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Brains  vs.  machines

“the brain doesn’t do things 
the way an engineer would”

“we needn’t be constrained by 
the way biology does things”

How to compute with nanoscale, low-
power, stochastic circuit components?

Brain-like functions are more 
probabilistic in nature and use 
different data representations.

THE END OF MOORE’S LAW

16  March/April 2017

using analog computation instead, which degrades 
gracefully, the brain tolerates errors in its digital 
communication. !is tolerance enables it to activate 
just 20 stochastic, single-lane, nanoscale devices 
per elementary operation (Figure 4), which is just 
20 fJ/op. !us, 20 W su"ces to convey spikes to 
and graded potentials from each of the brain’s 1015 
synapses once per second. !e tradeo#s between 
analog and digital signal choices in communication 
and computation can be quanti$ed using informa-
tion theory and thermodynamics.

For communication, using many error-prone, 
low-energy, channels—as brains do—is more 
energy-e"cient than using a few pristine, high-
energy, channels—as computers do—because the 
information conveyed decreases only logarith-
mically as signal energy decreases. In the 1940s, 
Claude Shannon came up with a quantitative mea-
sure for information and derived the capacity of a 
communication channel in bits of information per 
second.5 Each signal the channel conveys carries a 
certain number (b) of information bits. !is num-
ber grows logarithmically (b = ½log2

 (1 + E/kT )) 
with the ratio of signal energy (E) to noise energy 
(kT, for thermal noise). !is expression was derived 
for a channel with additive, white Gaussian noise.  
!e number of signals conveyed per second grows 
linearly with bandwidth (B). !eir product gives 
the channel capacity (C = Bb). Notice that, for E 
 kT, the number of bits a signal carries drops by ب
only one when its energy decreases a little more 
than fourfold—for example, it drops from two 
to one when signal energy decreases from 15kT to 
3kT. Hence, energy e"ciency (b/(E + kT )) doubles, 
increasing from ⅛ to ¼ bits per kT. Note, how-
ever, that two of these low-energy channels are 
needed to match the high-energy channel’s capac-
ity, taking up more space. !e complete space-
energy-bandwidth tradeo# has been analyzed for 

Figure 3. Signal choices for communication and 
computation. Communication moves operands and 
results around while computation combines operands 
to produce results. Analog computers (upper left) use 
analog signals to compute as well as to communicate, 
whereas digital computers (lower right) use digital 
signals to compute as well as to communicate. In 
contrast, the brain (lower left) uses analog signals to 
compute and digital signals to communicate. Using 
analog signals to communicate and digital signals to 
compute (upper right) hasn’t been explored. (Digital 
computer source: US Army, public domain.)
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Figure 1. Planar and 3D transistors. In a planar 
transistor (left), electrons (red) travel along one side of 
a piece of silicon, from source (brown) to drain (brown). 
Their flow is controlled by voltage applied to the gate 
(black), which is insulated from the channel by a thin 
layer of silicon-dioxide (medium gray). In a 3D transistor 
(right), electrons travel along three sides of a “fin” 
protruding from the surface.
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Figure 2. Transistors per dollar. Manufacturing advances continue to shrink 
transistors’ dimensions over time (gate length given). Since 2014, however, a 
dollar no longer buys more transistors every year—or two—halting a half-century 
trend dubbed Moore’s law. (Source: the Linley Group, used with permission.)
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HI horizontal cells connected via gap junctions



Hyperpolarization of photoreceptor results in
hyperpolarization of horizontal cells



Hyperpolarization of horizontal cell results in
depolarization of photoreceptors
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Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions
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concentration at mGluR6 and that does not generate
frequent false-positive events was estimated as ~100
vesicles/s (38, 45, 54). Additionally, it has been pro-
posed that vesicle release might be regular rather than
stochastic because Poisson fluctuations in the vesicle
release would overwhelm rod continuous noise, mak-
ing the release rate resulting from single-photon
absorptions indistinguishable from the dark release
rate (45). Such regularity in the vesicle release may be
partly achieved by imposing a refractory period after
vesicle release at individual release sites (61). 

Postsynaptic Thresholding and the
Elimination of Noise

Of the three known pathways for rod signals to reach
ganglion cells in the mammalian retina (rod bipolar,
rod-cone, and rod-off pathways; reviewed in Ref. 12),
only the rod bipolar pathway pools enough rods to
account for the high sensitivity of rod vision near
absolute visual threshold. It has been recognized for
more than 20 years that, to account for this high sensi-
tivity, where one can detect few photoisomerizations
in thousands of pooled rods (c.f. Ref. 5), rod outputs
cannot be pooled linearly. Early measurements of
dark noise from primate rods indicate a noise variance

that would swamp out a single-photon response in a
rod bipolar cell pooling 20–100 rods if the rod output
were simply summed (Ref. 9; see also FIGURE 3). A
threshold-like mechanism at the synapse between
rods and rod bipolar cells has been suggested as a way
of eliminating noise from rods and has been studied
analytically (16, 22, 54). 

As mentioned above, a main source of noise that
must be considered at an individual rod-to-rod bipo-
lar synapse is the continuous noise generated in the
phototransduction cascade by the spontaneous acti-
vation of cGMP phosphodiesterase (40). If a threshold
is going to be effective in distinguishing single-photon
events from the continuous noise, then it must be pre-
cisely positioned. First, the amplitude of the threshold
must be high enough to exclude as much of the con-
tinuous noise as possible. Second, the amplitude of
the threshold must not be too high to exclude single-
photon events. Such positioning becomes problemat-
ic when the amplitude distribution of the rod continu-
ous noise overlaps significantly with the amplitude
distribution of single-photon responses, requiring a
tradeoff between these two parameters. 

Field and Rieke (22) approached this issue in the
mouse retina by measuring the distributions of noise
amplitude and single-photon response amplitude in
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FIGURE 3. Convergence at the rod-to-rod bipolar synapse
A: a rod bipolar cell pools inputs from many rods, but near absolute visual threshold only one rod may absorb a photon (red), whereas the remaining
rods are generating electrical noise (blue). A nonlinear threshold (dashed) may improve photon detection at this synapse by retaining responses in
rods absorbing a photon and discarding responses of the remaining rods. It should be noted that optimal position of the threshold might be expect-
ed to increase given the gap-junctional coupling of rods (see text). B: linear vs. nonlinear signal processing can improve the fidelity of rod signals. If
rod outputs from A are simply summed, the resulting trace is noisy, but when summed after applying a threshold for each rod in A the response is
more detectable. Adapted from Ref. 22. 

Downloaded from journals.physiology.org/journal/physiologyonline (135.180.147.157) on September 6, 2020.

Rod bipolar cells sum thresholded outputs of rods (not linear)
(Sampath, Field, Rieke 2002-2004)



The processes of drift and diffusion are the stuff of which 
all information processing devices—both neural and 
semiconductor—are made.

—Carver Mead (1989)



Lessons from the Early Days of Semiconductors - Carver Mead - 4/24/2019

https://www.youtube.com/watch?v=qhJaq3kl6Dc&feature=youtu.be



All of these things are related by the same 
fundamental physical law…

Nernst potential (aka ‘reversal potential’)

Current-voltage relation of voltage-gated channels

Current-voltage relation of MOS transistor

V = �kT
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Vgs = gate-source voltage 
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or



Its the Boltzmann distribution!

Example:  atmospheric pressure vs. elevation

or, for charge in an 
electric field:



Voltage-gated channels



Et = transition energy 
E0 = transition energy at V=0



MOS transistor



I = I0 e
� q Vgs

kT (1� e
q Vds
kT )

Vgs = gate-source voltage 
Vds = drain-source voltage





Transconductance amplifier



Differential pair

⇒



Differential pair



Transconductance amplifier



Silicon retina



Analog VLSI retina
(Mead & Mahowald, 1989)





Analog VLSI (or neuromorphic computing) exploits 
intrinsic transistor physics and laws of electronics 

(Kirchhoff’s law, Ohm’s law) to do computation 



3D RRAM crossbar array



in the figure can perform MVM with open loop, i.e., by applying a
voltage vector V to the columns and measuring the current vector
I at the rows without the row-column connections enabled by the
operational amplifiers (OAs), which is shown in SI Appendix, Fig.
S3. The measured currents yields the dot product I = A·V between
the applied analog voltages and the matrix A of the RRAM
conductance values in the cross-point array. The results evidence a
small error generally below 8%, mostly arising from the non-
linearity of conductance in cross-point resistive devices. This is in
line with previous results, where the MVM accuracy appeared
satisfactory (5), although not aligned with single- and double-
precision full digital operation.
The MVM operation is a consequence of physical Ohm’s law

I = G·V, where G is the device conductance, V is the applied
voltage, and I is the measured current (Fig. 1B, Top). On the
other hand, the inverse operation V = −I/G can be obtained for a
given I and G, simply by forcing the current I at a grounded node
of the resistive device and measuring the potential V at the
second node. This physical division is accomplished by the
transimpedance amplifier (TIA) in Fig. 1B (Bottom), where
the current is injected at the inverting-input node of an OA, and
the feedback conductance G connects input and output nodes
of the OA. The differential input voltage V+ − V− at the OA is
minimized by the high gain of the OA, thus establishing a virtual
ground (V− = 0) at the inverting-input node (24, 25) and en-
abling the physical division. This provides the basis for the circuit

in Fig. 1A, which solves a system of linear equations expressed by
the matrix formula:

A x= b, [1]

where A is a nonsingular square matrix mapped with conduc-
tance values of cross-point RRAM devices, b is a known vector,
and x is the unknown vector. In this circuit, the input currents
I = −b are applied to cross-point rows connected to the virtual-
ground nodes of the OAs. As a result, currents are forced to
automatically distribute among the resistive elements in the
cross-point array, to establish an output potential V satisfying

A·V + I = 0, [2]

which implies V = −A−1·I = x. A circuit similar to the one in Fig.
1A was previously presented in the report of the International
Roadmap for Devices and Systems (25) and suggested by ref. 26,
although no demonstration was shown regarding the ability to
solve a linear system by either experiments or simulations.
To demonstrate the concept of Fig. 1A, we measured the

output voltages in the 3 × 3 RRAM cross-point array of Fig. 1A,
where the conductance matrix is also shown. All of the matrices
adopted in the experiments of this work are reported in SI Ap-
pendix, Table S1. A current vector [I10; I20; I30] with I10 = 20 μA,
I20 = 100 μA, and I30 = 100 μA, was applied to the array rows,
and the resulting potential at the array columns, i.e., [V10; V20;
V30], was measured, as shown in Fig. 1C. The good agreement
(with relative errors within 3%) with the analytical solution
supports the functionality of the feedback circuit of Fig. 1A for
solving the matrix equation in Eq. 1. The circuit was further
demonstrated by linearly changing the input currents according
to Ii = β Ii0, where i = 1, 2, or 3, and β was changed uniformly in
the range from −1 to 1. Results are reported in Fig. 1D, showing
the measured output voltages compared with the analytical so-
lutions x = A−1b. The error remains below 10% for jβj > 0.5 (SI
Appendix, Fig. S4). Notably, Eq. 1 is physically solved in just one
step thanks to the physical MVM in the cross-point array and to
the feedback connection forcing the virtual ground at cross-
point rows.
The same concept can be extended to compute the inversion of

a matrix A satisfying AA−1 = U, where U is the unit matrix. The ith
column of A−1 can be measured as the output voltage when the ith
column of U is applied as an input, thus realizing matrix inversion
in N steps. Fig. 1E shows the measured elements of A−1 compared
with the analytically solved inverse-matrix elements, and the rel-
ative errors are calculated in SI Appendix, Fig. S5. Fig. 1E (Inset)
shows that the experimental product AA−1 well approximates U,
which further supports the computed matrix inversion.
The circuit of Fig. 1A is essentially a matrix-inversion opera-

tor, which can be utilized to solve linear systems and matrix in-
versions, while a cross-point array without feedback is a matrix
operator, which can be naturally used to perform MVM. Since
the matrix-inversion circuit is a negative feedback system, the
stability of the output voltage requires that the loop gain (Gloop)
of every feedback loop is negative (27). The analysis reveals that
the condition Gloop < 0 is satisfied when the signs of the diagonal
elements of A−1 are all positive (SI Appendix, Fig. S6). Following
this guideline, a system of linear equations and the inversion of a
5 × 5 matrix have been solved, with the matrix implemented in a
cross-point array of discrete resistors. The small relative error
around few percent in this ideal case with discrete resistors evi-
dences that a high accuracy might be achieved with accurate and
linear resistive memory devices (SI Appendix, Fig. S7).

Solving a Linear System with Positive and Negative Coefficients.
Since conductance can only be positive in a resistive element,
the scheme of Fig. 1 can only solve linear systems with a positive

A B

C D E

Fig. 1. Solving systems of linear equations with a cross-point array of re-
sistive devices. (A) Cross-point circuit for solving a linear system or inverting a
positive matrix. RRAM elements (red cylinders) are located at the cross-point
positions between rows (blue bars) and columns (green bars). (Inset, Right)
Experimental conductance values mapping the elements of matrix A. The
transformation units between the real-valued matrices/vectors and the
physical implementations were G0 = 100 μS, V0 = 1 V, and I0 = 100 μA for
RRAM conductance, input/output voltage, and output/input current, re-
spectively. The other cases also follow this convention if not specified. (B)
Circuits to calculate a scalar product I = G·V by Ohm’s law, and to calculate a
scalar division V = −I/G by a TIA. (C) Measured solution to a linear system
with an input current vector I = [0.2; 1; 1]I0. The experimental output volt-
ages give a solution very close to the analytical one. (D) Measured solution
to the linear systems, namely output voltages, as functions of parameter β
controlling the input current given by I = β·[0.2; 1; 1]I0 with −1 ≤ β ≤ 1. The
experimental solutions (color circles) are compared with analytical solutions
(color lines) of the system, supporting the accuracy of the physical calcula-
tion. (E) Experimental matrix inverse A−1, namely measured output voltages
in three subsequent experiments with input current I = [1; 0; 0]I0, [0; 1; 0]I0,
and [0; 0; 1]I0, respectively. The analytical solution is also shown. (Inset)
Matrix product AA−1 is very close to the unit matrix U, thus supporting the
experimental inversion.

4124 | www.pnas.org/cgi/doi/10.1073/pnas.1815682116 Sun et al.
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