



### Membrane with synaptic inputs





### Membrane with synaptic inputs



### **Voltage-gated channels**



**Rate coding hypothesis:** the signal conveyed by a neuron is in the *rate* of spiking. Spiking irregularity is largely due to noise and does not convey information.



### Linear - non-linear - Poisson (LNP) model



$$P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$



# Leaky integrate-and-fire neuron



### Fly HI neuron - constant stimulus (de Ruyter et al., 1997)



### Fly HI neuron - time-varying stimulus (de Ruyter et al., 1997)



# Spike timing can be very precise in response to *time-varying* signals Mainen & Sejnowski (1995)



# Spike timing can be very precise in response to time-varying signals

MT neuron response to stochastic moving dot stimuli at different levels of coherence (Newsom lab)

Analysis by Bair & Koch (1996)





Cat V1 - natural movies (J. Baker, S.C. Yen, C.M. Gray, MSU Bozeman)

# Neural encoding and decoding



# Encoding and decoding are related through the joint distribution over stimulus and response





From Spikes, by Rieke, Warland, de Ruyter, & Bialek



### Strategy for estimating information rate



Adapted from Spikes, by Rieke, Warland, de Ruyter, & Bialek



Oxford Series on Cognitive Models and Architectures

### How to Build a

BRAIN





Chris Eliasmith

OXFORD

# LIF encoding and decoding (Eliasmith & Anderson, 2003)









#### Figure 10.5

Vestibular hair cells, transducing low frequencies, can sum their analogue signals before recoding to spikes. Upper: Head rotates slowly (1 Hz). Spikes from second-order vestibular axon are modulated linearly through the full cycle around 50 spikes per second. Lower: Adjacent hair cells each converge multiple active zones onto single afferent fiber. Modified from Eatock et al. (2008). Neural responses are half-wave rectified (action potentials are positive-only). Signals are thus combined in a push-pull fashion, similar to push-pull amplifiers.



From: Neural Engineering, by Eliasmith & Anderson







# **Push-Pull decoding**



'Off' Neuron

## Efficient coding model of retina

(Karklin & Simoncelli 2012)



1

1





# Auto-correlation function of natural images



# PCA (Principal Components Analysis) *a*.

b



# Whitening



## Power spectrum (Field 1987)



Log<sub>10</sub> spatial frequency (cycles/picture)

# 'Whitening' (Atick & Redlich, 1990)



Spatial frequency, c/deg



#### Whitening $\mathbf{W} = \mathbf{E} \mathbf{\Lambda}^{-\frac{1}{2}} \mathbf{E}^T$ R a Q Q • Q D, A E, R

# Whitening

### before

### after

