
Tiling

•Tiling by cones

•Tiling by retinal ganglion cells 
- midget vs. parasol (parvo/magno) 
- foveated sampling
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Objective function:

Efficient coding model of retina
(Karklin & Simoncelli 2012)
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Tiling by retinal ganglion cells



Cone vs. retinal ganglion cell spacing
as a function of eccentricity
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Smoothing and subsampling by retinal ganglion cells



Parvo- and Magno-cell dendritic field diameter
as a function of eccentricity
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Temporal information loss in the macaque early visual system

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000570 January 23, 2020 5 / 31

(Horwitz, 2020)

(from parasol) (from midget)





Parvo and Magno cells encode complementary
aspects of spatio-temporal structure

(from Van Essen & Anderson 1995)
Ocko, S., Lindsey, J., Ganguli, S., & Deny, S. The emergence of multiple retinal 
cell types through efficient coding of natural movies. NeurIPS 2018.



Foveated sampling



(Wayne Maddison)

Active vision in jumping spiders

(Bair & Olshausen, 1991)



Lewicki et al. Scene analysis in the natural environment

FIGURE 5 | Scene analysis in electroreception. The “electric image” of
the external environment is determined by the conductive properties of
surrounding objects. The electric field emanates from the electric organ in
the tail region (gray rectangle) and is sensed by the electroreceptive skin
areas, using two electric “foveas” to actively search and inspect objects.
Shown are the field distortions created by two different types of objects: a
plant that conducts better than water, above (green) and a non-conducting
stone, below (gray). (Redrawn from Heiligenberg, 1977).

copy of the EOD signal is sent to electrosensory areas of the
brain. Thus, it is possible for the animal to directly compare the
sensed signal with that which was actually generated. An object
with low or no capacitance, such as a non-living object, will
leave the waveform shape unaffected. Most living objects how-
ever, such as insect larvae, other fish, and plants possess complex
impedances, and so they will significantly alter the waveform
shape, which behavioral studies show is detectable by the animal
(von der Emde, 2006).

Due to the high conductivity of water, the range over which
the electric fish can sense objects is only a few centimeters.
Nevertheless, electroreception mediates a wide range of scene
analysis behaviors important to the animal’s survival, which we
describe here.

Object recognition in electric scenes
The mormyrid’s object recognition and discrimination abilities
have been explored through behavioral studies (von der Emde
and Schwarz, 2002; von der Emde, 2004; von der Emde et al.,
2010). By assessing performance on simple association tasks, it
has been shown that electric fish are capable of discriminating
the shape of objects (e.g., cube vs. pyramid), even against com-
plex and variable backgrounds. Doing so is non-trivial because
the electric fields from multiple objects will superimpose and
create a seemingly complex electric image on the electrorecep-
tor array. Thus, the animal must solve a figure-ground problem
similar to that in vision or audition, in which the sensory contri-
butions of background or clutter must be discounted in order to
properly discern an object. Perhaps even more impressive is the
fact that the animal can generalize to recognize different shapes
independent of their material properties (metal or plastic) or dis-
tance. It can discriminate small from large objects, irrespective of
distance. Thus, the animal is capable of extracting invariances in
the environment from the complex electroreceptor activities – i.e.,
despite variations due to material properties or distance, it can
nevertheless make correct judgments about the shape and size of
objects.

Active perception during foraging
When foraging for food, mormyrids utilize their two electric
“foveas” in an active manner to search and inspect objects. The
two foveas are composed of a high density region of electrore-
ceptors, one on the nasal region, and the other on the so-called
Schnauzenorgan (Bacelo et al., 2008). Unknown objects are first
approached and inspected by the ventral nasal organ, and then
more finely inspected by the Schnauzenorgan (von der Emde,
2006). When foraging, the animal engages in a stereotypical
behavior in which it bends its head down at 28◦ such that
the nasal fovea is pointing forward or slightly upward, and it
scans the Schnauzenorgan from side to side across the surface
to search for prey. When a prey item is detected (presumably from
its capacitive properties) it is inspected by the Schnauzenorgan
before the fish sucks in its prey. Thus, the animal must cor-
rectly interpret the highly dynamic patterns of activity on the
sensory surface in accordance with this scanning movement in
order to properly detect and localize prey. This is an example of
an active process demanding the coordination of perception and
action.

Spatial navigation
Mormyrids are frequently seen swimming backward, and they
avoid obstacles with ease, finding their way through crevices in
rocks (Lissmann, 1958). Presumably these abilities are mediated
by the electric sense, since the eyes, which are poorly developed,
are at the front of the animal. They are also known to navi-
gate at night in complete darkness (von der Emde, 2004). Thus,
it would appear that electric fish can obtain a sufficient repre-
sentation of 3D scene layout from the electric field in order to
plan and execute maneuvers around objects. How accurate and
what form this representation takes is not known, but it has been
shown through behavioral studies that they can judge the distance
to an object from the spatial pattern across the electroreceptor
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Retinal ganglion cell spacing as a function of eccentricity

∆E ≈ .01(|E| + 1)
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Letter size vs. eccentricity
(Anstis, 1974)







Human eye movements during viewing of an image

Yarbus (1967)
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Figure 1: A: Diagram of single kernel filter parameterized by a mean µi and variance �i B: First row

Examples from our variant of the cluttered MNIST dataset. Second row Examples with additional
random rescaling of the digit.

This factorization is shown in equation 3, where the kernel is defined as an isotropic gaussian. For82

each kernel filter, given a center µi and scalar variance �i, a two dimensional gaussian is defined over83

the input image as shown in Figure 1A.84

ki(m,n) = p(m;µi,x,�i)p(n;µi,y,�i) (3)

While this factored formulation reduces the space of possible transformations from input to output, it85

can still form many different mappings from an input U to output V . Figure 2B shows the possible86

windows which an input image can be mapped to an output V . The blue circles denote the central87

location of a particular kernel. Each kernel maps to one of the outputs Vi. The kernel filters in88

our model can be adjusted through two distinct mechanisms: control and training. control defines89

adjustments to the retinal sampling lattice as a whole and can include translation and rescaling of90

the entire lattice. Translational control can be considered analgous to the motor control signals91

which executes saccades of the eye in biology. In contrast, training defines structural adjustments to92

individual kernels which include its position in the lattice as well as its variance. These adjustments93

are only possible during training and are fixed afterwards. Training adjustments can be considered94

analagous to the layout of the retinal sampling lattice which is directed by evolutionary pressures in95

biology.96

3 Recurrent Neural Architecture for Attention97

We develop a recurrent model of overt attention inspired by Mnih et al. (2014). A sample input98

image U is reduced by a glimpse generator using equation 4 to create a output ‘glimpse’ Vt. We99

omit the sample index n to simplify notation. This glimpse Vt is processed by a fully-connected100

recurrent network frnn(). Equation 4-9 details the feedforward process of generating the kernel filter101

configurations which define the retinal sampling lattice for the next time point.102

3

Learning the glimpse window sampling array
(Cheung, Weiss & Olshausen, 2017)

Example MNIST scenes

• Network is trained to correctly 
classify the digit in the scene.

• To do this it must find a digit and 
move its glimpse window to that 
location.

Object identity Control

Recurrent network

Glimpse

Scene



Evolution of the sampling array during training



Translation only
(Dataset 1)

Translation only
(Dataset 2)

Translation & zoom
(Dataset 1)

Translation & zoom
(Dataset 2)

Learned sampling arrays for different conditions 
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cells is shown in Fig. Q(B). In this case the slopes of 
the regression lines of cell body size on the logarithm 
of cell density for the nasal (a = 43.4, h = -6.87) and 
the temporal cells (u = 53.6, h = 9.1) were not 
significantly different (r = 1.0, df‘ 54). Thus the 
differences in cell body size of PX cells in different 
parts of the retina is clearly related to the variation 
in ganglion cell density, although the differences in 
dendritic field size is not simply related to cell density 
alone. The correlation coefficient for the dendritic 
field size of both nasal and temporal Pa cells and the 
logarithm of the ganglion cell density was 0.97, i.e. 
most of the variance in dendritic field size can be 
attributed to differences in ganglion cell density. 

As a check on the accuracy of our ganglion cell 
counts we used them to estimate the total number of 
ganglion cells in the macaque retina which can, in 
turn, be compared with published estimation of the 
number of axons in the optic nerve. To do this we 
plotted onto a scaled drawing of one Nissl-stained 
whole-mounted retina (670mm’ in area) the iso- 
density contours estimated from the counts along the 

A 

meridia. The isodensity contours were drawn as 
approximately ellipsoid but tapering in the nasal 
retina as has been shown in previous studies of 
peripheral ganglion cell counts of the primate 
retina.6’,“x The area between adjacent contours was 
multiplied by the mean ceil density of the two iso- 
density contours. This was repeated for the area 
between all pairs of contours and the totals for all 
areas were summed to give the total number of 
ganglion cells. This yielded an estimate of 1.4 x 10” 
ganglion cells in the retina, in good agreement with 
estimates of the number of axons in the optic nerve 
i.e. 1.5-1.8 x IOh, I.4 x I O'  and 1.2-1.3 x 10”.40~so.” If 
we neglect the naso-temporal overlap, which is small 
in primates,h.h’ then approximately 60’1/ of the cells lie 
in the nasal retina and 40“;) in the temporal retina. 

Our intention was to show which cell types project 
to the magno- and parvocellufar layers of the lateraf 
geniculate nucleus and to estimate the percentage of 
retinal ganglion cells at different eccentricities which 
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differences in cell body size of PX cells in different 
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in ganglion cell density, although the differences in 
dendritic field size is not simply related to cell density 
alone. The correlation coefficient for the dendritic 
field size of both nasal and temporal Pa cells and the 
logarithm of the ganglion cell density was 0.97, i.e. 
most of the variance in dendritic field size can be 
attributed to differences in ganglion cell density. 

As a check on the accuracy of our ganglion cell 
counts we used them to estimate the total number of 
ganglion cells in the macaque retina which can, in 
turn, be compared with published estimation of the 
number of axons in the optic nerve. To do this we 
plotted onto a scaled drawing of one Nissl-stained 
whole-mounted retina (670mm’ in area) the iso- 
density contours estimated from the counts along the 
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meridia. The isodensity contours were drawn as 
approximately ellipsoid but tapering in the nasal 
retina as has been shown in previous studies of 
peripheral ganglion cell counts of the primate 
retina.6’,“x The area between adjacent contours was 
multiplied by the mean ceil density of the two iso- 
density contours. This was repeated for the area 
between all pairs of contours and the totals for all 
areas were summed to give the total number of 
ganglion cells. This yielded an estimate of 1.4 x 10” 
ganglion cells in the retina, in good agreement with 
estimates of the number of axons in the optic nerve 
i.e. 1.5-1.8 x IOh, I.4 x I O'  and 1.2-1.3 x 10”.40~so.” If 
we neglect the naso-temporal overlap, which is small 
in primates,h.h’ then approximately 60’1/ of the cells lie 
in the nasal retina and 40“;) in the temporal retina. 

Our intention was to show which cell types project 
to the magno- and parvocellufar layers of the lateraf 
geniculate nucleus and to estimate the percentage of 
retinal ganglion cells at different eccentricities which 
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cells is shown in Fig. Q(B). In this case the slopes of 
the regression lines of cell body size on the logarithm 
of cell density for the nasal (a = 43.4, h = -6.87) and 
the temporal cells (u = 53.6, h = 9.1) were not 
significantly different (r = 1.0, df‘ 54). Thus the 
differences in cell body size of PX cells in different 
parts of the retina is clearly related to the variation 
in ganglion cell density, although the differences in 
dendritic field size is not simply related to cell density 
alone. The correlation coefficient for the dendritic 
field size of both nasal and temporal Pa cells and the 
logarithm of the ganglion cell density was 0.97, i.e. 
most of the variance in dendritic field size can be 
attributed to differences in ganglion cell density. 

As a check on the accuracy of our ganglion cell 
counts we used them to estimate the total number of 
ganglion cells in the macaque retina which can, in 
turn, be compared with published estimation of the 
number of axons in the optic nerve. To do this we 
plotted onto a scaled drawing of one Nissl-stained 
whole-mounted retina (670mm’ in area) the iso- 
density contours estimated from the counts along the 
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meridia. The isodensity contours were drawn as 
approximately ellipsoid but tapering in the nasal 
retina as has been shown in previous studies of 
peripheral ganglion cell counts of the primate 
retina.6’,“x The area between adjacent contours was 
multiplied by the mean ceil density of the two iso- 
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estimates of the number of axons in the optic nerve 
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we neglect the naso-temporal overlap, which is small 
in primates,h.h’ then approximately 60’1/ of the cells lie 
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Our intention was to show which cell types project 
to the magno- and parvocellufar layers of the lateraf 
geniculate nucleus and to estimate the percentage of 
retinal ganglion cells at different eccentricities which 
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ABSTRACT 

A CCD imager whose sampling structure is loosely modeled after the 
biological visual system is described. Its architecture and advantages over 
conventional cameras for pattern recognition are discussed. The sensor has 
embedded in its structure a logarithmic transformation that makes it size and 
rotation invariant. Simulations on real images using the actual sensor 
geometry have been performed to study the sensor performance for 2D 
pattern recognition and object tracking. 

A CCD imager consisting of 30 concentric circles and 64 sensors per 
circle, whose pixel size increases linearly with eccentricity has been 
fabricated. The central part has a constant resolution with 102 photocells. 
The CCD is made in a three phase buried channel technology with triple 
poly and double metal layers. Preliminary results of the testing are given 
showing the validity of the design. 
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Figure 8: Photograph of the fovea, conslstmg of 102 
photosensitive cells, and the first ten concentric 
circles. 

Driving Electronics 

One of the complications of this architecture is the relatively large amount of 
clocks and control signals to read out and synchronize the charge flow. Up to 18 
different clocks are required. When the sensor has to be used as part of a moving 
platform for tracking purposes, it is important to minimize the number of wires and 
external interconnections. Also the dimensions and weight of the clock drivers should 
be small. For this reason an integrated clocking system has been developed that 
generates all the required clocks. It has been fabricated in a 2 !lm CMOS process. The 
chip is fully custom designed in order to reduce the amount of real estate and power 
dissipation as much as possible. The total chip area is less than 3 mm2. A 
photograph of the chip is given in Fig. 9 [27]. This chip will be mounted together 
with the CCD imager on a lightweight substrate and incorporated into the motor 
control platform. The chip is fully functional. Measured outputs of the controller 
chip is shown in Fig. 10. 

A Foveated Image Sensor in Standard CMOS Technology 

Robert Wodnicki, Gordon W. Roberts, Martin D. Levine 
Department of Electrical Engineering, McGill University, 

Montrkal, Qukbec, CANADA, H3A 2A7 

Abstract 

We describe the design and  implementation of a CMOS 
foveated image sensor for use in mobile robotic and ma- 
chine vision applications. T h e  sensor is biologically moti- 
vated and performs a spatial image transformation from 
Cartesian to  log-polar coordinates. As opposed to  tradi- 
tional approaches, the  sensor benefits from a high degree 
of integration, minimal power consumption and  ease of 
manufacture due to  the use of a s tandard 1.2pm ASIC 
CMOS process. T h e  prototype imager operates at 28 
frames/sec when interfaced to  a PC. 
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Introduction 

Foveation is a biologically motivated image transforma- 
tion which has  a t t racted the interest of researchers in the 
fields of computer vision and robotics. I ts  principle ad- 
vantages are the  realization of a high degree of image 
compression as well as the property of scale and rotation 
invariance [2]. T o  date  various computational implemen- 
tations [3][6], as well as a fully custom CCD [a] image sen- 
sor have been proposed. While these approaches achieve 
adequate performance, they nevertheless suffer from the 
need for considerable support resources such as networks 
of DSP processors and digital frame-grabbers. These re- 
sources may be readily available in a laboratory environ- 
ment for use with a tethered robot ,  however truly au- 
tonomous mobile systems will require foveated sensors 
which are extremely compact and energy efficient. Re- 
cent advances in VLSI technology have made poissible the 
implementation of image sensors using standard CMOS 
ASIC’s [4]. Such image sensors benefit from the integra- 
tion of image sensing and image processing functions on 
the same die, yielding a vast reduction in power consump- 
tion and system mass. These savings make possible the 
realization of a completely self-contained foveated image 
sensor for use on mobile robots. We have designed, fab- 
ricated and tested such a device for use in a robot eye for 
an autonomous robot system [3]. In the present discus- 
sion we summarize key design issues and give iresults of 
the functioning sensor. 

Foveation 

The concept of foveation in machine vision stems from 
a detailed examination of the human visual pathway [ B ] .  
The human retina can be roughly divided into two dis- 
tinct regions. The  f ovea  is a small area of very high, 
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Figure 1: T h e  foveated mapping 

constant photoreceptor density located near the center of 
the retinal plane. Outside the fovea, in the region known 
as the periphery, visual acuity decreases as a function of 
radial distance from the center of the retina, due to  spa- 
tial averaging of incident intensity performed over regions 
known as receptzve f ields.  

Based on psychophysical experiments, researchers have 
characterized the image transformation performed by the 
visual pathway in mathematical terms. This  nonlinear 
image transformation is known as the log-polar or foveated 
mapping. Fig. 1 illustrates how the mapping is per- 
formed. Image coordinates are mapped from the origi- 
nal image via a mapping template (a) to  separate images 
for the  fovea and the periphery (b). D a t a  in the original 
image corresponding to  the fovea undergoes a one-to-one 
mapping to  the fovea image. Data  corresponding to  the 
periphery undergoes a many-to-one mapping in which all 
image values within a receptive field (RF) are averaged to  
produce a single value in the periphery image. RF’s in the  
periphery are distributed along rays of angular displace- 
ment ,  AQ. All RF’s on ring i have radial displacement 
given by, 
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Figure 5: Photomicrograph of the CMOS foveated sensor 
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Figure 6:  Example of sensor performance. (a) original image with a cross marked A at the center of gaze. (b) sensor 
output .  The  detailed features of the  central part  of the  original image are preserved in the  fovea image, while i ts  
surroundings are mapped to  the periphery image with a log-polar function as indicated in Fig. 1. Horizontal lines 
in the periphery image are due t o  digital scanners in the external circuitry. 
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