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Sparse coding models of natural images and sounds have been able to predict several

response properties of neurons in the visual and auditory systems. While the success

of these models suggests that the structure they capture is universal across domains to

some degree, it is not yet clear which aspects of this structure are universal and which

vary across sensory modalities. To address this, we fit complete and highly overcomplete

sparse coding models to natural images and spectrograms of speech and report on

differences in the statistics learned by these models. We find several types of sparse

features in natural images, which all appear in similar, approximately Laplace distributions,

whereas the many types of sparse features in speech exhibit a broad range of sparse

distributions, many of which are highly asymmetric. Moreover, individual sparse coding

units tend to exhibit higher lifetime sparseness for overcomplete models trained on

images compared to those trained on speech. Conversely, population sparseness tends

to be greater for these networks trained on speech compared with sparse coding models

of natural images. To illustrate the relevance of these findings to neural coding, we

studied how they impact a biologically plausible sparse coding network’s representations

in each sensory modality. In particular, a sparse coding network with synaptically local

plasticity rules learns different sparse features from speech data than are found by more

conventional sparse coding algorithms, but the learned features are qualitatively the same

for these models when trained on natural images.

Keywords: natural scene statistics, vision, audition, cortex, sparse coding, sensory systems, unsupervised

learning

1. INTRODUCTION

An important goal of systems neuroscience is to discover and understand the principles that
might govern sensory processing in the brain. Several principles have been proposed, such as
reducing redundancy between neurons (Attneave, 1954; Barlow, 1961; Daugman, 1989; Atick and
Redlich, 1992; Chechik et al., 2006), representing statistical dependencies between objects and
events to guide action (Barlow, 2001), minimizing expended energy (Laughlin, 2001), maximizing
entropy (Schneidman et al., 2006), and maximizing transmitted information (Laughlin, 1981; Bell
and Sejnowski, 1995; DeWeese, 1996; Rieke et al., 1997; Hyvärinen and Hoyer, 2001; Karklin
and Simoncelli, 2011). Each of these principles suggests that sensory systems should use the
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statistical structure of sensory data from the animal’s
environment to efficiently represent and process that data.
Studying the statistics of natural sensory input and coding
strategies specialized for those statistics has helped us
understand neural sensory systems (Dong and Atick, 1995;
Bell and Sejnowski, 1997; Schwartz and Simoncelli, 2001;
Simoncelli and Olshausen, 2001; Singh and Theunissen, 2003;
Olshausen and Lewicki, 2013; Theunissen and Elie, 2014).

One principle that has provided insight into the structure
of data from the natural environment and the way these data
are represented by neural activity is sparseness (Földiák, 1990;
Olshausen and Field, 2004). We say that a fluctuating quantity
is sparse if it is often zero (L0 sparseness), or if it is close
to zero more often than a Gaussian random variable with
the same variance (L1 sparseness). Natural visual scenes can
be well-represented by sparse distributions (Field, 1987), and
coding strategies optimized for sparseness find local, oriented,
bandpass features that match the receptive fields of simple cells
in primary visual cortex (V1) (Olshausen and Field, 1996; Bell
and Sejnowski, 1997; Rehn and Sommer, 2007; Rozell et al.,
2008; Zylberberg et al., 2011). In the auditory domain, the
filters that optimize a sparse coding scheme for the acoustic
waveforms of natural sounds resemble cat auditory nerve filters,
and they form a similar tiling of time-frequency space (Smith and
Lewicki, 2006). Interestingly, training this sparse coding model
on speech rather than an optimized combination of recordings
of environmental sounds yields just as good a fit to auditory
nerve filters. Moreover, a sparse coding model of spectrograms of
speech learns features that resemble spectro-temporal receptive
fields (STRFs) measured at higher stages of auditory processing,
such as the inferior colliculus, auditory thalamus, and primary
auditory cortex (A1) (Carlson et al., 2012). Some similar
features emerge in models of simulated cochlear responses (Klein
et al., 2003; Karklin et al., 2012), and hierarchical models have
found higher-level sparse structure (Karklin and Lewicki, 2005;
Terashima and Okada, 2012; Młynarski and McDermott, 2017).
Experiments have uncovered sparse responses from neurons
in visual cortex (Vinje and Gallant, 2000; Weliky et al., 2003)
and auditory cortex (DeWeese and Zador, 2003; Hromádka
et al., 2008) as well as other brain regions (Theunissen, 2003),
suggesting that the nervous system has evolved to take advantage
of the sparse structure of its inputs. Furthermore, a sparse coding
model of natural images exhibits many of the non-classical
receptive field effects found in V1 neurons in addition to learning
similar classical receptive fields (Zhu and Rozell, 2013).

These results suggest that the applicability of sparse coding to
understanding sensory systems is not limited to a single modality,
such as vision, but that sparseness may be a more universal
property of data from the natural environment. However, there
are clear differences between visual and auditory data, which
has affected the way they have been explored in past work. For
example, sparse coding studies in vision have mostly focused on
static images, while the time dimension is not as easily avoided
for sounds. As another example, one model designed to separate
form and motion in natural movies did manage to learn pairs
of phase-shifted Gabor filters (Cadieu and Olshausen, 2012) but
it did not learn phase-shifted auditory features, although an

extension was used to model binaural sound coding (Młynarski,
2015). Moreover, images exhibit some symmetries (e.g., a rotated
natural image is still a natural image) without clear analogs in the
auditory domain.

Our primary goal was to compare the statistical structure of
natural visual scenes and of natural sounds through the lens
of sparse coding. Our approach was to fit complete and highly
overcomplete sparse coding models to spectrograms of speech
and to natural image patches and then to compare the statistics of
these models’ representations. We have found that, while natural
scenes and sounds can each be well-represented by sparse coding
models, this structure differs in significant ways between the two
modalities. We focus on the lifetime sparseness of model units,
i.e., the sparseness of each unit’s activity across stimuli. We also
comment on properties related to the sparseness of a model’s
representation of each stimulus, known as population sparseness.

We further demonstrate that the differences we find between
the sparse structure of speech and that of images have significant
consequences for coding schemes used to process these types
of data, and therefore for neural models of vision and audition.
In particular, we study the effects of the statistics of natural
sounds and of natural images on a sparse coding network
designed to match some important constraints imposed on real
neural systems. The Sparse and Independent Local Network
(SAILnet) (Zylberberg et al., 2011; King et al., 2013; Zylberberg
and DeWeese, 2013) is the only algorithm we are aware of
with spiking neurons and synaptically local plasticity rules that
can learn the diverse receptive field shapes of V1 simple cells
when trained on natural image patches. Some conventional
sparse coding algorithms (e.g., Rehn and Sommer, 2007; Rozell
et al., 2008) also learn these specific shapes but do not have
the same biological constraints. Other algorithms respect some
or all of these biological constraints but have not been shown
to learn closely matching receptive fields (Savin et al., 2010;
Hayakawa et al., 2014; Isomura and Toyoizumi, 2016, 2018)
and/or are mechanistically similar to SAILnet (Pehlevan et al.,
2015). See section 4.2 for details of the specific “conventional”
sparse coding model we used in this paper. We trained SAILnet
models on spectrograms of speech sounds and on natural
images, using the same preprocessing steps in both cases.
While SAILnet learned similar features to those found using
conventional sparse coding in the visual case, the SAILnet results
were significantly different from conventional sparse coding for
auditory data. This divergence in results with SAILnet points
to surprising differences between the sparse structure of natural
images and natural sounds, with implications for both early
development and sensory processing in the mature circuit in
these different modalities.

2. RESULTS

To compare the sparse structure of speech sounds to that of
natural images, we fit sparse coding models to ensembles of
each type of data. For speech, we adapted a preprocessing
scheme introduced previously (Carlson et al., 2012) in which
segments of spectrograms of recordings of speech are first
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FIGURE 1 | Schematic illustration of preprocessing. We preprocessed a set of natural images and a set of speech sounds using steps as similar as possible to allow

for a meaningful comparison of the intrinsic structure of the datasets. (A) The raw auditory data consisted of recordings of speech from the TIMIT corpus (Garofolo

et al., 1993). The blue curve is the sound pressure waveform of an isolated speaker uttering the first 2 s of “She had your dark suit in greasy wash water all year.”

(B) Spectrograms were computed from the waveforms (see Methods for details). The color of each pixel represents the intensity (red is more intense, blue is less) of

sound at a particular frequency and a particular time. (C) We took the logarithm of each intensity spectrogram. (D) The spectrograms were divided into overlapping

segments of 25 time points each, derived from 216 ms of audio. Since 256 frequencies were sampled at each time point, these spectrogram segments were each

6400-dimensional. (E) The dimensionality of the spectrogram segments was reduced by projecting each segment onto the first 200 principal components of that

dataset. The variance of each component was then set to one to “sphere” or “whiten” the data. (F) Raw image data were taken from the Van Hateren natural image

dataset (van Hateren and Schaaf, 1998). The lightness of each pixel represents the intensity of light at that location. (G) We took the logarithm of each intensity

spectrogram and each intensity image. (H) Patches of 80 pixels on each side were taken from the log-intensity images to make 6400-dimensional image patches.

(I) We repeated the PCA procedure we used for spectrograms exactly on the set of image patches, including whitening.

whitened and then reduced in dimensionality using principal
components analysis (PCA). We followed the same procedure
for image patches of the same dimensionality as the spectrogram
segments in order to make as fair a comparison as possible
between the two datasets. These preprocessing steps are

illustrated in Figure 1 and discussed in more detail in section
4.1. Note that although the preprocessing schemes for the
two datasets differed in that we took spectrograms of the
auditory data, the spectrogram is not an inherently lossy
transformation (Le Roux et al., 2010).
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After this preprocessing, we trained sparse coding models
using an iterative scheme based on the locally competitive
algorithm (LCA) (Rozell et al., 2008) for inference (i,e.,
determining the activity of each unit for representing a given
sensory input) combined with stochastic gradient descent for
learning (i.e., setting the parameters of the model). (Note that
we will use “activity” and “activation” interchangeably below).
Throughout this manuscript we use the term “conventional
sparse coding” to refer to this particular scheme, and this
is the primary model we used to generate most of the
results we present here, but we obtained similar results
using SPARSENET (Olshausen and Field, 1996) and, when a
comparison made sense, Independent Components Analysis
(ICA, Bell and Sejnowski, 1995; Hyvärinen et al., 2001).

2.1. Complete Sparse Representations
Before training a sparse coding model, one typically specifies
the number of stimulus features (also referred to below as
“elements” or “units”) to include in the full “dictionary” of
the model. The optimal dictionary learned by a sparse coding
model can depend substantially on the size of that dictionary
relative to the size of the data (Olshausen, 2013). Intuitively,
one might expect a greater diversity of stimulus feature classes
with a larger dictionary, and this is often the case. We started
by fitting sparse coding dictionaries with 200 elements, which
is the dimension of each of our datasets after PCA reduction;
we will refer to this as the “complete” regime. While models
with more dictionary elements than the dimension of the data
may make for a closer correspondence with the brain, we found
that the complete regime elucidates some aspects of the datasets
themselves that are less clear in the “overcomplete” regime.
We also discuss the overcomplete regime in section 2.2. We
used the L1-sparse locally competitive algorithm (LCA) (Rozell
et al., 2008) to compute sparse codes and stochastic gradient
descent (SGD) to optimize the dictionaries (see section 4.2 for
details). With a complete dictionary (of which the elements
learn to be approximately orthogonal), the differences between
LCA and other encoding algorithms have very small effects
and distributions of LCA activations primarily reflect the
corresponding linear components of the data, whereas non-
linearities dominate in the highly overcomplete regime.

Figure 2 illustrates several properties of the learned
dictionaries and their representations of the data. The dictionary
elements found by our sparse coding algorithm exhibit clear
structure beyond the restriction to the subspace spanned by the
first 200 principal components. When trained on image patches,
the model recovers the Gabor functions and long edge filter-like
elements that are known to emerge in sparse coding models of
smaller image patches (Olshausen and Field, 1996) (Figure 2A,
third column). In the spectrogram case, we recover the element
types previously seen in sparse coding dictionaries, including
acoustic features that resemble spectro-temporal receptive fields
(STRFs) observed in the inferior colliculus and at various other
stages of the mammalian ascending auditory pathway (Carlson
et al., 2012) (Figure 2A, first column).

For both the visual and auditory case, the distribution of unit
activations for every dictionary element was much sparser than

is typically found for random directions in the data space. Log
histograms of individual unit activities were consistently sharply
peaked at 0, and they had fat tails, compared with the parabolic
shape of the (log) activity distribution expected for Gaussian-
distributed random vectors in the stimulus space (Figure 2A,
second and fourth columns).

While both the visual and auditory dictionaries were sparse,
there were several striking differences between the sparse
structure of their representations. To quantify these observations,
we used the following sparseness score:

S[{y}] = −
〈|y|〉

√

〈y2〉
+

√

2/π , (1)

where the angle brackets denote the expectation over the
empirical distribution of y. The constant

√
2/π ≈ 0.80 simply

shifts the score so that a normal distribution has a sparseness
score of zero. This measure of sparseness is less sensitive to
outliers than is kurtosis (Hyvärinen et al., 2009), for example.
Nevertheless, we found qualitatively similar patterns for all of our
results using kurtosis (see Figure S6).

Applying this measure to the distribution of activities for a
given unit in response to every stimulus in the dataset gives
a measure of lifetime sparseness for that unit. Applying this
measure to the distribution of activities for a given stimulus
over the population of units would instead give a measure of
population sparseness.

We found that the lifetime sparseness score was always
greater than zero for the learned dictionary elements. For each
data set, we then calculated sparseness scores for the activity
distributions for a dictionary with each element drawn iid
from a normal distribution. These sparseness scores for random
elements were small, with median values of 3.3 × 10−2 for
spectrograms and 5.6× 10−2 for images; these values correspond
to a null hypothesis against which to compare the optimized
dictionary elements. These control values are plotted as small
points in Figure 2B.

While most of the units in the image dictionary clustered
around a particular value of sparseness score and appeared
qualitatively similar to one another, the units in spectrogram
space covered a wider range of sparseness scores, with several
distinct clusters (note the plateaus on the left of the purple
curves in Figure 2B). These clusters correspond to qualitatively
different classes of features: (1) harmonic stacks, (2) broadband
onsets, and (3) broadband onsets preceded by high-frequency
sound (Figure 2A, first column). Examples of several other
qualitatively different types are also shown, although these do
not exhibit strong clustering of sparseness scores. The clusters
we found resemble those described previously (Carlson et al.,
2012) in the usage frequency histogram across the units in a
half-complete sparse coding network. These clusters become
less distinct as the total number of dictionary elements grows,
and they are not apparent from the sparseness scores in the
highly overcomplete case considered in the next section. Various
other differences in the model or measure used may also make
the clustering more or less clear. The complete dictionary is
shown in Figure S9, annotated with clusters as determined by
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FIGURE 2 | Natural images and speech each exhibit sparse structure, but with clear differences. (A) Log-histograms of unit activations for individual elements (units) of

complete dictionaries show more skewness and a greater range of sparseness for representations of speech (left pair of columns) than for representations of images

(right pair of columns). The sparseness score (Equation 1) can be thought of as a measure of “lifetime sparseness” for the corresponding dictionary element, since it

quantifies the sparseness of that element’s responses to the range of stimuli it might encounter over its lifetime. Each square contains the spectrogram (left column) or

image patch (third column) representing one sparse coding dictionary element fit to the corresponding dataset. For the spectrogram elements, white regions have no

effect on the element’s activity while red denotes positive weights and blue negative weights. For the image patches, gray represents zero and lighter pixels represent

positive weights. Each element has been multiplied by the sign of the skewness of its activations to show the element as it is used by the sparse coding network. The

log-histogram next to each element shows how often the unit had a given level of activity. No marker is shown when a histogram bin is empty. The horizontal scale is

consistent for each dataset, and the vertical scale is the same for all histograms. The last example for each dataset is not from a trained network but from a network

where all elements are independently and identically distributed (iid) Gaussian noise in each principal component after whitening. As expected, these Gaussian noise

control cases yield approximately parabolic curves, compared with the more Laplace-like curves for the actual learned dictionary elements. The uppermost examples

for speech also exhibit extra weight near zero beyond the peak expected for a Laplace distribution. (B) Rank plots for the sparseness score of the distributions of

activations of each unit. Each point corresponds to one dictionary element. The numbered points correspond to the numbered examples in (A). Since the activation of

one element cannot be determined without the other elements due to the non-linear nature of LCA, these statistics can be meaningfully compared to their values for a

full dictionary of random elements (thin curves at bottom). For these curves, we generated 200 random directions in PCA space, used LCA to perform inference on

each image patch (or spectrogram segment), and then found the sparseness score of the distribution of activities. (C) Rank plots analogous to (B) with the magnitude

of skewness (Equation 2) substituted for sparseness. The thin curves very close to zero represent the same skewness analysis applied to a collection of 200 random

directions in PCA space. The results in all panels are nearly unchanged if unit activations are replaced by linear projections of the dataset onto individual dictionary

elements (Figure 7), or for dictionary elements learned with independent components analysis (ICA) (Bell and Sejnowski, 1995) (Figure S5).

fitting a Gaussian mixture model to the sparseness scores and
skewness magnitudes.

Another difference between the visual and auditory sparse
coding dictionaries was that the auditory unit activations were
typically much more asymmetrical compared to the visual units.
We quantified this using the absolute value of skewness, which is

|skewness[{y}]| =
∣

∣

∣

∣

〈y3〉
〈y2〉3/2

∣

∣

∣

∣

(2)

for mean-centered data {y} (Abramowitz and Stegun, 1972).
A symmetric data distribution has zero skewness, whereas a
distribution with a longer tail on the right than the left has
positive skewness. We computed the absolute value of the

skewness since, like most sparse coding models, our network
allows for both positive and negative activities, leading to
degenerate representations of asymmetrical signals. Figure 2C
demonstrates that the skewness values for the image dictionary
elements were much smaller than the majority of auditory
elements. Note also that the three most distinct categories
of auditory features cluster in their degree of asymmetry of
activations, as measured by the skewness, just as what we found
for sparseness.

We can understand the skewness of these elements in terms
of properties of speech sounds as represented by power spectra:
speech often contains harmonic structure—power concentrated
at integer multiples of a fundamental frequency—but it rarely
if ever contains the opposite of such structure, which would
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be broadband sound with power missing at regularly spaced
frequencies. Speech, like other natural sounds, also tends to
contain sharp onsets but only gradual decays into silence. Since
our sparse coding scheme allows for both positive and negative
coefficients (i.e., unit activities), we multiplied the examples
shown in Figure 2 by the sign of their skewness before displaying
them and their corresponding activation histograms, in order to
show the acoustic feature that would be added with a positive
coefficient to the network’s representation of the input. The
idea is that the long tail of a skewed distribution of unit
activity corresponds to the feature associated with large activity
magnitudes; we obtain very similar results if we instead multiply
each unit by the sign of its average activity.

The highly sparse and skewed distributions of unit activities
onto these well-clustered acoustic feature classes share a
distinctive shape exemplified by the first three log-histograms in
Figure 2A. In each case, a sharp peak around zero is accompanied
by a long flat tail on the positive side, showing that, for example,
harmonic stacks appear at a wide range of volumes or not at
all. Most of the other activation distributions, for the auditory
spectrogram case as for the image cases, have a more symmetric,
Laplace-like shape.

We wondered to what extent these results reflected the
non-linear inference process of our sparse coding algorithm
with 200 interacting elements, as opposed to simply the one-
dimensional statistics of the data projected linearly onto each
dictionary element. For example, non-linear processing in the
retina has been found to be more responsible for decorrelation
between retinal ganglion cell outputs than their center surround
receptive field shapes, which were originally hypothesized to
underlie this effect (Pitkow and Meister, 2012). To address this,
we examined the distributions of the training data projected
onto individual elements from each of these complete sparse
coding dictionaries. Since this is in the complete regime,
with no more dictionary elements than there are independent
dimensions in the preprocessed dataset, one might expect that
the projection of the data onto any given dictionary element (i.e.,
the distribution of inner products between the dictionary element
and the collection of images or spectrograms) should be sparser
than projections in random directions, provided our learning
algorithm is effective and we have a reasonable model for the
data being fit. However, since the dictionary was optimized for
the sparseness of codes determined by a non-linear function of
the dictionary and the data (LCA, see section 4), it did not have
to turn out that linear projections of the data onto every element
had to be sparse even if sparse dimensions exist in the data.

Nonetheless, we found that the elements of our optimized
complete sparse coding dictionaries did robustly correspond to
sparse dimensions in the data (Figure 7). As with the analysis of
unit activations, we compared our results for linear projections
with those for a dictionary composed of random directions.
Specifically, for each data set, we calculated sparseness scores for
the distributions of projections for each of 200 directions drawn
iid from a normal distribution. As expected, these sparseness
scores were small, with median values of 7.8 × 10−3 for
spectrograms and 2.5 × 10−2 for images. For each dataset, the
full range of sparseness scores for these 200 random dimensions

is represented by the shaded region in Figure 7B, which lies
well below the corresponding curve of sparseness scores for
nearly all of the dictionary elements learned by the model. As
we found for the activity analysis, most of the units in the image
dictionary clustered around a particular value of sparseness score
and appeared qualitatively similar to one another, whereas the
units in spectrogram space covered a wider range of sparseness
scores, with several distinct clusters in the high sparseness tail.
Moreover, the sparse coefficients determined by our non-linear
algorithm were highly correlated with linear projections onto
the corresponding dictionary elements with Pearson’s r = 0.97
for both datasets, and the sparseness statistics evaluated on unit
activities correlated with the same statistics evaluated on linear
projections with r > 0.99. The distinction between activations
and projections was therefore not important for this analysis
applied to these datasets in the complete regime. For a second
point of comparison, we also studied dictionaries optimized for
the sparseness of linear projections onto the dictionary elements
using independent components analysis (ICA). The results are
shown in Figure S5 and are also very similar to Figure 2.

2.2. Overcomplete Sparse Representations
In addition to our analysis of the complete regime, we also
studied the sparse structure of speech and images in the
highly overcomplete regime, defined as the case with many
more dictionary elements than the dimensionality of the
(preprocessed) data. This is particularly interesting from a
biological perspective given the greater numbers of neurons in
primary sensory cortical areas compared with the number of
efferents from the sensory periphery.

In the overcomplete regime, the dictionary elements cannot
be truly orthogonal to all other elements, so one might expect
non-linear interactions to be more pronounced during inference
in order to achieve sparse representations. We fit models
with 2,000 elements, which is ten times the dimensionality of
the preprocessed data given that we kept only the first 200
PCA components.

Figure 3 presents some statistics for the highly overcomplete
dictionaries trained on spectrograms and on image patches.
Unlike the complete regime, there is no longer obvious clustering
of sparseness scores for either unit activations (Figure 2) or
linear projections onto the dictionary elements (Figure 7) of
the spectrogram dictionary. However, it is still the case that the
spectrogram dictionary covers a wider range of sparseness scores
than the image dictionary and it has a larger variety of activity
distributions (see Figure S2). Intriguingly, the distribution of L0
lifetime sparseness values (i.e., the fraction of stimuli eliciting
no response) was nearly identical for the spectrogram and
image dictionaries (Figure S4A) unlike what we found for L1
sparseness, though the range of “L0 asymmetry” values (the
fraction of positive minus the fraction of negative responses) was
still much greater for the auditory model (Figure S4B).

Since LCA uses a non-linear process to determine a sparse
representation for each data point and this non-linearity becomes
increasingly important for higher degrees of overcompleteness,
we examined the sparseness of the activations of each unit
in the LCA network and compared it to that of the linear
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FIGURE 3 | Differences in the sparse structure of natural images and speech are also present in overcomplete representations. As in Figure 2, the various measures

presented here are closely related to the lifetime sparseness of individual elements. Ten-times overcomplete sparse coding dictionaries were trained on either the

spectrogram dataset or the natural image dataset. Each curve represents 2000 discrete points, with each point representing one element of the corresponding

dictionary. (A) Sparseness scores were calculated for the activations of the sparse coding dictionary elements using the same L1-sparse LCA algorithm that was used

to train the models. To provide meaningful comparisons, the thin curves represent the same analysis applied to 2,000 random directions in the PCA space of the

corresponding dataset. As for the complete case shown in Figure 2B, training on speech sounds produced a wider range of sparseness scores across elements.

Unlike the complete case, however, the median sparseness was clearly greater for elements from the model trained on images than for the model trained on speech.

(B) Sparseness scores were calculated for the distribution of each dictionary element’s linear projections onto the dataset. Each sparseness score is a statistic of the

corresponding dimension of the data space, independent of the sparse coding learning algorithm that was used to find that unit’s dimension. As in (A) and Figure 2B,

the speech dictionary showed a greater range of sparseness values, but unlike (A), there was no systematic difference in the sparseness scores for speech and

images. The shaded regions at the bottom show the range of sparseness values one might achieve by chance in the corresponding dataset. Sparseness scores for

each dataset were calculated for 2,000 random Gaussian-distributed vectors instead of dictionary elements; the minimum and maximum scores determined the

bounds of the shaded region. (C) Similar to (A) but with skewness magnitudes instead of sparseness scores. (D) Similar to (B) but with skewness magnitudes instead

of sparseness scores.

projections for the corresponding unit. The activation of each
unit depends on all the units, so we also compared our results to
the behavior of a ten-times overcomplete dictionary of random
elements (thin lines, Figure 3A; shaded regions, Figure 3B). We
adjusted the sparseness parameter λ for each network to achieve
the same reconstruction error on the appropriate dataset. For
both the image and spectrogram models, the learned dictionary
elements had sparser activations than the random dictionary
elements of the same rank (Figure 3A), just as we found for
the complete regime. Similarly, linear projections were sparser
for the learned dictionary elements compared with the random
dictionaries for both the image and speech models (Figure 3B).
However, the unit activations for the image dictionary were
consistently sparser than those of the corresponding spectrogram
units (Figure 3A), whereas the sparseness of linear projections
(Figure 3B) displayed the same overall pattern we observed
for the complete regime, with a larger range of sparseness
scores across the spectrogram dictionary compared with a
fairly constant middle value for the image dictionary. (Note

that the rank (horizontal axis) in each panel of Figure 3 is
independently determined).

Thus, unlike what we found for the complete regime,
the sparseness of the linear projections of each element of
either overcomplete dictionary was not closely correlated to
the sparseness of that element’s LCA activations: Pearson’s
r of −0.12 and −0.30 for spectrograms and image patches,
respectively. Conversely, for both the image and spectrogram
models, the skewness of the activations was better explained
by the skewness of the linear projections, with Pearson’s rs of
0.89 and 0.66 (Figures 3C,D). Similar to what we found for
the complete regime, the overcomplete spectrogram dictionary
exhibited much greater skewness than the overcomplete image
dictionary, which was true for both unit activations (Figure 3C)
and linear projections (Figure 3D).

These results indicate that the L1 sparseness of the LCA
activations in the highly overcomplete regime is strongly affected
by interactions among the units and not directly by some aspect
of the individual units, while the asymmetry of a unit’s activations
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FIGURE 4 | Speech and natural scenes exhibit different distributions of population sparseness for overcomplete dictionaries. (A) Sparseness scores (Equation 1) were

evaluated on the sparse codes (unit activations) generated by LCA for each spectrogram or image patch in the corresponding dataset. This is one measure of

“population sparseness,” which quantifies the sparseness of the full network’s representation of individual images or sounds. The purple circles form a histogram of

the sparseness scores across the speech dataset, with a linear interpolation plotted in solid purple for clarity. The vertical solid purple lines represent the mean (top)

and median (bottom) of the distribution. The green squares constitute the analogous histogram for the image dataset, with a dotted green interpolation curve and

vertical dashed lines indicating the mean (top) and median (bottom). Note that, though the means of the two histograms are quite similar, the medians are

well-separated, indicating qualitatively that a typical speech sound from our auditory dataset tends to project onto fewer dictionary elements than a typical image

patch from our visual dataset. (B) Similar to (A), but with the mean activity level replacing the sparseness score. (C) The LCA-generated representations had most

units completely inactive for any given input (i.e., the L0 sparseness was high). Here we plot histograms of the fraction of LCA units active while representing each

image patch or histogram from the relevant dataset. (D) Sparseness scores were evaluated on the set of projections of each image patch or spectrogram segment

onto the corresponding sparse coding dictionary. These histograms follow the same conventions as in (A). (E) Similar to (D), but with the mean absolute value of the

projection replacing the sparseness score.

largely follows from the asymmetry of the corresponding data
dimension. This contrasts with the complete regime, where
each statistic is nearly the same for linear projections as for
LCA activations. Interestingly, these non-linearities increased the
sparseness for the overcomplete image model more than for the
auditory model (compare Figures 3A,B).

Finally, repeating the analysis described above for L0
sparseness rather than L1 sparseness in the overcomplete regime,
we found that most trends were unchanged. For example,
both spectrogram- and image-trained networks had much
sparser unit activations compared with the random controls
(Figure S4A), and the spectrogram activation distributions
were more asymmetrical than the image activity distributions
(Figure S4B). However, the distributions of L0 sparseness values
for images and spectrograms were nearly identical (Figure S4A).

2.3. Population Sparseness
The results described above focus on the sparseness of the
activations (and linear projections) of a single unit across
the dataset, which is directly related to the so-called lifetime

sparseness of an individual unit—the distribution of a unit’s
activities at each moment over its lifetime. We also examined
the sparseness of the distribution of simultaneous activations
of all units, often called “population sparseness.” These two
notions of sparseness are distinct and not always related in an
obvious way (Willmore et al., 2011), so it is worth comparing the
population sparseness of sound and image models in addition to
the lifetime sparseness analyses above.

For each of our analyses, a typical speech spectrogram
admitted representations with greater population sparseness
than did comparably preprocessed images. Each panel of
Figure 4 presents a pair of histograms representing comparable
distributions over the two datasets. Panels A and B show
that the distribution of unit activations representing a given
spectrogram segment for an optimized highly overcomplete
sparse coding dictionary was typically sparser than the analogous
distribution for an image patch. This trend was also evident
for the projection analysis (Figures 4D,E). Since LCA uses a
thresholding procedure, most units had exactly zero activity for
any given stimulus. We therefore also looked at the fraction
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of units active (a measure of L0 sparseness), which tended
to be smaller for the spectrogram case (Figure 4C). Thus,
typical elements from the spectrogram dictionary had greater
L0 population sparseness, in addition to having greater L1
population sparseness, compared with those from the image
dictionary. All of these trends are summarized by the medians
of the various histograms, represented by the lower vertical lines
in each figure panel.

This observation is somewhat surprising given the opposite
trend we found for lifetime sparseness (Figure 3). Speech
spectrograms typically admit sparser representations than those
of images, even though individual units in the image network
tend to have activations with greater sparseness across examples
compared to individual auditory units. We emphasize that, while
the population sparseness trends we have just described are true
for the typical element of each distribution, the distributions
for the image case in particular are not fully characterized by
a single summary statistic. The means in each plot of Figure 4
are represented by the top vertical lines and the differences
are generally small: values of Cohen’s d were 0.25, 0.16, 0.17,
0.20, and 0.020, for the pairs of distributions in the order of
the panels in Figure 4. Normalizing the differences in medians
by the same pooled standard deviation as in Cohen’s d gives
magnitudes of 0.52, 0.58, 0.70, 0.49, and 0.35 for the median
differences. The distributions for activations and for linear
projections show similar differences between the two datasets.
This suggests that the effect of the different data statistics on
the population sparseness of an optimized sparse coding model
is primarily driven by the statistics of the linear projections
rather than by complicated non-linear interactions between units
during inference.

Although most of our results to this point are robust to
preprocessing choices including the use of PCA to whiten and
reduce dimensionality, the above comparison of overall levels
of sparseness between the datasets depends strongly on these
choices. Figures 7, 8 show that alternative image preprocessing
leads to substantially different typical levels of sparseness even
though the learned dictionary elements and the variation in
sparseness are similar.

The population sparseness results for learned dictionaries
discussed above all used our trained overcomplete models.
Qualitative results are the same for complete models, as shown
in Figure S8.

2.4. Implications for Biologically Plausible
Sparse Coding
Sparse coding dictionaries that resemble the distributions of
observed receptive fields of actual simple cells in the primary
visual cortex have been obtained using several variations on the
classic SPARSENET sparse coding model (e.g., Olshausen and
Field, 1996; Bell and Sejnowski, 1997). Among these variations,
the Sparse and Independent Local network (SAILnet; a sparse
coding model with spiking neurons and synaptically local
learning rules) has been shown to learn the variety of simple-
cell receptive field shapes seen in primate primary visual cortex
when trained on whitened natural image patches (Zylberberg

et al., 2011) just as well as the best existing sparse coding
algorithms (Rehn and Sommer, 2007; Rozell et al., 2008;
Olshausen, 2013). However, we have found that this more
biologically plausible sparse coding model does learn a different
representation than conventional sparse coding models on some
datasets, and that this difference is more pronounced and more
clearly relevant to the comparison with real neurons in the
auditory case.

Figure 5 presents examples of dictionary elements learned
by conventional (LCA inference and gradient descent learning)
overcomplete sparse coding as described above, each matched
with a dictionary element learned by SAILnet on the same data
with the same number of dictionary elements. The SAILnet
elements were selected automatically to minimize the angle
with the corresponding conventional sparse coding element
in the 200-dimensional space. The conventional sparse coding
dictionary for spectrograms contains elements with no close
matches in the SAILnet dictionary, and we were unable to
find qualitatively similar elements by inspection in these cases.
Full dictionaries are presented in Figures S12, S13, S15, S16. For
example, SAILnet does not discover features with the distinct
checkerboard structure seen in Figure 5A, second and fifth from
the left in the bottom row. These elements tend to have only
moderately sparse and mostly symmetric distributions of linear
projections on the data (e.g., Figure 2, example 6).

Although we present results for a particular learned dictionary
for each dataset and each algorithm, the results do not change
substantially for the same algorithm starting from other random
initializations and/or using other random draws from the
training sets during learning.

To understand the differences between the sparse coding
dictionaries learned by SAILnet, we examined the sparseness of
SAILnet activations after training on each dataset. Figure 6A
shows the sparseness of each SAILnet unit, similarly to
Figure 3A. Since SAILnet activations are non-negative spike
rates, we did not plot the asymmetry of these activations. The
thicker lines in Figure 6A represent the activations for trained
networks, whereas the thinner lines represent values of sparseness
for networks with random dictionary elements (feedforward
weights in the SAILnet architecture) after optimizing the other
SAILnet parameters at fixed mean spike rate. Interestingly, the
trained network had greater sparseness than the network with
random dictionary elements, despite the fact that the mean
firing rate of each network was fixed to the same value. While
some of the qualitative features in Figure 6A agree with those
in Figure 3A, others differ. Detailed comparison between these
results and those in Figure 3 is hampered by the fact that the two
SAILnet networks do not achieve the same reconstruction error,
as was the case for the results in Figure 3.

To understand the differences in the learned dictionary
elements between conventional sparse coding and SAILnet, we
therefore also examined the distributions of linear projections
of the data onto the dictionary elements. We found that
SAILnet tends to learn stimulus features corresponding to data
dimensions that are highly sparse and, when possible, more
asymmetrical. Figures 6B,C show rank plots for the sparseness
scores and skewness magnitudes of SAILnet dictionary elements
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FIGURE 5 | SAILnet and conventional sparse coding learn similar representations when trained on natural images, but not speech. Each box shows elements from a

ten-times overcomplete dictionary learned with conventional sparse coding (left) or with SAILnet (right) on one of the datasets. (A) For a ten-times overcomplete

sparse coding dictionary trained on spectrogram segments, we handpicked elements that show qualitatively different structure. These element types do not occur

with equal frequency in the dictionary. (B) Elements selected from a dictionary trained on image patches. There are apparently fewer distinct classes of elements in this

dictionary than in the speech-trained dictionary. (C) SAILnet dictionary elements were selected so as to minimize the angle to each hand-picked sparse coding

element. While this yielded similar elements in some cases, there are no elements in the SAILnet dictionary that match several of the dictionary element types seen in

the conventional sparse coding dictionary for speech data. (D) The SAILnet dictionary trained on images includes good qualitative matches to every element from the

corresponding conventional sparse coding dictionary. Full dictionaries are shown in Figures S12, S13, S15, S16.

FIGURE 6 | Statistics of overcomplete SAILnet representations are similar to conventional sparse coding for natural images, but they differ for speech. Plots as in

Figures 3A,B,D, for ten-times overcomplete dictionaries learned by SAILnet rather than LCA-based learning. (A) SAILnet activations are extremely sparse. This plot is

analogous to Figure 3A but a direct comparison of the learned dictionaries through these plots is confounded by the differences between LCA and SAILnet inference.

(B) The sparseness score rank plots qualitatively resemble those for conventional sparse coding (compare with Figure 3B). For the spectrogram-trained dictionary,

the lower-rank tail contains somewhat higher sparseness scores than for the conventional sparse coding dictionary. This observation is consistent with SAILnet not

utilizing some of the element types conventional sparse coding does (see Figure 5A), since the data’s projections onto these element types tend to have relatively low

sparseness scores. The shaded regions at the bottom show the range of sparseness values one might observe by chance in the corresponding dataset. Sparseness

scores for each dataset were calculated for 2,000 random Gaussian-distributed vectors instead of dictionary elements; the minimum and maximum scores

determined the bounds of the shaded region. (C) Almost all the SAILnet dictionary elements in the spectrogram case correspond to directions in the data space with

large skewness. This is consistent with SAILnet not learning some of the element types shown in Figure 5A, which tend to have symmetric distributions (e.g.,

Figure 2, example 6). The shaded regions at the bottom indicate the range of possible skewness values one might observe by chance based on the same skewness

analysis applied to 2,000 random Gaussian-distributed directions in PCA space for the corresponding dataset.

projected onto the relevant dataset. These plots are similar in
many ways to Figures 3B,D, which show the same statistics
for conventional sparse coding dictionaries. The strongest

differences are for the spectrogram case: SAILnet learns fewer
elements corresponding to data dimensions with low sparseness
scores, and almost all of its elements correspond to data
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FIGURE 7 | Histograms of projections exhibit the same sparse structure as unit activities for both natural images and speech in the complete regime. Filter-whitened

images exhibit greater sparseness. This figure is identical to Figure 2, but with unit activities replaced by linear projections of individual dictionary units on the

corresponding dataset, and the addition of a third dataset consisting of filter-whitened 16 × 16 image patches [rightmost pair of columns in (A), beige curves in (B,C)].

Note that the results for our primary datasets look very similar to those in Figure 2, demonstrating that projections and activities exhibit very similar statistics in the

complete regime, even for different preprocessing of the image dataset. Results for the filter-whitened images are similar to those for the PCA-whitened data except

that random directions in the space of filter-whitened images are already quite sparse and so learned directions are still more sparse, as discussed in section 2.5. The

shaded regions at the bottom of (B,C) show the range of sparseness or skewness values one might observe by chance in the corresponding dataset; sparseness

scores (skewness values) on each of the three datasets were calculated for 200 Gaussian-distributed random vectors instead of dictionary elements, and the

minimum and maximum scores (values) determined the bounds of the shaded region for the corresponding dataset. All results in this figure are for linear projections

and not sparse codes represented by unit activities generated by a non-linear coding algorithm. However, the results are similar for dictionaries learned with

independent components analysis (ICA), in which case the activity corresponding to each dictionary element is itself a linear projection of the stimulus (Figure S5).

dimensions with higher values of skewness than that of any of
the 2000 random directions.

The discrepancy between sparse representations for images vs.
speech due to skewness can be partly addressed by modifying the
SAILnet model to allow for negative spikes. We note that this
model with positive and negative spikes is not as biologically-
plausible as the original SAILnet model. A complete dictionary
learned by this modified SAILnet model is shown in Figure S19.
While it learns a few elements with harmonic structure that
abruptly reverses sign, a feature found with conventional sparse
coding but not the original SAILnet algorithm, this model
still does not capture all the features shown in Figure 5A.
Furthermore, a dictionary trained with a rectified version of
LCA that does not allow negative activities still learns these
features. Such a dictionary is shown in Figure S18 and may
be compared with the conventional sparse coding dictionary
in Figure S12. Thus, the non-negativity of SAILnet can partly,
but not entirely, explain the differences between the dictionary
elements it learns and those learned in conventional sparse
coding models. Full dictionaries for all the models discussed are
shown in the Supporting Information.

There are multiple differences between conventional sparse
coding models and SAILnet that may appear relevant to the
sparse features the models learn. By repeating our basic analyses
with other modifications of SAILnet, we determined that the
spike-based coding scheme does not noticeably affect the results
discussed above but that the local learning rules for the dictionary
elements and lateral connections are the crucial difference.

2.5. Alternative Image Preprocessing
Although we attempted to make as fair a comparison as
possible between the sparse structure of images and spectrogram
representations of speech, there is no clear natural or canonical
mapping between these datasets to which we could appeal to
justify our handling of the data prior to fitting sparse models. We
therefore also studied an alternative scheme of “preprocessing”
that has been common in the literature since the seminal sparse
coding work of Olshausen and Field (1996). These image patches
are 16x16 pixels and have been approximately whitened by
applying a filter to the original images.

Figure 7 shows sparseness and skewness plots and example
distributions for complete sparse coding on the filter-whitened

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 39

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Dodds and DeWeese Sparse Structure of Sounds and Images

FIGURE 8 | Distributions of population sparseness statistics across each dataset, including filter-whitened images. This figure is identical to Figure 4 except for the

addition of a third dataset consisting of filter-whitened 16 × 16 image patches (beige). Direct comparison of the filter-whitened images’ statistics with those of the

other datsets is made difficult by the differing whitening schemes, as discussed in section 2.5.

images, expanding Figure 2 to include results on this third
dataset. Figure 7 also differs in that it presents the statistics for
linear projections of the dictionary elements onto the elements
of the datasets. As discussed in section 2.1 and as can be seen
by comparison to Figure 2, this distinction is minor in the
complete regime.

Random directions in the space of 16 × 16 images
whitened as in Olshausen and Field (1997) are fairly sparse,
with median sparseness score 0.13. This fact is well-known
and largely accounted for by variation in the local variance
of natural images (Baddeley, 1996; Lyu, 2011). The trend
of excess sparseness of the sparse coding dictionary closely
follows the trend for the other image dataset. While a fair
comparison of overall levels of sparseness between datasets
clearly becomes difficult when preprocessing is not matched
exactly, we believe our primary comparisons of the structure
associated with sparseness in the datasets are robust to these
preprocessing choices.

For the PCA-reduced datasets, we used 10-times overcomplete
sparse coding, while for the 16 × 16 image patches we used
a network that was nominally 8-times overcomplete, making it
about 10-times overcomplete given that some dimensions are
essentially noise. Our results on this dataset closely match those
shown in Olshausen (2013). A dictionary is shown in Figure S14,
and sparseness and skewness rank plots are shown in Figure S3.

The sparseness of an overcomplete dictionary element’s linear
projections is not closely correlated to the sparseness of that

element’s LCA activations for this dataset: Pearson’s r of −0.16.
The skewness of the activations is better explained by the
skewness of the linear projections, with Pearson’s r = 0.59.
These observations qualitatively echo what we saw for the
other datasets.

The fact that the 16x16 image patches are not fully whitened
hampers meaningful comparisons among the various population
sparseness results. Plots are shown in Figure 8. The filter-
whitened images generally admit sparser representations, but the
effect is partly driven by the whitening scheme rather than by the
intrinsic structure of the data.

A simple argument demonstrates why whitening should
matter, particularly for the population sparseness of optimized
sparse codes as we computed them. In an extreme case, the data
variance may be so much greater along one dimension than all
others that it is possible to achieve 15 dB SNR reconstructions
with only the special dimension non-zero. Then only one unit
need be active, in which case the population sparseness of the
representation is≈0.8 by our measure (the precise value depends
on the dictionary size) for most data examples. The same data,
after whitening, does not permit this trick since no direction
has more variance than any other. The filter-whitened images
are not exactly whitened, and the residual variation in the
variance of different dimensions allows a model to obtain greater
population sparseness than if the data were fully whitened.
Imperfect whitening can also strongly affect the features found
by SAILnet—an interesting topic for future work.
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Other differences between the preprocessing schemes may
also confound comparisons; this is why we attempted to use as
similar as possible preprocessing for our primary datasets.

3. DISCUSSION

Guided by the principle of sparse coding, we have explored the
statistical structure of natural stimuli from two different sensory
modalities, vision and audition. Both natural images and natural
sounds admit sparse linear representations, but we have found
some clear differences.

For complete sparse coding models trained on natural
image patches, the lifetime sparseness of individual features
was nearly uniform across the learned dictionary, reflecting the
uniform sparseness of the linear projections of the dictionary
elements onto the image dataset. Complete dictionaries trained
on spectrograms of speech, however, showed a much wider range
of lifetime sparseness values, both in terms of unit activations and
projections, although the average sparseness was comparable for
the two models. Moreover, the spectrogram dictionary included
many units with highly asymmetric distributions of activity (and
projections) across the dataset, unlike the highly symmetric
distributions displayed by the image dictionary elements. We
also find that these statistics exhibit a degree of clustering in
the spectrogram case. There are several qualitatively different
spectrotemporal shapes, and dictionary elements with certain
shapes tend to have similar values of sparseness and skewness
magnitude. These shapes include harmonic stacks, broadband
onsets, and lower-frequency onsets preceded by high-frequency
sound. There are a number of other qualitatively different
elements in the complete spectrogram dictionary at lower levels
of sparseness, but these do not cluster as clearly.

Most of these trends persisted in the highly overcomplete
regime, but we found that the lifetime sparseness of unit
activations was greater for the image dictionary, unlike
population sparseness, which was typically greater for the
spectrogram dictionary. The clustering of statistics for distinct
spectrogram dictionary element types is no longer apparent
in the overcomplete regime, possibly due to a greater number
of elements blurring the clusters together or to the lifetime
sparseness statistics being more determined by non-linear
interactions with other units and therefore less closely tied to
the individual elements. The spectrogram dictionary elements
still covered a wider range of sparseness scores, excepting one
outlying image dictionary element. We observed this effect in
all similar analyses with the exception of using an L0 sparseness
measure in the overcomplete regime as shown in Figure S4,
where the two modalities led to a similar small range of L0
sparseness values.

We then compared the distribution of visual features learned
by a biologically-plausible sparse coding model called SAILnet
trained on images with the distribution of acoustic features
obtained when the model was trained on speech spectrograms.
Despite the strong agreement between the visual features learned
by SAILnet and those learned by more conventional sparse
coding models, the spectrogram dictionary produced by this

model differed markedly from the set of acoustic features
learned by conventional sparse coding models. While SAILnet
recovers some qualitatively similar sparse features, there are
some classes of sparse features that conventional sparse coding
finds but SAILnet does not. For example, conventional sparse
coding finds localized “checkerboard” shapes as useful sparse
features while SAILnet does not. We found that part of the
discrepancy between the features learned by SAILnet and
those learned by conventional methods could be resolved by
modifying the SAILnet model to allow negative spikes, but that
some differences, including the “checkerboard” example just
mentioned, remained. The key difference between SAILnet and
conventional methods is the use of synaptically local learning
rules. It may be that the sparse structure of speech sounds is less
amenable to such learning rules, compared to images.

While we endeavored to make the comparison between the
sparse structure of images and that of sounds as fair as possible,
the raw datasets are quite different and the preprocessed datasets
may still differ in some ways that confound our comparisons.
We have included results in the Supplementary Material using
an alternative image preprocessing scheme to show what may
change as the data is handled differently. Our primary interest
is in the structure of the data associated with sparseness, as
captured by sparse modeling. The learned dictionary elements
and their variability in sparseness and skewness is remarkably
similar between the two preprocessed image datasets despite
large differences in the construction of these datasets (including
in image patch size, whitening method, and dimensionality
reduction). However, typical values of lifetime and population
sparseness are significantly greater for the image dataset with
alternative preprocessing as described in section 2.5. It is not clear
which differences matter here, although the different whitening
schemes play some role. This observation serves as a caveat on
our results reported in section 2.3 comparing typical population
and lifetime sparseness values across modalities.

Previous studies have made comparisons between the
statistics of natural visual and acoustic data and their implications
for neural coding in these modalities. Well-known examples
of this include the fact that natural scenes and sounds both
exhibit power spectra with power law functional forms (Field,
1987; Attias and Schreiner, 1997) and natural scenes obey
spatial translational invariance just as natural sounds obey
time translational invariance. One property shared by visual
and auditory responses is the gain dependence modeled
by divisive normalization (Schwartz and Simoncelli, 2001).
Recent work has also shown that a model that minimizes
neural wiring while efficiently representing stimuli learns
various subcortical receptive fields in the visual and auditory
systems (Shan et al., 2016).

However, while sparse coding has been remarkably successful
at predicting the receptive fields of V1 simple cells based on the
structure of natural scenes, there is not yet a comparable result
for primary auditory cortex (A1), despite the apparent sparse
structure of natural sounds. That a linear sparse coding model
can represent natural scenes at all is perhaps surprising given the
highly non-linear processes, such as occlusion by opaque objects
and cast shadows, that cannot be explicitly represented by linear
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summation models. Conversely, raw acoustic waveforms are
actually very close to linear summations of different individual
component sounds in the environment. Consistent with this,
previous work has demonstrated success with sparse coding
at subcortical stages of the auditory system. A sparse coding
model trained on raw auditory waveforms learns to tile time-
frequency space in the same way as cat auditory nerve fiber
filters measured by reverse correlation (Smith and Lewicki, 2006),
but this model applies to the auditory nerve—the earliest stage
of auditory processing once acoustic signals are converted into
spike trains. Sparse coding models of non-linear spectrogram
or cochleogram (Lyon, 1982; Slaney, 1998) representations can
learn sparse structure on longer time scales (Klein et al., 2003),
and some of the learned dictionary elements resemble the diverse
STRF shapes found at various stages of the ascending auditory
pathway (Carlson et al., 2012), including the inferior colliculus
(ICC), the medial geniculate body (MGB) of auditory thalamus,
and even some neurons recorded in A1, but across the dictionary
the agreement is not as strong for any brain region as has been
demonstrated for V1 (Olshausen and Field, 1996; Rozell et al.,
2008; Zylberberg et al., 2011).

This dichotomy in the ability of sparse coding models to
fully capture response properties of neurons in V1 vs. A1 could
reflect the possibility that A1 and V1 are not directly analogous,
even if they are both primary sensory cortices. If we include the
visual processing taking place in the retina, there are roughly
equal numbers of processing stages in the visual and auditory
pathways leading to A1 or V1, as quantified by the number of
synaptic connections needed to reach each of these cortical areas
(although the auditory system has more subcortical areas along
the way). However, due to the greater dimensionality of visual
input (the two optic nerves are comprised of roughly 106 axons
and there are≈ 108 photoreceptors, whereas there are fewer than
105 fibers in the two cochlear nerves) and strong non-linearities,
such as occlusion affecting visual input, it may be thatmore stages
of processing are required for visual signals to reach the same
level of refinement as auditory representations in A1. This is
qualitatively consistent with the greater number of visual cortical
areas compared with the number of auditory areas.

The aspects of the sparse structure of natural sounds that
differ from the structure of natural images could guide our
pursuit of better models of the relevant auditory brain regions.
Our analysis points to some relevant considerations. One is that
the asymmetry between greater and lesser sound intensity is
important, especially for biologically realistic models restricted
to have non-negative activations. In addition, the sparseness
of individual features optimized to form sparse representations
of spectrograms of speech vary widely compared to the
relatively uniform sparseness of sparse visual features. Moreover,
dependencies among the activities of units in overcomplete
dictionaries—which are most relevant for biology—influence
which dimensions in stimulus space are most useful for sparse
coding. A concrete manifestation of this is that a network, such
as SAILnet, in which units cannot cooperate directly based on
the knowledge of other units’ contributions to the coding, will
not learn some of the same acoustic features as a network, such
as an LCA-based scheme, in which such cooperation is explicitly

incorporated. The inter-unit connections in SAILnet, learned
with only information locally available at the synapse, are more
biologically plausible, but they lead to different behavior. In the
auditory case, the differences include learning a more limited
sparse coding dictionary that does not match as many receptive
fields measured in real neurons. This observation suggests that
SAILnet may need to be modified to better account for auditory
sparse coding. More generally, the dependence on the stimulus
statistics we observe for a biologically plausible model suggests
that some properties of neural coding need to be specialized
for the auditory system, even though it may share the basic
principle of sparse coding with the visual system. A biologically
realistic mechanism for finding approximate solutions to an
optimization principle may be effective for one type of data, but
not for another.

Indeed, SAILnet was specifically designed to model learning
and inference in V1. In particular, it treats different orientations
within its two-dimensional input on an equal footing, which
makes sense given that these are all spatial dimensions in the
visual case. In fact, the algorithm does not assume any special
relationship between the various pixels—one could scramble
their locations or convert the pixel array into a vector with
any ordering and SAILnet would find the same features when
mapped back to the unscrambled space. There is typically some
mild anisotropy present in natural images (e.g., vertical and
horizontal edges are often slightly over-represented compared
with random orientations), but this could be learned by using
the same learning rules in all orientations in the two-dimensional
image space. Spectrograms, however, are strongly and inherently
anisotropic, with time represented along one cardinal axis and
(a non-linear function of) acoustic frequency along the other.
Perhaps this contributed in some way to the divergence between
our SAILnet results for speech spectrograms and what we found
using conventional sparse coding, but if so this is a subtle effect
given that the LCA-based sparse coding algorithm we used also
employs isotropic rules for learning and inference.We emphasize
that, even though SAILnet may not treat time in a natural
way for a biologically-realistic mechanistic model of auditory
processing, it provides a useful tool for identifying aspects of
the sparse structure of natural sounds that differ from those of
natural scenes.

Motivated by previous work (Lewicki, 2002; Smith and
Lewicki, 2006), we analyzed speech data as a proxy for a
more complete collection of “natural sounds.” As recapitulated
here, spectrograms of speech by themselves have a rich sparse
structure, with several distinct feature types that our models use
for their sparse codes; some of these features resemble STRFs
measured in inferior colliculus and other brain regions (Carlson
et al., 2012). Using speech is particularly convenient, since
using ensembles of recorded sounds has been shown to yield
good agreement between sparse coding predictions and auditory
nerve response properties, such as the same time-frequency
trade-off, only when the relative proportions of three different
types of recorded sounds are empirically adjusted to fit the
model (Lewicki, 2002; Smith and Lewicki, 2006). Thus, using
speech data is in some sense a more principled approach, since
it removes two adjustable parameters from the model.
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This picture is somewhat complicated by the fact that the
filters learned in such models depend on the sound class used
even when the time-frequency tiling properties match (Lewicki,
2002). It is also unlikely that speech captures the structure of
natural sounds that occurs on the longer time-scales of our
spectrogram-based models. To address this, we fit sparse coding
models to the ensemble of natural sounds described in Smith and
Lewicki (2006). The sparse structure captured by our models in
that data is less rich than, and largely redundant with, what we
found for speech. We have included a dictionary and sparseness
rank plot in Figures S7, S20.

More broadly, what constitutes the relevant ensemble of
“natural scenes” or “natural sounds” is not clear to us; these
notions may not be well-defined or independently determinable
in a way that does not rely on fitting neural response
properties. Another question is whether or not one can determine
definitively if a given type of natural signal is truly sparse with
the sort of analysis employed here. In particular, preprocessing
using PCA or some other dimensionality reduction technique
necessarily changes the structure of the data for any realistic
scenario (i.e., unless the raw signal is strictly L0 sparse, with the
relevant dimensions contained within the space spanned by those
PCA dimensions retained for later analysis).

There are persuasive arguments challenging the notion that
natural scenes or sounds are truly sparse, in the L0 sense, for the
sort of linear generative models we have considered here (Lyu
and Simoncelli, 2009; Hénaff et al., 2015).

In addition, the oriented filters learned by sparse coding
models represent a shallow optimum, as representations of
natural scenes using center-surround filters, for example, are
almost as sparse (Bethge, 2006; Eichhorn et al., 2009).

There are good reasons to question (Lyu and Simoncelli,
2009) why the local oriented filters predicted by sparse coding
models trained on natural images would first appear in V1,
skipping past the highly non-linear retina and lateral geniculate
nucleus (LGN), if indeed sparseness is the correct normative
principle for the visual system. Moreover, the sparseness of
successive sensory representations at higher stages of processing
in the ascending auditory (Chechik et al., 2006) and visual (Rust
and DiCarlo, 2009, 2012) pathways does not always appear
to increase.

There exist alternative choices for the models as well as the
data, and different models yield different results. The results
from SAILnet learning differ enough from those from gradient
descent learning to be of interest, but we did not observe any
substantial differences between the results of gradient descent
learning using different algorithms to compute the sparse codes.
Furthermore, while a greater variety of sparse features of natural
images than found in early sparse coding work (e.g., Olshausen
and Field, 1996) has been shown using various methods, we
are not aware of any work showing sparse features of natural
images that do not have qualitative matches in a 10-times
overcomplete conventional sparse coding network. We believe
that our approach at least captures the known sparse structure of
natural images in terms of feature diversity and so can be taken
as representative of the subtly varying results that different sparse
coding and learning algorithms uncover.

In this work, we have taken a pragmatic approach to our
model selection and data choices. Undoubtedly, the specific
sparse coding models we have employed here are imperfect
approximations to whatever model would best fit ensembles of
natural scenes and sounds as defined by our datasets, but by
applying these models to both images and sounds, we have been
able to identify several similarities and differences between the
statistical structure of these natural signals. We are, of course,
motivated by the fact that the sparse coding models we consider
here can predict receptive fields in V1 and several cell types
at various stages of the ascending auditory pathway, even if
these models do not entirely capture the statistics of natural
signals. It will be interesting in future studies to explore more
fully the structure of natural stimuli, and its implications for
neural coding.

Beyond the particular results presented in this work, we have
shown that it is possible and fruitful to compare the sparse
structure of natural data from different modalities. The principle
of sparse coding appears to have applicability to auditory data
as well as visual data, supporting the idea that sparseness is,
to at least some degree, a universal property of natural data.
Nonetheless, we have found that there are aspects of sparse
structure that are clearly not universal. Understanding these
differences offers insights into the structure of natural stimuli and
into the ways in which neural systems represent it.

4. METHODS

4.1. Data
We performed our primary analyses on three sets of natural
data; Figure 1 illustrates the preparation of the two primary
datasets we compared. The same preprocessing steps were taken
where possible, in order to reveal the effects of the structure
inherent in the data rather than differences in how the data were
presented to the sparse coding algorithms. In addition to these
two comparably prepared datasets, we used an image dataset
preprocessed by methods common in the literature to reveal
some effects of this processing. Results from this alternative
image dataset are discussed in section 2.5.

Following previous work (Klein et al., 2003; Smith and
Lewicki, 2006; Carlson et al., 2012), we focused on human speech
as a rich class of natural sounds. Speech data were taken from
the TIMIT continuous speech corpus (Garofolo et al., 1993) and
preprocessed as in Carlson et al. (2012). Specifically, we divided
each waveform by 10 times its variance and removed any DC
value. We then used MATLAB’s (MATLAB, 2016) spectrogram
function to calculate the discrete Fourier transform (DFT) of
Hamming-windowed segments of 16 ms (256 samples) of sound,
with neighboring segments overlapping by half their length.
The DFT was sampled at 256 frequencies logarithmically spaced
between 100 Hz and 4 kHz.We trimmed the power spectrograms
to remove periods of silence and then took the logarithm of
the results. We divided these spectrograms into overlapping 25-
timepoint (216ms edge-to-edge) segments, yielding about 3×105

spectrogram segments. While this procedure is not a precise
model of early auditory processing, previous work has found
better agreement with experimental data using spectrograms
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than with preprocessing meant to emulate the cochlea (Carlson
et al., 2012). Spectrograms also provide a representation often
used for generating stimuli and visualizing spectro-temporal
receptive fields in the experimental literature (e.g., Miller et al.,
2002; Qiu, 2003; Fritz et al., 2005; Rodríguez et al., 2010;
Theunissen and Elie, 2014). Although using only the (log) power
obscures the phase structure, the original sound waveforms can
in fact be reconstructed from power spectrograms using implicit
phase structure from overlapping windows (Le Roux et al., 2010).

Natural image data was taken from a subset of the van
Hateren database (van Hateren and Schaaf, 1998) with minimal
blur and other artifacts (see Olshausen, 2013). Using other
grayscale natural image datasets, such as that of Olshausen and
Field (Olshausen and Field, 1996) has not been seen to produce
drastically different results in sparse coding. We extracted ≈
3 × 105 80-by-80 pixel patches from the images and took the
logarithm of the intensity at each pixel. The mean log-intensity
was removed from each patch.

The speech spectrogram segments and the natural image
patches were both 6,400-dimensional, and we used PCA to
reduce the dimensionality to 200. We also divided each principal
component by its variance, achieving a “whitened” or “sphered”
representation in which the empirical covariance matrix was
equal to the identity matrix (Kessy et al., 2015). The PCA step
discarded about 7% of the variance in each of the two raw
datasets. Another 18% of the original variance in the images was
removed by the patch-wise mean subtraction described above.
No comparable effort was made to remove the dimension of
largest variance in the spectrogram data, following (Carlson
et al., 2012). After whitening, this dimension had the same
variance as the others and therefore did not strongly affect
our results.

Discarding an equal amount of variance does not guarantee
equality in the degree to which dimensions are important to
the sparse structure of the data have been discarded. Our
comparisons are, more precisely, between the sparse structure
of linear subspaces of the datasets, which will not perfectly
reflect the sparse structure of the datasets themselves. The
dimensionality reduction in both datasets corresponds roughly
to low-pass filtering with a hard cutoff, in spatial-frequency space
for images and temporal- and frequency-modulation frequency
space for spectrograms. The approximate scale invariance of
natural images (Ruderman and Bialek, 1994; Zoran and Weiss,
2009) suggests that the subspace should reflect the sparse
structure at a particular scale or range of scales, as long
as the range of spatial frequencies retained is large enough.
Our results suggest that this is the case, although some
minor ringing artifacts from the hard cutoff are visible in
the image patches and learned dictionary elements (see full
dictionaries in the Supplementary Figures). In the case of
spectrograms, the dimensionality reduction discards fine-grained
details that may be of secondary importance to an organism
processing the sounds. For example, we are able to understand
speech reconstructed from our first 200 principal components.
Regardless of the importance of the discarded components,
though, it is possible that some of our comparisons between the
linear subspaces do not generalize to the unreduced data.

Our choices were driven by the need to make the two
datasets comparable, so our preprocessing differed from that
employed in much of the literature. We repeated our analyses
on a third dataset, containing the same natural images as
they were preprocessed in Olshausen (2013) and other sparse
coding work. There were two key differences: first, Olshausen
(2013) used small image patches of 16 × 16 pixels while
we used larger patches of 80 × 80 pixels. Since Olshausen
(2013) first downsampled by a factor of 2, the scale of
our images is better compared to 32 × 32 patches. Since
natural images have less variance in higher spatial frequencies,
our dimensionality reduction also discarded the information
destroyed by this downsampling.

The other crucial difference between these two image datasets
is due to the whitening step. Olshausen and Field (Olshausen
and Field, 1996, 1997; Olshausen, 2013) whitened their raw
images using a filter that flattens the Fourier spectrum at low
frequencies while allowing the variance of very high frequencies,
which is largely noise, to remain small. In contrast, we exactly
equalized the variance of the first 200 principal components
and removed the other components entirely. Results with the
images preprocessed as in Olshausen (2013) are discussed
in section 2.5.

Reconstructions of original data from our reduced
representations are shown in Figure S21.

4.2. Sparse Coding
Sparse coding is a probabilistic model with latent variables am
whose prior distribution is factorial with each factor given by the
same sparse distribution (in this work, a Laplace distribution):

pa(a) ∝
∏

m

e−λ|am|, (3)

where λ is a parameter that determines the width of the
distribution and therefore how strongly the prior favors sparse
sets of am. These latent variables serve as the coefficients in linear
combinations of a set of vectors 8m that in this work we call
“dictionary elements.” Each such linear combination, plus some
Gaussian noise, corresponds to a data example, such as an image:
xi =

∑

m am8mi + ni.
The am are determined by maximum a posteriori (MAP)

inference given input data x.
The am estimated in this way are often referred to as the

activity of themth unit, and the dictionary elements8m are often
compared to receptive fields of neurons. The analogies to neurons
suggested by these terms are not exact, but a unit’s dictionary
element is approximately the same as the linear receptive field
that would be measured for that unit with an activity-triggered
average (Olshausen and Field, 1996).

The dictionary elements8m are learned by stochastic gradient
descent on the model log-likelihood.For each step, the gradient is
averaged over a minibatch of 100 data examples.

The use of MAP inference requires that we constrain the
norms of the 8m to prevent solutions with small am and large,
meaningless 8m. We therefore divide each 8m by its norm after
each gradient step. Using theMAP estimate to compute gradients
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for learning is not guaranteed to result in the same learned
dictionary 8, but a method that uses more samples from the
posterior learns familiar Gabor functions on whitened natural
image patches (Theis et al., 2012).

4.3. Locally Competitive Algorithm
We used the L1-sparse locally competitive algorithm
(LCA) (Rozell et al., 2008) to perform MAP inference. LCA
uses a dynamical system with auxiliary variables that are
thresholded to obtain estimates of aMAP. Typically most of
the auxiliary variables are below threshold and the aMAP

m

estimates are exactly zero for most m. The threshold is set by the
sparseness parameter λ. We dynamically adjusted this parameter
to achieve reconstructions with 15 dB signal-noise ratio while
training the models, allowing direct comparison to the results
of Olshausen (2013).

The choice of coding algorithm is not crucial to our results,
and learning using alternative inference schemes yields similar
dictionaries. This is particularly true for dictionaries that are
not overcomplete, as demonstrated by the similarity of the
results in Figure S5, which used Independent Components
Analysis (ICA) (Bell and Sejnowski, 1995), to Figure 2,
which used LCA and stochastic gradient descent on the
mean-squared error.

4.4. SAILnet
We used the Sparse and Independent Local network (SAILnet)
model (Zylberberg et al., 2011) to study how the statistics of
different stimuli interact with biologically realistic constraints.
SAILnet uses spiking neurons and synaptically local plasticity
rules to achieve sparse codes. Mathematically, SAILnet can be
understood as optimizing the Lagrange function

L=
1

2

∑

mi

(Xi−8miam)
2+

∑

m

θm(am−p)+
1

2

∑

mn

Wmn(aman−p2).

(4)
Here the first term approximates the mean-squared error in
the sparse coding log-likelihood in the limit that the am
are sparse and uncorrelated. Maximizing with respect to the
Lagrange multipliers θm and Wmn constrain the am to be
sparse, with average activity p ≪ 1, and uncorrelated. The
am are the firing rates of leaky integrate-and-fire circuits with
thresholds θm and inhibitory connections between neurons with
strengths Wmn. The dynamics of this circuit approximately seek
firing rates am that minimize L. As in conventional sparse
coding, the dictionary elements 8mi are updated at fixed am
using; the Lagrange multipliers are updated at the same time
but with greater rates to ensure the constraints are satisfied
during learning.

The SAILnet Lagrange function, and in particular the
approximation to mean-squared error in the first term
of Equation (4), allow the gradient descent update for
each connection to be computed using only information
available at that connection, e.g., one only needs to know
a1 and a2 to update W12. The cost of this locality is that
SAILnet units do not directly learn to cooperate to represent
the data.

Although SAILnet has been shown to learn the expected
dictionary 8 on whitened natural images, in some ways it
behaves differently from a conventional sparse coding algorithm,
such as LCA with gradient-descent based learning. Here
we have focused on how SAILnet interacts with differing
input statistics.

4.5. Model Implementation
We implemented soft-thresholded LCA (Rozell et al.,
2008) in TensorFlow (Abadi et al., 2015) to learn the
overcomplete sparse coding dictionaries. We implemented
SAILnet in Python. Code for these implementations may
be found online at github.com/emdodds/DictLearner
and github.com/emdodds/SAILnet. For the
ICA results shown in Figure S5 we used the
FastICA (Hyvärinen and Oja, 2000) implementation in
scikit-learn (Pedregosa et al., 2011).
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