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Voltage-gated channels



Rate coding hypothesis:  the signal 
conveyed by a neuron is in the rate of spiking.  
Spiking irregularity is largely due to noise and 
does not convey information.



Linear - non-linear - Poisson (LNP) model
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Reproducibility and Variability in
Neural Spike Trains

Rob R. de Ruyter van Steveninck, Geoffrey D. Lewen,
Steven P. Strong,* Roland Koberle,† William Bialek

To provide information about dynamic sensory stimuli, the pattern of action potentials
in spiking neurons must be variable. To ensure reliability these variations must be related,
reproducibly, to the stimulus. For H1, a motion-sensitive neuron in the fly’s visual system,
constant-velocity motion produces irregular spike firing patterns, and spike counts
typically have a variance comparable to the mean, for cells in the mammalian cortex. But
more natural, time-dependent input signals yield patterns of spikes that are much more
reproducible, both in terms of timing and of counting precision. Variability and repro-
ducibility are quantified with ideas from information theory, and measured spike se-
quences in H1 carry more than twice the amount of information they would if they
followed the variance-mean relation seen with constant inputs. Thus, models that may
accurately account for the neural response to static stimuli can significantly underes-
timate the reliability of signal transfer under more natural conditions.

The nervous system represents signals by
sequences of identical action potentials or
spikes (1), which typically occur in an
irregular temporal pattern (2). The details
of this pattern may just be noise that
should be averaged out to reveal meaning-
ful signals (3). Alternatively, if the precise
arrival time of each spike is significant,
then temporal variability provides a large
capacity for carrying information (4, 5).
This issue has been debated for decades
(6) and is receiving renewed attention (5,
7). In fact, different views of the neural
code may be appropriate to different con-
texts—in an environment where signals
vary slowly, the brain may neither need
nor use the full information capacity of its
neurons, but as sensory signals become
more dynamic the demands on coding ef-
ficiency increase (5, 8). Here we show
that in H1, a motion-sensitive neuron in
the fly visual system (9), variability of
response to constant stimuli coexists with
extreme reproducibility for more natural
dynamic stimuli, and that this reproduc-
ibility has a direct impact on the informa-
tion content of the spike train.

Figure 1 shows results of an experiment in
which a fly (Calliphora vicina) views a pattern
of random bars that moves across the visual
field at constant velocity (10). After a tran-

sient, the H1 neuron settles to a steady state,
spiking at a constant rate that depends on
velocity. Such results are well known for H1
(9) and have parallels in many experiments
on sensory neurons. Spike sequences appear
irregular, and interspike intervals are distrib-

uted almost exponentially (Fig. 1D), so that
the coefficient of variation (CV) is near
unity (11). If we count the spikes in a fixed
window of time during the steady response,
then by repeating the stimulus many times
we can measure both the mean count and
the variance across trials. Figure 1E shows
that, counting spikes for different stimulus
strengths and different size time windows,
the variance grows almost in proportion to
the mean, both for H1 and for cells in the
mammalian visual cortex (12). There is also
a tendency for excess variance in large time
windows (13).

In Fig. 2 we show the spike trains gener-
ated when the fly views the same pattern of
random bars, but now moving along a dy-
namic, and presumably more naturalistic
(14), trajectory. This stimulus modulates the
spike rate rapidly over a wide range (Fig.
2C). Integrating the rate over a fixed time
window gives the mean spike count (5), and
we also measure the variance of the spike
count in that window. If we do this for all
possible locations of the window (with 1-ms
resolution), we obtain, by analogy with Fig.
1E, the relation between variance and mean
(Fig. 2, E and F). In 100-ms windows, mean
counts up to 15 occur with a variance close
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Fig. 1. Spike statistics
for constant stimuli. (A) A
random bar pattern (10)
moves across the visual
field at constant speed
(0.022°/s) and in the H1
neuron’s preferred di-
rection. (B) Fifty re-
sponse traces to the
stimulus in (A), each last-
ing 1 s, and taken 20 s
apart. The occurrence of
each spike is shown as a
dot. The traces are taken
from a segment of the
experiment where tran-
sient responses have
decayed. (C) The peri-
stimulus time histogram
(PSTH; bin width 3 ms,
96 presentations), which
describes the rate at
which spikes are gener-
ated in response to the
stimulus shown in (A).
The fluctuations are due
to finite sampling. (D) Interval histogram describing the probability density, P(t), of finding an interspike
interval of length t. (E) Scatter plot of spike count variance as a function of mean count. Open circles are
data for the fly’s H1 neuron, stimulated with a wide field pattern moving at several constant velocities (0°,
0.007°, 0.014°, 0.022°, 0.029°, and 0.058°/s) For each velocity, spikes are counted in windows of
different sizes (3, 10, 30, 100, 300, and 1000 ms). The variance of these counts is plotted against the
mean for each combination of velocity and window size. Points obtained at the same velocity are
connected by lines. The data plotted here are for average rates below 80 spikes per second. For large
counting windows, the variance grows faster then the mean. The filled circles [redrawn from Tolhurst et
al. (12)] are data from simple cells in cat visual cortex analyzed in the same way (but with either 250- or
500-ms counting windows). Comparison of the data shows that for constant stimuli, the neurons from
fly and cat are very similar in their counting statistics. Furthermore, they both approximately follow the
Poisson behavior, variance 5 mean, given by the dashed line.
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Fly H1 neuron - constant stimulus
(de Ruyter et al., 1997)



to unity. In 10-ms windows, the variance
drops to nearly zero for windows that contain
one or two spikes on average. Spikes are
discrete events, so there must be variation
from trial to trial if, for example, the average
count is 0.5. The variance is minimized if
half the trials have one spike and the other
half have none, in which case s2 5 0.25.
Generally, if the mean count is an integer
plus a fraction f, the minimum variance is
smin

2 5 f(1 2 f ). The plot of minimum
variance versus mean is scalloped, repeating
with period one. Figure 2E shows that the
data points cluster near this curve of mini-
mum variance (15), far from the relation
variance ' mean found with static stimuli.

Spike counts in response to dynamic
stimuli have smaller variances than those in
response to static stimuli, but interspike
intervals seem more variable (see Figs. 1D
and 2D). Interspike interval distributions,
however, confound variations across time
with variations across trials. To characterize
the reproducibility across trials, we measure
the distribution of interspike intervals that
bracket a fixed time in the stimulus; typi-
cally, these “stimulus-locked” interval dis-
tributions have a CV ; 0.1. This indicates
that, although the responses to dynamic
stimuli are variable across time, they are
reproducible from trial to trial.

The spike patterns seen, for example, in
Fig. 2B, are complex: Short interspike inter-
vals come in bursts, a specific event in the
stimulus may fail to elicit a spike on some
trials, and isolated spikes may occur with low
probability. It might be interesting to under-
stand how each feature arises, but here it is
more important to ask whether all these
different features can be quantified in the
same units, summarizing the variability and
reproducibility of the spike train. Shannon
proved that the only measure of variability
consistent with certain intuitive require-
ments is the entropy (16). We need two
different entropies, each of which can be
estimated directly from experiment (17): the
total entropy of the spike train, which quan-
tifies the variations across time and sets the
capacity of the spike train to carry informa-
tion, and the noise entropy, which measures
the irreproducibility from trial to trial. Both
quantities depend on the size of the time
windows T and on the time resolution Dt
with which we observe the spike train.

To observe the full range of temporal
variability, we deliver a stimulus chosen
from the same probability distribution as in
the experiments of Fig. 2, but continuing
for 9000 s without repeating. In time win-
dows of size T we digitize the spike train
with a precision Dt, so that possible spike
trains are labeled by K-letter “words,” with
K 5 T/Dt (Fig. 3); a complete analysis
requires that we explore a range of T and Dt

(17). Searching through the entire experi-
ment we estimate the probability P(W) of
each possible word W and then compute
the entropy of this distribution,

Stotal 5 2 O
W

P(W)log2P(W) bits (1)

To assess the reproducibility of the respons-
es, we return to the experiment in which a
single dynamic stimulus waveform is pre-
sented many times and examine the proba-
bility of occurrence P(Wt) for words W at
a particular time t relative to the stimulus.
These distributions (one for each t) also
have entropies, and the average of these
entropies over time is the noise entropy,

Snoise 5 K2O
W

P(Wt)log2P(Wt)L
t

bits (2)

where ^ zzz &t denotes the average over all
possible times t, with resolution Dt (18).
The average information I that the spike
train provides about the stimulus is precise-
ly the difference between these two entro-
pies, I 5 Stotal 2 Snoise. This characteriza-
tion of variability, reproducibility, and in-
formation transmission is independent of
any assumptions about which features of the

stimulus are being encoded or about which
features of the spike train are most impor-
tant in the code (17, 19).

With windows of T 5 30 ms— compa-
rable to the behavioral reaction times
(14)—and a time resolution of Dt 5 3 ms,
we find Stotal 5 5.05 6 0.01 bits and Snoise
5 2.62 6 0.02 bits. Thus, the average
information about the stimulus conveyed
in 30 ms is 2.43 6 0.03 bits, and this is
increased slightly if we sample with Dt 5
1.5 or even 0.7 ms (20). Hence, down to
millisecond time resolution, half of the
total variability of the spike train is used
to provide information about the stimulus
(21).

Information transmission is clearly en-
hanced by rapid modulations of the spike rate
(Fig. 2C). Are these rapid rate variations the
only important feature of the response? Con-
sider a model neuron that has the correct
dynamics of the firing rate, but follows the
variance-mean relation observed in response
to static stimuli. If the variance-mean relation
is given by the dashed line in Fig. 1E, then
neural firing is a modulated Poisson process
(5, 22). We simulate spike trains that result
from a Poisson process with the rate modula-
tions observed in Fig. 2C and then repeat the

Fig. 2. Spike statistics
for dynamic stimuli. (A)
The fly views the same
spatial pattern as in Fig.
1A, but now moving
with a time-dependent
velocity, part of which is
shown. The motion ap-
proximates a random
walk with diffusion con-
stant D ' 14 degrees2/
s. For illustration, the
waveform shown is low-
pass filtered. In the ex-
periment, a 10-s wave-
form is presented 900
times, every 20 s. During
the second half of this
20-s period the fly sees
the same pattern, but
now for each trial
we draw a new—inde-
pendent—velocity wave-
form from the same dis-
tribution. (B) A set of 50
response traces to the
repeated stimulus wave-
form shown in (A). (C) Averaged rate (PSTH) for the same segment. The rate is strongly modulated, but its
time average is very close to that in Fig. 1C. (D) Interval histogram for the nonrepeating part of the
experiment. It is clearly nonexponential, with CV 5 1.94, and very different from the interval distributions in
Fig. 1D. (E and F) Scatter plots of variance versus mean count. Here, in contrast to Fig. 1E, each figure
shows the mean and the variance for only one size of counting window—10 ms in (E), 100 ms in (F). Each
point is a variance-mean combination for counts across all 900 trials in a fixed time window relative to the
onset of the repeated stimulus. The first window starts 100 ms after onset of the repeated waveform,
spanning 100 to 110 ms in (E) or 100 to 200 ms in (F). Successive windows overlap as they are stepped
in 1-ms increments [for example, 101 to 111 ms, 102 to 112 ms, . . . and so on for (E)], and altogether 9000
time windows are analyzed. For comparison, the variance for the Poisson distribution is given by the
dashed lines.
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Fly H1 neuron - time-varying stimulus
(de Ruyter et al., 1997)



Spike timing can be very precise in 
response to time-varying signals

Mainen & Sejnowski (1995)



Analysis by Bair & 
Koch (1996)

Spike timing can be very precise in 
response to time-varying signals

MT neuron response 
to stochastic moving 
dot stimuli at different 
levels of coherence 
(Newsom lab)





Neural encoding and decoding
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Stimulus reconstruction

k̂(t) = argmin
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D
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Strategy for estimating information rate

Adapted from Spikes, by Rieke, Warland, de Ruyter, & Bialek

1. Estimate signal from spikes ⇢(t) ! ŝ(t)

2. Compute noise in estimate ñ(!) = s̃(!)� ˆ̃s(!)

3. Compute SNR SNR(!) =
h|s̃(!)|2i
h|ñ(!)|2i

4. Calculate lower bound to 
information rate from SNR

R =
1

2

Z
d!

2⇡
log2[1 + SNR(!)]
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266 Chapter 10

 The coding challenge 

 To recode analogue voltages carrying more than 100 bits per second 
to spikes requires high firing rates. For example, to recode 100 bits per 
second, assuming no noise and no temporal correlation between spikes, 
would require about 30 spikes per second. However, real axons  do  
have noise, plus temporal correlations that increase with spike rate. For 
example, an optic axon firing even at a modest mean rate (~10 Hz) fills only 
about 30% of its theoretical channel capacity (Koch et al., 2004, 2006). 
Moreover, this fraction declines as spike rate rises (Koch et al., 2006). 
Therefore, to encode 100 bits per second would require the spike rate to 
substantially exceed 100 Hz. Although neurons can fire transiently at 
much higher frequencies, those frequencies are uneconomical and largely 
unsustainable. 

 The stage selected for recoding depends on the magnitude of the initial 
information rate. Recall that higher spike rates need larger diameter axons 

smell hearingtouch vision

 Figure 10.1 
  Analogue sensors recode to spikes at different stages . Smell and various touch sen-
sors recode directly to spikes; sound sensors use one synaptic stage (arrowed), and 
photo sensors use two synaptic stages (arrows) before spiking. For exceptions to this 
broad rule, see Baden et al. (2013). 
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and thus use disproportionately more space and energy because they rise as 
diameter squared (chapter 3). Recall that vestibular axons, which fire con-
tinuously at about 100 Hz, are extremely thick (figure 4.6). This design 
works because vestibular axons are relatively few. However, optic axons are 
100-fold more numerous, so if they had the same caliber as a vestibular 
axon, our optic nerve would be 10-fold thicker, one centimeter instead of 
one millimeter — and the  blind spot  where the optic nerve exits the retina 
would be 100-fold greater in area, 75 mm 2  instead of 0.75 mm 2  (B. Peterson 
and D. Dacey,  M. nemestrina , unpublished data). Consequently, sensory 
neurons must either pay a high unit price, like vestibular axons, or use 
lower mean spike rates (figure 10.2).    

 Low-rate sensors code directly 

 An olfactory sensory neuron collects information at low rates. A sensor 
expresses only a single type of receptor protein, and there are about 1,000 
types, so each sensor patrols a relatively small fraction of the full odorant 
spectrum. Odorant particles travel slowly, spreading out as they go, and 
therefore an olfactory source is blurry in space and time. To localize an 
odorant roughly in time and intensity requires a sensor to capture relatively 
few particles, each corroborating the others, and capturing more would add 
little information. Therefore, the sensor ’ s delicate cilia express receptor 
molecules sparsely (  figure 10.3 ).  1   Moreover, when a neuron has signaled the 
binding of a few odorant molecules, it adapts. Thus, the messages are rare, 
slow, and brief. 

optic

vestibular

olfactory

auditory

number of axons axon diameter

104

5×104

106

107

 Figure 10.2 
  Sensor axon caliber trades off with axon number . Axon diameter varies across types 
by 10-fold, so cross-sectional area varies by nearly 100-fold. Array size (axon number) 
varies reciprocally by 1,000-fold. Shown here are mean diameters and axon numbers 
for human (Perge et al., 2012). 
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stimulus

spikes

synaptic ribbon

vestibular hair cell

vestibular axon
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 Figure 10.5 
  Vestibular hair cells, transducing low frequencies, can sum their analogue signals be-
fore recoding to spikes. Upper : Head rotates slowly (1 Hz). Spikes from second-order 
vestibular axon are modulated linearly through the full cycle around 50 spikes per 
second.  Lower:  Adjacent hair cells each converge multiple active zones onto single 
afferent fiber. Modified from Eatock et al. (2008). 



Neural responses are half-wave rectified (action potentials 
are positive-only).  Signals are thus combined in a push-pull 
fashion, similar to push-pull amplifiers.

From:  Neural Engineering, by Eliasmith & Anderson
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Coding by on- and off-cells
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Push-Pull decoding
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Figure 5: Information transmitted as a function of spike rate, under noisy conditions (8dB SNRin,
−6dB SNRout). We compare the performance of optimal filters (W1) to filters obtained under low
noise conditions (W2, 20dB SNRin, 20dB SNRout) and PCA filters, i.e. the first 100 eigenvectors
of the data covariance matrix (W3).

varied the number of neurons from 1 (very precise) neuron to 150 (fairly noisy) neurons (Fig. 6a).
We estimated the transmitted information as described above. In this regime of noise and spiking
budget, the optimal population size was around 100 neurons. Next, we repeated the analysis but
used neurons with fixed precision, i.e., the spike budget was scaled with the population to give 1
noisy neuron or 150 equally noisy neurons (Fig. 6b). As the population grows, more information is
transmitted, but the rate of increase slows. This suggests that incorporating an additional penalty,
such as a fixed metabolic cost per neuron, would allow us to predict the optimal number of canonical
noisy neurons.

4 Discussion

We have described an efficient coding model that incorporates ingredients essential for computa-
tion in sensory systems: non-Gaussian signal distributions, realistic levels of input and output noise,
metabolic costs, nonlinear responses, and a large population of neurons. The resulting optimal solu-
tion mimics neural behaviors observed in the retina: a combination of On and Off center-surround
receptive fields, halfwave-rectified nonlinear responses, and pronounced asymmetries between the
On- and the Off- populations. In the noiseless case, our method provides a generalization of ICA
and produces localized, oriented filters.

In order to make the computation of entropy tractable, we made several assumptions. First, we
assumed a smooth response nonlinearity, to allow local linearization when computing entropy. Al-
though some of our results produce non-smooth nonlinearities, we think it unlikely that this sys-
tematically affected our findings; nevertheless, it might be possible to obtain better estimates by
considering higher order terms of local Taylor expansion. Second, we used the global curvature of
the prior density to estimate the local posterior in Eqn. 7. A better approximation would be obtained
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