} \frac{1}{2} (V_t - \hat{V}_t)^2$$

Bellman Equation

 $\vdash \gamma \mathbb{E} \left[V_{t+1} \right]$

- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Model $\hat{V}_t = w_t^{\mathsf{T}} s_t$

Total Expected Reward $V_t = \mathbb{E} \left[\sum_{i=1}^{\infty} \gamma^i r_{t+i} \right]$ L i=0

$$V_t = r_t + \gamma \mathbb{E}\left[V_{t+1}\right]$$

Sutton & Barto, 1990

Objective
min
$$\sum_{t=1}^{t} \frac{1}{2} (V_t - \hat{V}_t)^2$$

Bellman Equation

Prediction Error

$$\delta_t = r_t + \gamma \mathbb{E} \left[V_{t+1} \right] - \hat{V}_t$$

- r_t : Actual Reward
- V_t : Expected Reward
- W_t : Weights

Model $\hat{V}_t = w_t^{\mathsf{T}} s_t$

Total Expected Reward $V_t = \mathbb{E} \left| \sum_{i=1}^{\infty} \gamma^i r_{t+i} \right|$ L i=0

$$V_t = r_t + \gamma \mathbb{E} \left[V_{t+1} \right]$$

Sutton & Barto, 1990

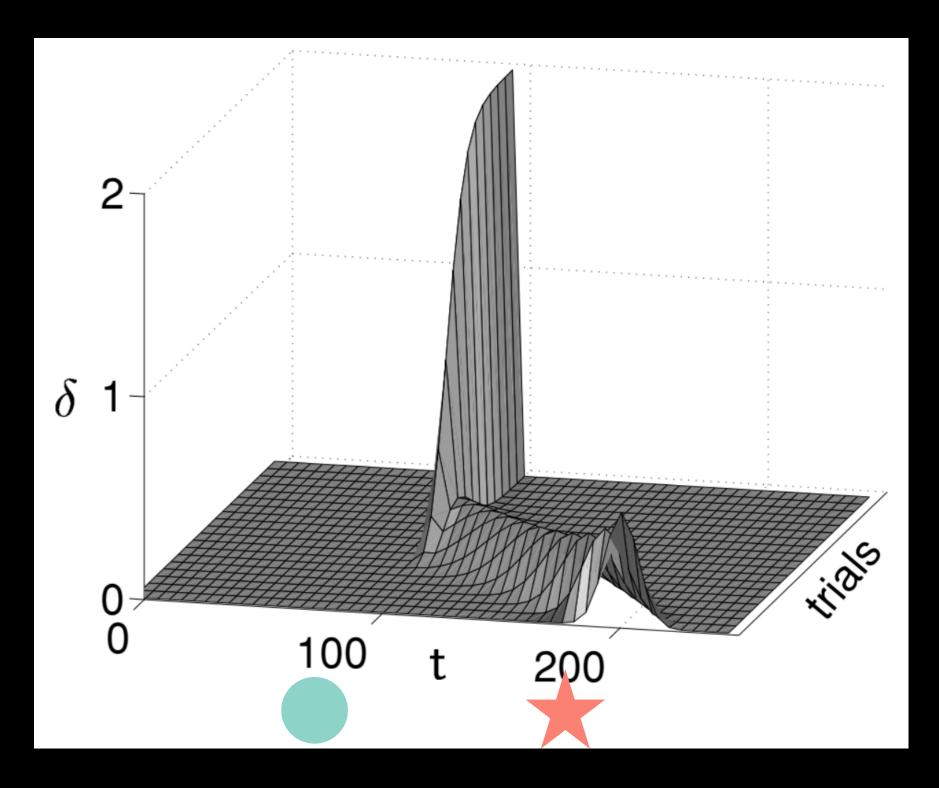
Objective Update Rule

$$\min \sum_{t=1}^{t} \frac{1}{2} (V_t - \hat{V}_t)^2 \qquad w_{t+1} = w_t + \epsilon s_t \delta_t$$

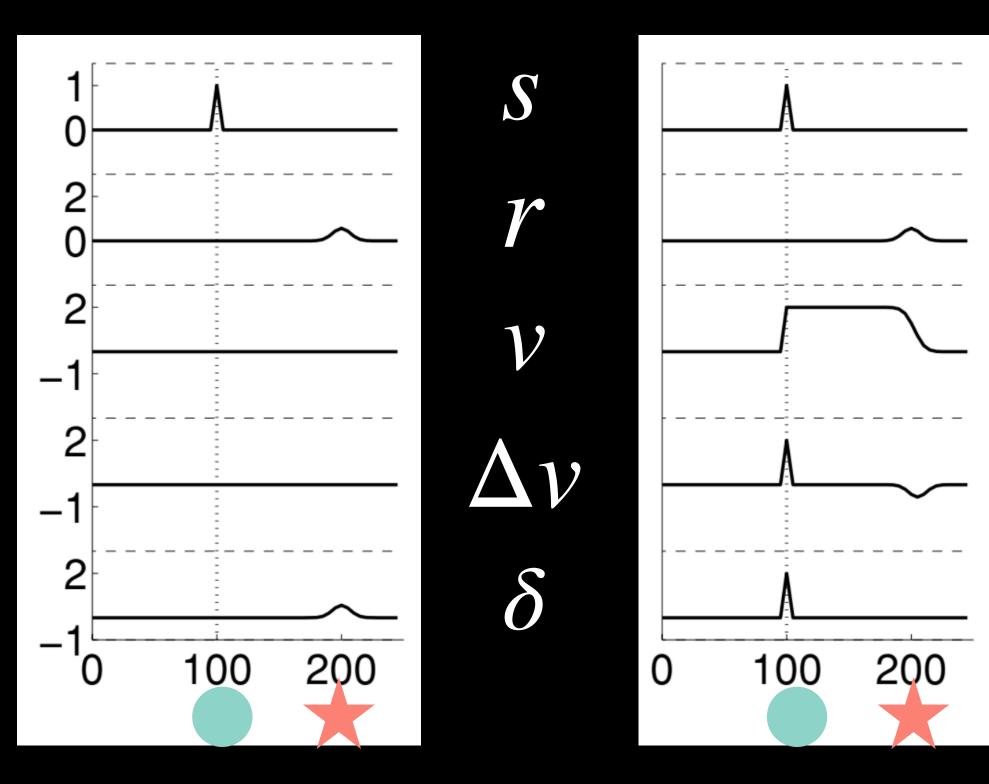
Bellman Equation

Prediction Error

$$\delta_t = r_t + \gamma \mathbb{E} \left[V_{t+1} \right] - \hat{V}_t$$



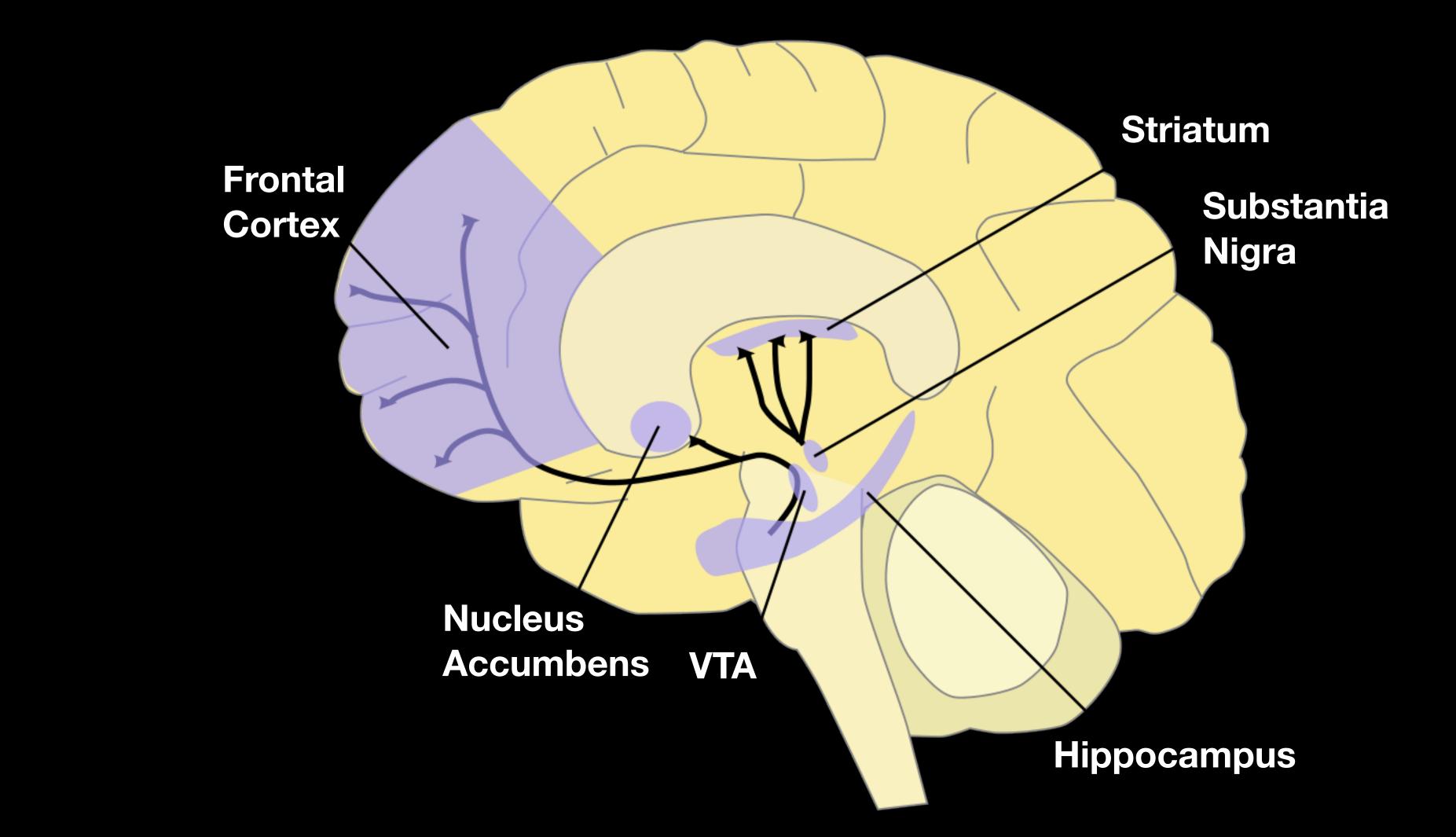
Prediction Error



Before Training

After Training

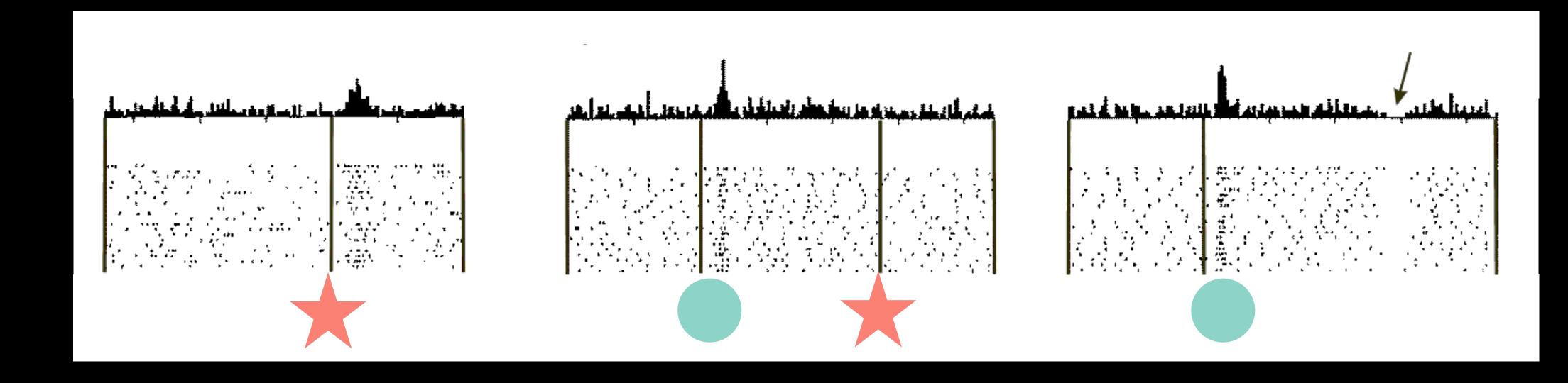
TD Learning in the Brain



TD Learning in the Brain

TD Learning in the Brain

Novelty Response Reward, No Stimulus **After Learning** Stimulus + Reward

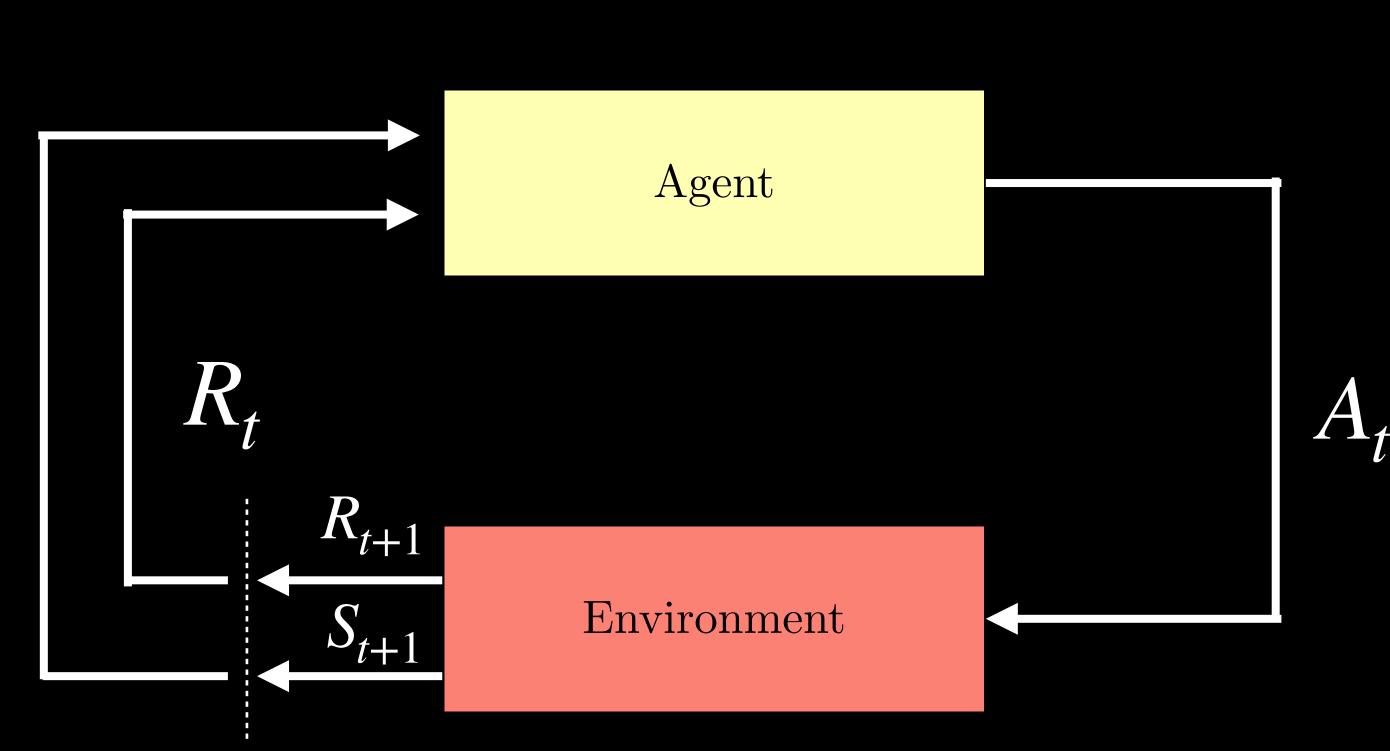


After Learning Stimulus, No Reward

Bringing an Agent in the Loop

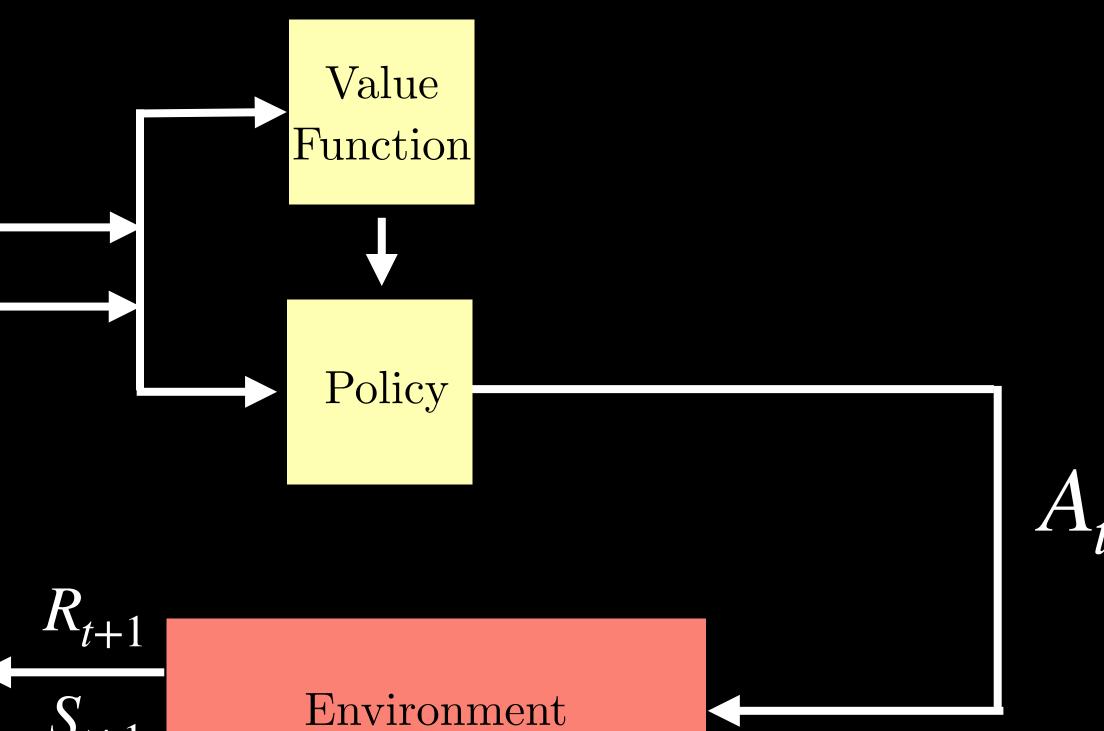
- R_t : Reward
- A_t : Actions

 S_t



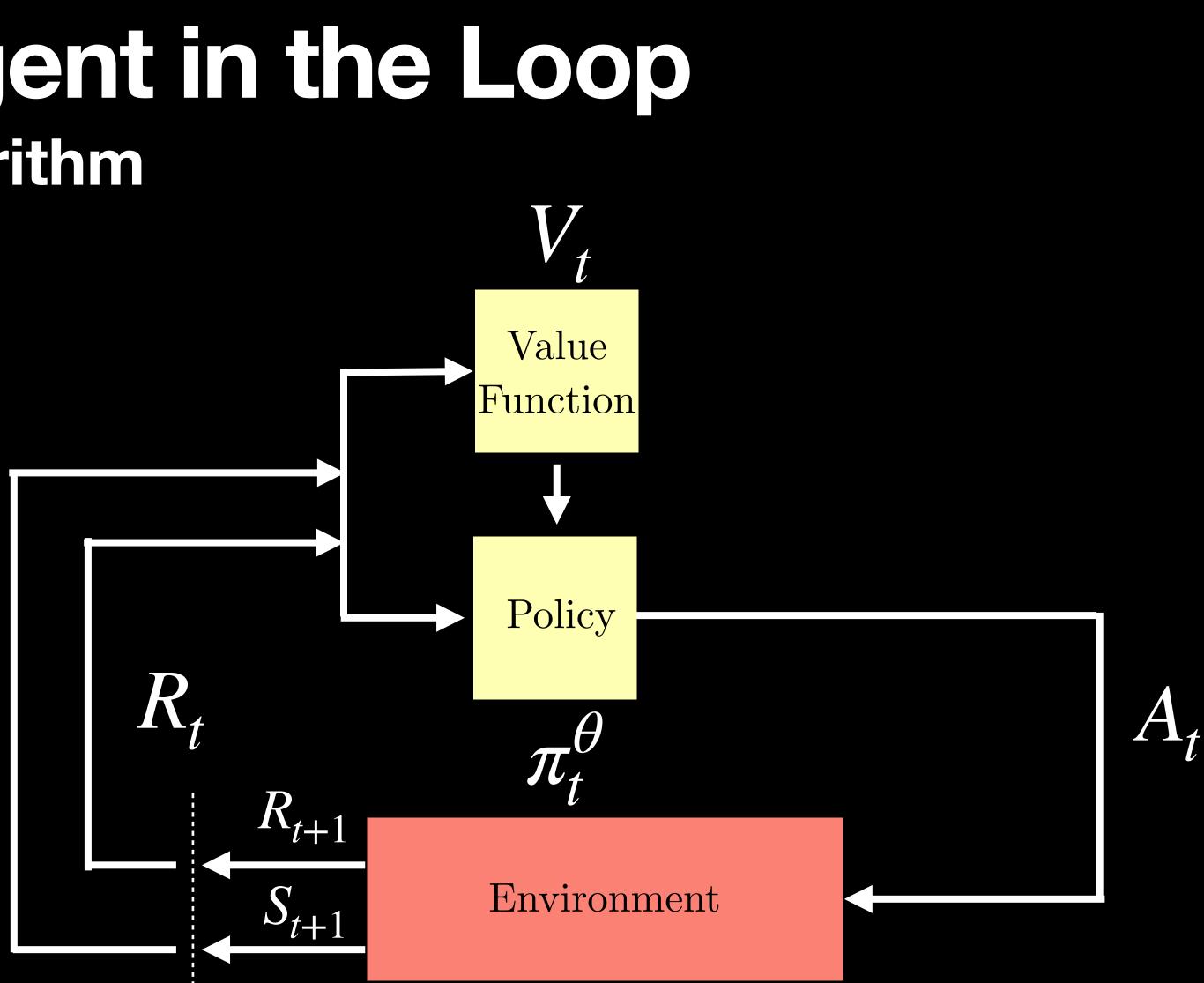
S_t

- S_t : State
- R_t : Reward
- A_t : Actions



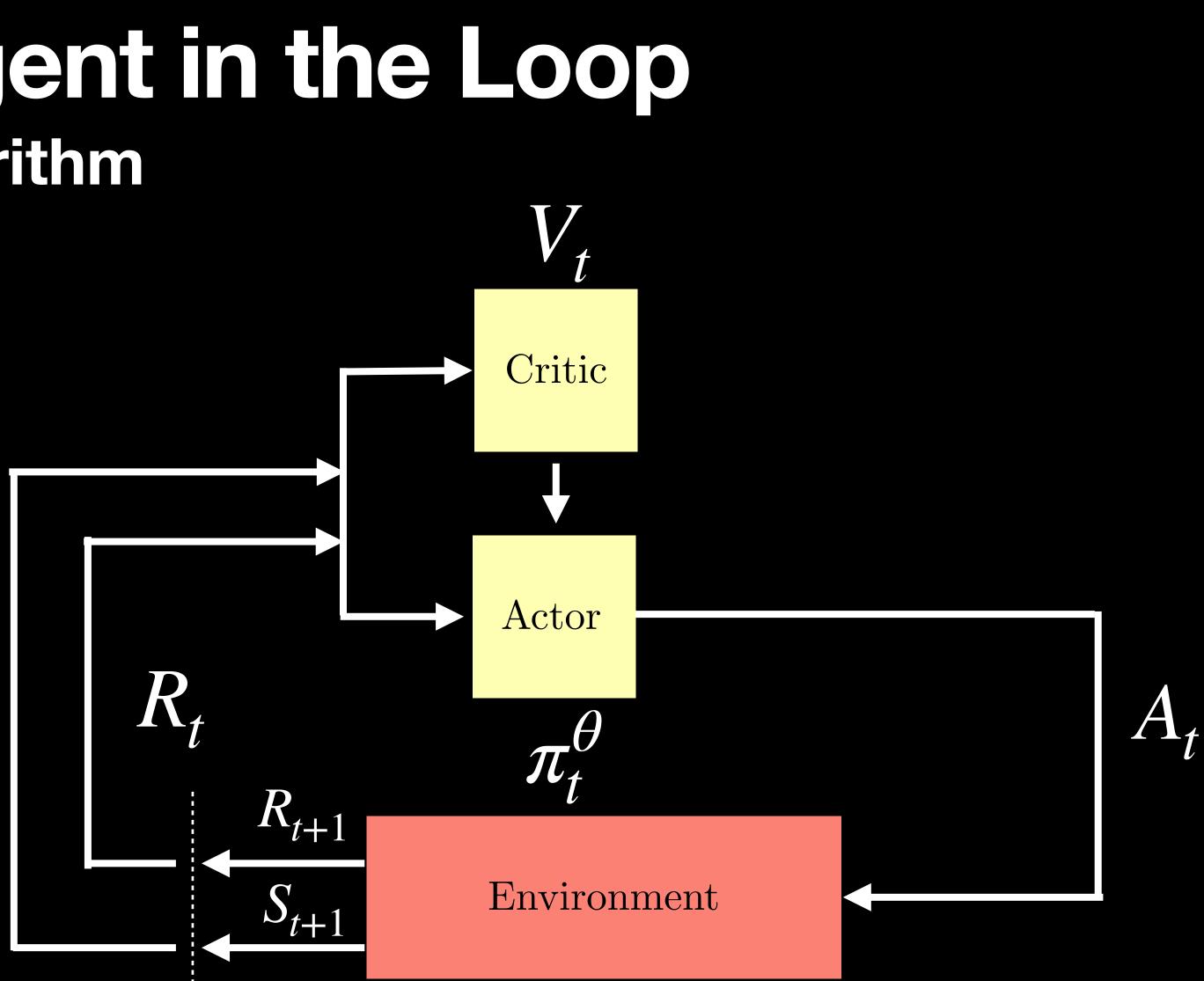
S_t

- S_t : State
- R_{t} Reward
- A_t Actions
- π^{θ}_{t} : Policy
- V_{\star} : Value Function



 S_{t}

- S_t : State
- R_{t} Reward
- A_t Actions
- π^{θ}_{t} : Policy
- V_{\star} : Value Function

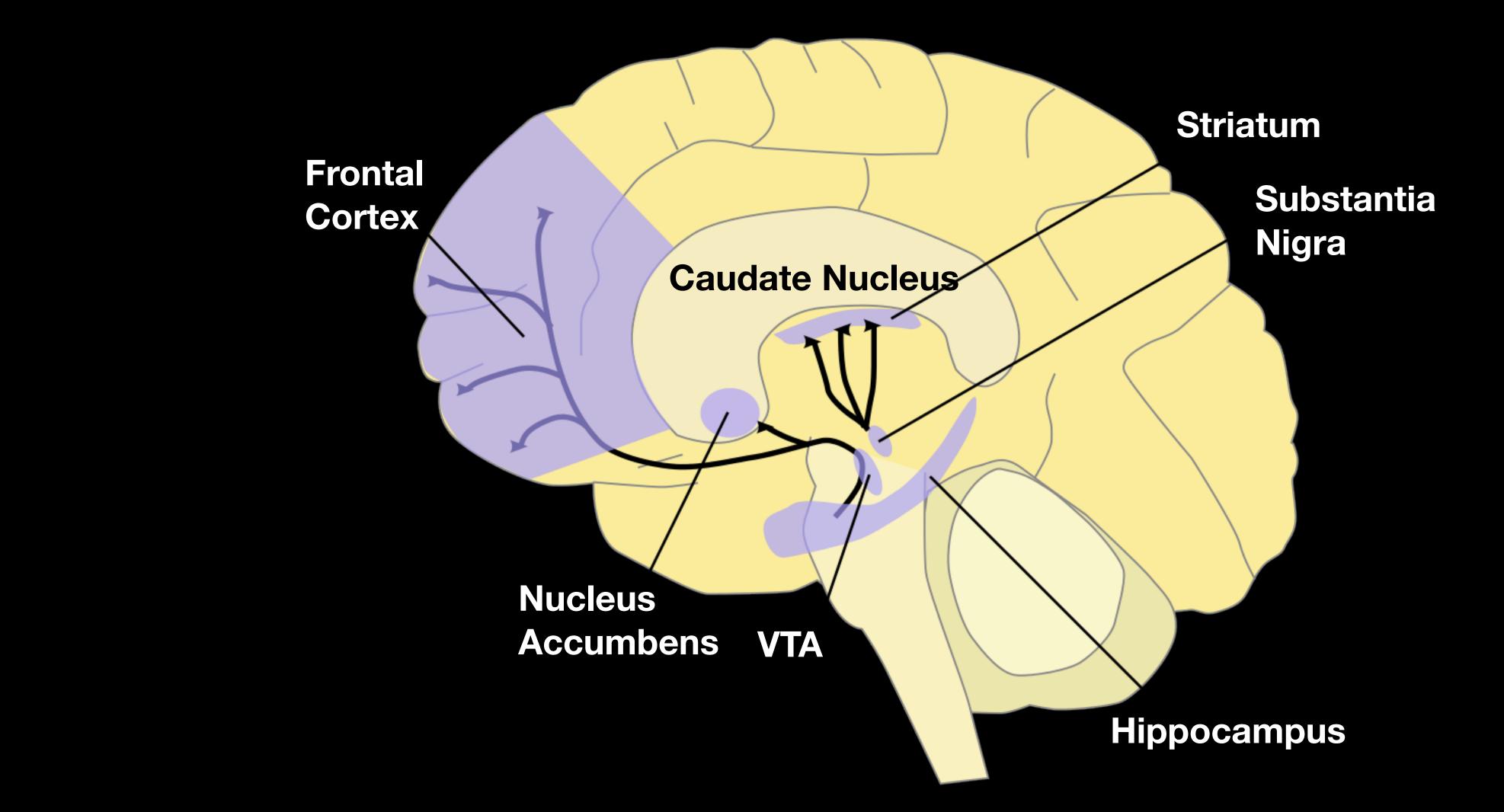


- R_{t} : Reward
- A_t : Actions
- π^{θ}_{t} : Policy
- V_{\star} : Value Function

Policy $a_t \sim \pi_{\theta}$ $\pi_t^{\theta} = P(a_t = a \mid s_t = s)$ $P(a \mid s) = \frac{e^{\theta(s,a)}}{\sum_{b} e^{\theta(s,b)}}$

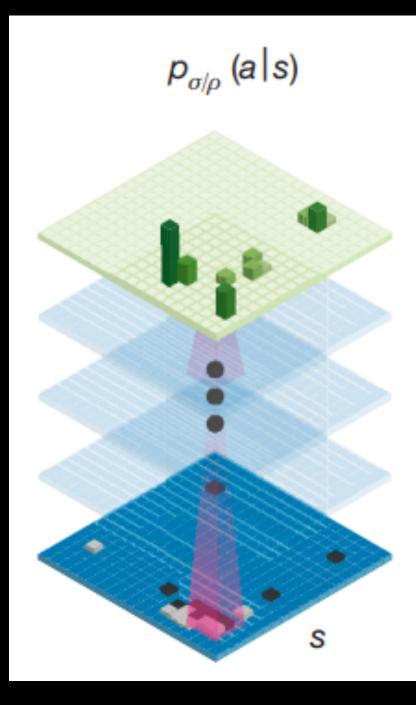
Policy Update Rule $\theta(s_t, a_t) \leftarrow \theta(s_t, a_t) + \epsilon \delta_t$

Actor-Critic in the Brain

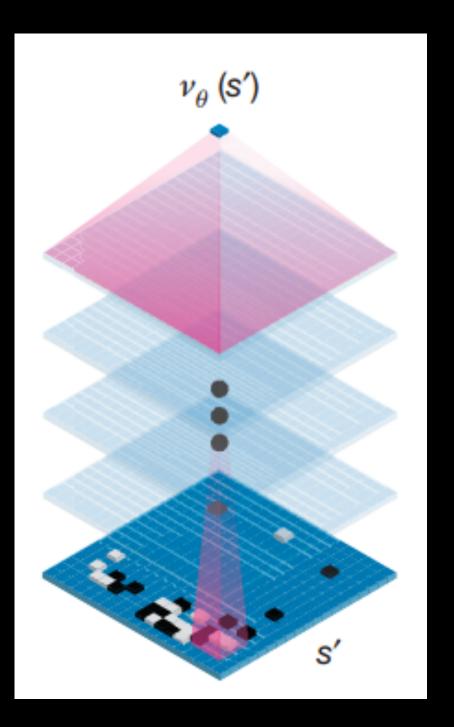


Deep Reinforcement Learning

Policy Network



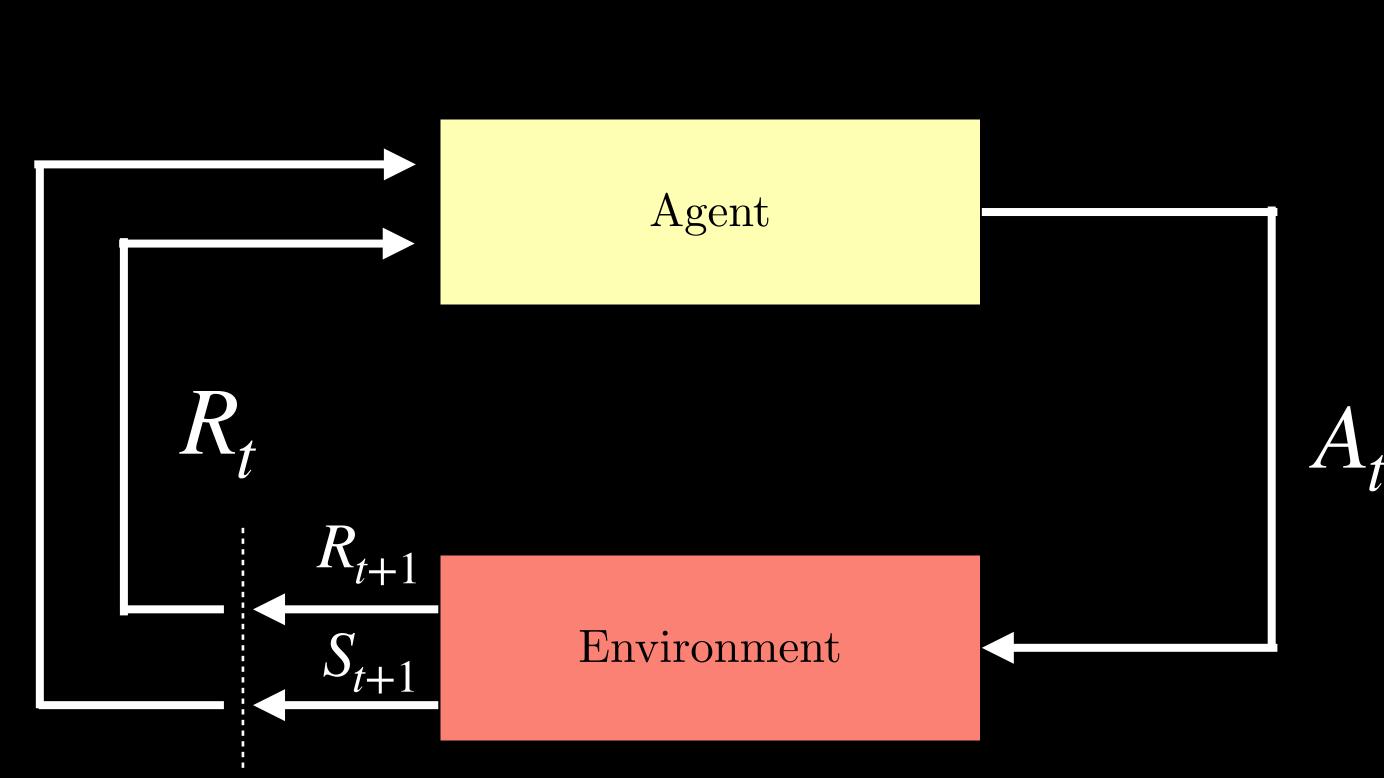
Value Network



Model-Based Reinforcement Learning

- R_t : Reward
- A_t : Actions

 S_t



Model-Based Reinforcement Learning

- R_t : Reward
- A_t : Actions

 S_t

