Tiling

- Tiling by cones
- Tiling by retinal ganglion cells
 - midget vs. parasol (parvo/magno)
 - foveated sampling

Efficient coding model of retina

(Karklin & Simoncelli 2012)

С

16

Cones sample the light intensity distribution over the joint domain of space and wavelength $I(x, y, \lambda)$

5 arcmin

Human - cone spectral sensitivities

Cones sample the light intensity distribution over the joint domain of space and wavelength $I(x, y, \lambda)$

Tiling by retinal ganglion cells

Cone vs. retinal ganglion cell spacing as a function of eccentricity

Smoothing and subsampling by retinal ganglion cells

Parvo- and Magno-cell dendritic field diameter as a function of eccentricity

(Horwitz, 2020)

Parvo and Magno cells encode complementary aspects of spatio-temporal structure

Ocko, S., Lindsey, J., Ganguli, S., & Deny, S. The emergence of multiple retinal cell types through efficient coding of natural movies. *NeurIPS 2018*.

Foveated sampling

Active vision in jumping spiders

(Wayne Maddison)

(Bair & Olshausen, 1991)

Weakly electric fish

Non-conductor

Foveated sampling

Retinal ganglion cell spacing as a function of eccentricity

 $\Delta E \approx .01(|E|+1)$

Letter size vs. eccentricity (Anstis, 1974)

times its threshold height.

Human eye movements during viewing of an image

Yarbus (1967)

DOI:10.1068/p2935

The roles of vision and eye movements in the control of activities of daily living

Michael Land, Neil Mennie, Jennifer Rusted

Sussex Centre for Neuroscience and Laboratory of Experimental Psychology, School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK; e-mail: M.F.Land@sussex.ac.uk Received 4 May 1999, in revised form 9 August 1999

Learning the glimpse window sampling array (Cheung, Weiss & Olshausen, 2017)

Scene

- Network is trained to correctly classify the digit in the scene.
- To do this it must find a digit and move its glimpse window to that location.

Example MNIST scenes

Evolution of the sampling array during training

Learned sampling arrays for different conditions

Translation only (Dataset 1)

Translation only (Dataset 2)

Translation & zoom (Dataset 1)

Translation & zoom (Dataset 2)

Comparison to primate retina

Model

Eccentricity

Comparison to primate retina

A FOVEATED RETINA-LIKE SENSOR

USING CCD TECHNOLOGY

J. Van der Spiegel, G. Kreider Univ. of Pennsylvania, Dept. of Electrical Engineering Philadelphia, PA 19104-6390

> C. Claeys, I. Debusschere IMEC, Leuven, Belgium

G. Sandini University of Genova, DIST, Genova, Italy

P. Dario, F. Fantini Scuola Superiore S. Anna, Pisa, Italy

> P. Bellutti, G. Soncini IRST, Trento, Italy

A Foveated Image Sensor in Standard CMOS Technology

Robert Wodnicki, Gordon W. Roberts, Martin D. Levine Department of Electrical Engineering, McGill University, Montréal, Québec, CANADA, H3A 2A7

