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One possibility we explore is the case in which 
the oscillatory trend of the retinal cell does not con-
tain information about the visual stimulus. Even 
in this situation, the oscillations might increase the 
amount of information about local retinal features 
transmitted by the thalamic rate code. They would 
do so by a process akin to amplitude modulation, 
in which information about the retinal feature is 
reproduced in the frequency band of the oscilla-
tions. This redundant information could be read 
out and decoded in the cortex by various mecha-
nisms, such as coincidence detection of afferent 
inputs or by the relative phase of the thalamic and 
cortical oscillations. A specific role for the second 
channel could be de-noising. Further, the amplitude 
modulation of the afferent spike train generates a 
signal that might enable cortical oscillations (e.g., 

relay cells that received periodic synaptic inputs 
transmitted a significant amount of information 
in the gamma frequency band. For some cells, the 
amount of information in the oscillation-based 
(high frequency) channel was severalfold higher 
than that conveyed by rate-coded (low frequency) 
channel; compare Figure 4C with Figure 4D.

POTENTIAL NEW ROLES FOR OSCILLATIONS
Gamma oscillations in retina and thalamus pro-
vide a novel channel that is able to convey infor-
mation to the cortex. How might this channel 
contribute to visual function? In the following 
we outline various hypotheses about the potential 
roles for the new channel and how they might 
be tested.

Koepsell et al.

Figure 4 | Multiplexed information in the visual system. (A) Event times 
aligned to stimulus onset displayed as averaged spike rate (red curve)  
and rasters for spikes (red), and EPSPs (blue) for 20 trials of a movie clip; spike 
rasters were smoothed with a Gaussian window (S = 2 ms) before averaging. 
(B) Responses corrected for variation in latency o10 ms by using periodicity  
in the ongoing activity that preceded stimulus onset; conventions as in (A).  
(C) Top, power spectrum of thalamic spike trains decomposed into signal 
(solid line) and noise (dashed line). Bottom, spectral information rate. The area 

under the curve corresponds to a total information rate of 12.7 bit/s; the mean 
spike rate 29 spikes/s yields a value of 0.4 bit/spike. (D) Power spectrum  
(top) of de-jittered spike train decomposed into signal (solid line) and noise 
(dashed line); spectral information rate (bottom). De-jittering increased the 
total information from 0.4 bit/spike (C) to 1.2 bit/spike (Koepsell et al., 2009). 
The movie stimulus was presented with 30 frames/s on a monitor with 
a high refresh rate (150 Hz). The neural response did not lock to the frame 
update or monitor refresh.

Retinal oscillations carry information to cortex
(Koepsell, Wang, Hirsch & Sommer 2009)



The Hippocampal Theta Rhythm 
(Agarwal, Sommer & Buzsaki 2013)
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Coupled oscillator models

https://www.youtube.com/watch?v=Aaxw4zbULMs


Kuramoto model
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Oscillation-based Ising machines for solving 
combinatorial optimization problems

(Wang & Roychowdhury 2019)
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first-time working hardware, very low power operation, seamless integration with
control and I/O logic, easy programmability via standard interfaces like USB,
and low cost mass production. CMOS implementations of our scheme also allow
complete flexibility in introducing controlled noise and programming SYNC
ramping schedules. Furthermore, implementing oscillator coupling by physical
connectivity makes our scheme inherently parallel, unlike CIM, where coupling
is implemented via FPGA-based digital computation and is inherently serial.
The advantages of CMOS also apply, of course, to hardware simulated anneal-
ing engines [9,23–25], but our scheme has additional attractive features. One
key advantage relates to variability, a significant problem in nanoscale CMOS.
For oscillator networks, device- and circuit-level variability impacts the system
by causing a spread in the natural frequencies of the oscillators. Unlike other
schemes, where performance deteriorates due to variability [9], we can essen-
tially eliminate variability by means of simple VCO-based calibration to bring
all the oscillators to the same frequency.1 Another key potential advantage stems
from the continuous/analog nature of our scheme (as opposed to purely digi-
tal simulated annealing schemes). Computational experiments indicate that the
time our scheme takes to find good solutions of the Ising problem grows only
very slowly with respect to the number of spins. This is a significant potential
advantage over simulated annealing schemes [23] as hardware sizes scale up to
large numbers of spins. Note that we can use virtually any type of nonlinear
oscillator (not just CMOS) to implement our scheme, including optical, MEMS,
biochemical, spin-based, etc., oscillators; however, CMOS seems the easiest and
most advantageous implementation route given the current state of technology.

In the remainder of this paper, we first provide a brief summary of the
Ising problem and existing Ising machine schemes in Sect. 2. We then present
our oscillator-based Ising machine scheme (dubbed OIM, for Oscillator Ising
Machine) in Sect. 3, explaining the theory that enables it to work. Then in Sect. 4,
we present both computational and hardware examples showing the effectiveness
of our scheme for solving several combinatorial optimisation problems.

2 The Ising Problem and Existing Ising Machine
Approaches

The Ising model is named after the German physicist Ernest Ising. It was first
studied in the 1920s as a mathematical model for explaining domain formation
in ferromagnets [1]. It comprises a group of discrete variables {si}, aka spins,
each taking a binary value ±1, such that an associated “energy function”, known
as the Ising Hamiltonian, is minimised:

min H ! −
∑

1≤i<j≤n

Jijsisj −
n∑

i=1

hisi, such that si ∈ {−1, + 1}, (1)

where n is the number of spins; {Jij} and {hi} are real coefficients.
1 Moreover, as we show in Sect. 3.4, our scheme is inherently resistant to variability
even without such calibration.
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3 Oscillator-Based Ising Machines

In this section, we show that a network of coupled self-sustaining oscillators can
function as an Ising machine. To do so, we first study the response of a single
oscillator under injection locking in Sect. 3.1. Specifically, we examine the way
the oscillator’s phase locks to that of the external input. While regular injection
locking typically aligns the oscillator’s phase with the input, as illustrated in
Fig. 1(a) and (b), its variant—subharmonic injection locking (SHIL)—can make
the oscillator develop multiple stable phase-locked states (Fig. 1(c) and (d)). As
we show in Sect. 3.1, these phenomena can be predicted accurately using the
Gen-Adler model [16].

Fig. 1. Illustration of the basic mechanism of oscillator-based Ising machines: (a) oscil-
lator shifts its natural frequency from f0 to f1 under external perturbation; (b) oscilla-
tor’s phase becomes stably locked to the perturbation; (c) when the perturbation is at
2f1, the oscillator locks to its subharmonic at f1; (d) bistable phase locks under subhar-
monic injection locking; (e) coupled subharmonically injection-locked oscillators settle
with binary phases representing an optimal spin configuration for an Ising problem.

The Gen-Adler equation of a single oscillator, when extended to the phase
dynamics of coupled oscillator networks, becomes equivalent to a variant of the
Kuramoto model. In Sect. 3.2, we show that the model’s dynamics are governed
by a global Lyapunov function, a scalar “energy like” quantity that is natu-
rally minimised by the coupled oscillator network. Then in Sect. 3.3, we intro-
duce SHIL into the system to binarise the phases of oscillators. As illustrated
in Fig. 1(e), SHIL induces each oscillator to settle to one of two stable phase-
locked states. Due to the coupling between them, a network of such binarised
oscillators will prefer certain phase configurations over others. We confirm this
intuition in Sect. 3.3 by deriving a new Lyapunov function that such a system
(i.e., with SHIL) minimises. By examining this function’s equivalence to the
Ising Hamiltonian, we show that such a coupled oscillator network under SHIL
indeed physically implements an Ising machine. Finally, in Sect. 3.4, we consider
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3.3 Network of Coupled Oscillators Under SHIL and Its Global
Lyapunov Function

In our scheme, a common SYNC signal at 2ω∗ is injected to every oscillator in the
network. Through the mechanism of SHIL, the oscillator phases are binarised.
The example shown in Fig. 3(b) confirms that this is indeed the case: under
SHIL, the phases of 20 oscillators connected in the same random graph now
settle very close to discrete points. To write the model for such a system, we
recall from Sect. 3.1 that a 2ω∗ perturbation introduces a π-periodic coupling
term (e.g., sin(2φ)) in the phase dynamics. Therefore, we directly write the
model as follows and show its derivation in [35].

d

dt
φi(t) = −K ·

n∑

j=1, j "=i

Jij · sin(φi(t) − φj(t)) − Ks · sin(2φi(t)), (9)

where Ks represents the strength of coupling from SYNC.
Remarkably, there is a global Lyapunov function for this new type of coupled

oscillator system. It can be written as

E($φ(t)) = −K ·
∑

i,j, i "=j

Jij · cos(φi(t) − φj(t)) − Ks ·
n∑

i=1

cos (2φi(t)) . (10)

Now, we show that E in (10) is indeed a global Lyapunov function. To do so, we
first differentiate E with respect to $φ. We observe that the first component of E
is the sum of (n2 − n) number of cos() terms. Among them, for any given index
k, variable φk appears a total of 2 · (n− 1) times. It appears (n− 1) times as the
subtrahend inside cos(): these (n − 1) terms are Jkl · cos(φk(t) − φl(t)), where
l = 1, · · · , n and l "= k. For the other (n − 1) times, it appears as the minuend
inside cos(): in Jlk · cos(φl(t) − φk(t)), where l = 1, · · · , n, l "= k. So when we
differentiate E with respect to φk, we have

∂E("φ(t))

∂φk(t)
= − K ·

n∑

l=1, l !=k

Jkl
∂

∂φk(t)
[cos(φk(t) − φl(t))] − K ·

n∑

l=1, l !=k

Jlk
∂

∂φk(t)
[cos(φl(t) − φk(t))]

− Ks ·
∂

∂φk(t)
cos(2φk(t)) (11)

=K ·
n∑

l=1, l !=k

Jkl sin(φk(t) − φl(t)) − K ·
n∑

l=1, l !=k

Jlk sin(φl(t) − φk(t)) + Ks · 2 · sin(2φk(t))

(12)

=K ·
n∑

l=1, l !=k

Jkl · 2 · sin(φk(t) − φl(t)) + Ks · 2 · sin(2φk(t)) (13)

(using sin(x) = − sin(−x) and Jlk = Jkl)

= − 2 ·
dφk(t)

dt
. (14)
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Lyapunov function and dynamics
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Fig. 8. A simple oscillator-based Ising machine solving size-8 cubic graph MAX-CUT
problems: (a) breadboard implementation with 8 CMOS LC oscillators; (b) illustration
of the connections; (c) oscilloscope measurements showing waveforms of oscillator 1∼4.

inverters from TI SN74HC04N chips. SYNC is supplied through the GND pins
of these chips. The results have been observed using two four-channel oscillo-
scopes; a screenshot of one of them is shown in Fig. 8. Through experiments
with various sets of edge weights, we have validated that this is indeed a proof-
of-concept hardware implementation of oscillator-based Ising machines for size-8
cubic-graph MAX-CUT problems.

Fig. 9. A size-32 oscillator-based Ising machine: (a) photo of the implementation on
perfboards; (b) illustration of the connectivity; (c) a typical histogram of the energy
values achieved in 200 runs on a random size-32 Ising problem; the lowest energy level
is -88 and is achieved once in this case.

Using the same type of oscillators, we have built hardware Ising machines of
larger sizes. Figure 9 shows a size-32 example implementing a type of connectivity
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Using the same type of oscillators, we have built hardware Ising machines of
larger sizes. Figure 9 shows a size-32 example implementing a type of connectivity

Implementation
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Neighbourhood Search with Path Relinking (VNSPR) [13].7 We also list the
performances of simulated annealing from a recent study [42], the only one we
were able to find that contains results for all the G-set problems.

From Table 1, we observe that our oscillator-based Ising machine is indeed
effective—it finds best-known cut values for 38 out of the 54 problems, 17 of
which are even better than those reported in the above literature. Moreover,
in the 200 random instances, the best cut is often reached more than once—
the average nmax for all benchmarks is 20 out of 200. If we relax the objective
and look at the number of instances where 99.9% of the cut value is reached,
represented by n0.999, the average is 56, more than a quarter of the total trials.
The results can in fact be improved further if we tailor the annealing schedule
for each problem. But to show the effectiveness and generality of our scheme, we
have chosen to use the same annealing schedule for all the problems.

In the annealing schedule we used, the coupling strength K increases linearly,
the noise level Kn steps up from 0 to 1, while SYNC’s amplitude Ks ramps up
and down multiple times. Such a schedule was chosen empirically and appears to
work well for most G-set problems. Figure 10 shows the behaviour of oscillator
phases and the instantaneous cut values under this schedule for solving bench-
mark problem G1 to its best-known cut size. Some MATLAB R©code to illustrate
the annealing schedule is shown in [35]. The code uses MATLAB R©’s SDE solver
and is thus much slower than an implementation in C++ we used to generate
the results in Table 1. We plan to release all our code as open-source software so
that others can verify and build on our work.

Fig. 10. Coupled oscillators solving MAX-CUT benchmark problem G1 [43] to its
best-known cut size 11624.

The fact that we were using a fixed schedule also indicates that the actual
hardware time for the Ising machine to solve all these benchmarks is the same,
regardless of problem size and connectivity. Note that in Fig. 10, the end time
20 means 20 oscillation cycles, but this end time is predicated on a coupling

7 Their results and runtime are available for download at http://www.optsicom.es/
maxcut in the “Computational Experiences” section.
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Fig. 13. Coupled oscillators colouring the states in the US map: (a) phases of oscillators
evolve over time; (b) energy function (25) decreases during the process; (c) the resulting
US map colouring scheme.

5 Conclusion

In this paper, we have proposed a novel scheme for implementing Ising machines
using self-sustaining nonlinear oscillators. We have shown how coupled oscillators
naturally minimise an “energy” represented by their global Lyapunov function,
and how introducing the mechanism of subharmonic injection locking modifies
this function to encode the Ising Hamiltonian for minimisation. The validity and
feasibility of the scheme have been examined via multiple levels of simulation
and proof-of-concept hardware implementations. Simulations run on larger-scale
benchmark problems have also shown promising results in both speed and the
quality of solutions. We believe that our scheme constitutes an important and
practical means for the implementation of scalable Ising machines.

Acknowledgements. The authors would like to thank the reviewers for the useful
comments and in particular anonymous reviewer No. 2 for pointing us to Ercsey-
Ravasz/Toroczkai and Yin’s work on designing dynamical systems to solve NP-
complete problems.
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Threshold phasor associative memory (TPAM)
(Frady & Sommer 2019)
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zi = |zi|ej�i

ui(t)=
X

j

Wij zj (t). [2]

The neural update is parallel, and the transfer function is a pha-
sor projection, with the complex value of each neuron set to unit
magnitude and preserving the phase angle of u(t): zi(t +1)=
ui(t)/|ui(t)|.

In contrast to the described phasor memory network, the
TPAM network is designed for storing patterns in which only
a sparse fraction of components phot =K/N have unit magni-
tude, and the rest have zero amplitude—i.e., are inactive—with
K the number of neurons active in a single pattern and N the
total number of neurons. TPAM uses the same learning rule [1]
and postsynaptic summation [2] as the original phasor network,
but differs in the neural-transfer function. The neural-transfer
function includes a threshold operation on the amplitude of the
synaptic sum [2]:

zi(t +1)= g(ui(t),⇥(t)) :=
ui(t)
|ui(t)|

H (|ui(t)|�⇥(t)), [3]

with H (x ) the Heaviside function. If the threshold ⇥(t) is met,
the output preserves the phase of the sum vector and normalizes
the amplitude. Otherwise, the output is zero.

To maintain a given level of network activation, the threshold
setting needs to be controlled as a function of the global net-
work activity (55). Here, we set the threshold proportional to the
overall activity:

⇥(t)= ✓
X

i

|zi(t)|= ✓|z(t)|, [4]

with ✓ a scalar between 0 and 1, typically slightly less than 1.
The memory recall in TPAM with N =400 neurons is demon-

strated in Fig. 2. The network has stored M =100 sparse random
phasor patterns with phot =10% and phase values drawn inde-
pendently from a uniform distribution. The iterative recall is
initialized by a partial memory pattern—with some nonzero com-
ponents set to zero (Fig. 2, Upper) and with a superposition of
several stored patterns (Fig. 2, Lower). In both cases, the network
dynamics relaxes to one of the stored memories (approximately).
Energy Function of TPAM Networks. For traditional phasor mem-
ory networks (without threshold), Noest (24) showed that the
corresponding Lyapunov function is

E(z)=�1
2

X

ij

Wij ziz
⇤
j . [5]

Note that, because [1] results in a Hermitian matrix W, [5] is
a real-valued function. Further note that the dynamics in pha-
sor networks is a generalization of phase-coupled systems well
studied in physics, such as the Kuramoto model (56) and the
XY model (57), and for describing coherent activity in neural
networks (58–60). Those models are governed by a Lyapunov
function of the form [5], but in which W is real-valued and
symmetric (61).

To see how the inclusion of the threshold operation in the
TPAM update [3] changes the Lyapunov function, we follow the
treatment in ref. 1 by extending [5] to describe the dynamics of
phasor networks with arbitrary invertible transfer function f (z ):

E(z)=�1
2

X

ij

Wij ziz
⇤
j +

X

i

Z |zi |

0

f
�1(v)dv . [6]

The neural-transfer function of TPAM, g(z ;⇥) in [3], is not
invertible. But it can be approximated by a smooth, invertible
function by replacing the Heaviside function in [3] with an invert-
ible function f (z )—for example, the logistic function. In the

Fig. 2. Memory recall in a TPAM network. Results of 2 retrieval exper-
iments, 1 initialized by a partial memory pattern (Upper) and 1 by a
superposition of 3 memory patterns (Lower), are shown. Both recalls were
successful, as indicated by the similarity between “converged” and “target”
patterns (phase values are color coded; black corresponds to zero ampli-
tude). Images on the right show that it takes only a few iteration steps until
only the overlap with the target memory is high (blue lines).

limit of making the approximation tight—i.e., f (z )⇡ g(z ;⇥)—
the corresponding update is given by [3]. For a constant global
threshold ⇥=⇥(t), the Lyapunov function [6] of TPAM is:

E(z)=�1
2

X

ij

Wij ziz
⇤
j +⇥kzk1, [7]

with kzk1 the L1 norm of the vector, the sum of its compo-
nents’ amplitudes. According to Eq. 7, a positive constant global
threshold [3] has the effect of adding a L1 constraint term, which
encourages a lower activity in the network.

For the dynamic threshold control [4], the Lyapunov function
for TPAM becomes

E(z)=
X

ij

✓
�1
2
Wij + ✓I

◆
ziz

⇤
j , [8]

with I the identity matrix. According to Eq. 8, a positive coeffi-
cient ✓ in the dynamic threshold control, [3] and [4], adds a repul-
sive self-interaction between active phasors, thereby reducing the
activity in the network.

The derived Lyapunov functions help to clarify the differ-
ence between constant and linear threshold control. Consider
the case of low memory load. With constant threshold, not only
are the individual stored patterns stable fixed points, but also
their superpositions will be stable. In contrast, dynamic threshold
control introduces competition between active stored memory
patterns. The coefficient ✓ can be tuned so that only individual
patterns are stable (as done here). When lowered, superposi-
tions of 2 (or more) patterns can become stable, but competition
still only allows a limited number of active superpositions. This
may be useful behavior for applications outside the scope of this
paper.
Information Capacity of TPAM Networks. To understand the
function of TPAM, the impact of its different features on mem-
ory performance was studied through simulation experiments.
After storing M random patterns, we initialized the network to
one of the stored patterns with a small amount of noise. The net-
work ran until convergence or for a maximum of 500 iterations.
To assess the quality of memory recall, we then compared the
network state with the errorless stored pattern.

Fig. 3A displays on the y axes “cosine similarity” (i.e., correla-
tion) between the output of the memory and the desired target
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The neural update is parallel, and the transfer function is a pha-
sor projection, with the complex value of each neuron set to unit
magnitude and preserving the phase angle of u(t): zi(t +1)=
ui(t)/|ui(t)|.

In contrast to the described phasor memory network, the
TPAM network is designed for storing patterns in which only
a sparse fraction of components phot =K/N have unit magni-
tude, and the rest have zero amplitude—i.e., are inactive—with
K the number of neurons active in a single pattern and N the
total number of neurons. TPAM uses the same learning rule [1]
and postsynaptic summation [2] as the original phasor network,
but differs in the neural-transfer function. The neural-transfer
function includes a threshold operation on the amplitude of the
synaptic sum [2]:

zi(t +1)= g(ui(t),⇥(t)) :=
ui(t)
|ui(t)|

H (|ui(t)|�⇥(t)), [3]

with H (x ) the Heaviside function. If the threshold ⇥(t) is met,
the output preserves the phase of the sum vector and normalizes
the amplitude. Otherwise, the output is zero.

To maintain a given level of network activation, the threshold
setting needs to be controlled as a function of the global net-
work activity (55). Here, we set the threshold proportional to the
overall activity:

⇥(t)= ✓
X

i

|zi(t)|= ✓|z(t)|, [4]

with ✓ a scalar between 0 and 1, typically slightly less than 1.
The memory recall in TPAM with N =400 neurons is demon-

strated in Fig. 2. The network has stored M =100 sparse random
phasor patterns with phot =10% and phase values drawn inde-
pendently from a uniform distribution. The iterative recall is
initialized by a partial memory pattern—with some nonzero com-
ponents set to zero (Fig. 2, Upper) and with a superposition of
several stored patterns (Fig. 2, Lower). In both cases, the network
dynamics relaxes to one of the stored memories (approximately).
Energy Function of TPAM Networks. For traditional phasor mem-
ory networks (without threshold), Noest (24) showed that the
corresponding Lyapunov function is

E(z)=�1
2

X

ij

Wij ziz
⇤
j . [5]

Note that, because [1] results in a Hermitian matrix W, [5] is
a real-valued function. Further note that the dynamics in pha-
sor networks is a generalization of phase-coupled systems well
studied in physics, such as the Kuramoto model (56) and the
XY model (57), and for describing coherent activity in neural
networks (58–60). Those models are governed by a Lyapunov
function of the form [5], but in which W is real-valued and
symmetric (61).

To see how the inclusion of the threshold operation in the
TPAM update [3] changes the Lyapunov function, we follow the
treatment in ref. 1 by extending [5] to describe the dynamics of
phasor networks with arbitrary invertible transfer function f (z ):

E(z)=�1
2

X

ij

Wij ziz
⇤
j +

X

i

Z |zi |

0

f
�1(v)dv . [6]

The neural-transfer function of TPAM, g(z ;⇥) in [3], is not
invertible. But it can be approximated by a smooth, invertible
function by replacing the Heaviside function in [3] with an invert-
ible function f (z )—for example, the logistic function. In the

Fig. 2. Memory recall in a TPAM network. Results of 2 retrieval exper-
iments, 1 initialized by a partial memory pattern (Upper) and 1 by a
superposition of 3 memory patterns (Lower), are shown. Both recalls were
successful, as indicated by the similarity between “converged” and “target”
patterns (phase values are color coded; black corresponds to zero ampli-
tude). Images on the right show that it takes only a few iteration steps until
only the overlap with the target memory is high (blue lines).

limit of making the approximation tight—i.e., f (z )⇡ g(z ;⇥)—
the corresponding update is given by [3]. For a constant global
threshold ⇥=⇥(t), the Lyapunov function [6] of TPAM is:

E(z)=�1
2

X

ij

Wij ziz
⇤
j +⇥kzk1, [7]

with kzk1 the L1 norm of the vector, the sum of its compo-
nents’ amplitudes. According to Eq. 7, a positive constant global
threshold [3] has the effect of adding a L1 constraint term, which
encourages a lower activity in the network.

For the dynamic threshold control [4], the Lyapunov function
for TPAM becomes

E(z)=
X

ij

✓
�1
2
Wij + ✓I

◆
ziz

⇤
j , [8]

with I the identity matrix. According to Eq. 8, a positive coeffi-
cient ✓ in the dynamic threshold control, [3] and [4], adds a repul-
sive self-interaction between active phasors, thereby reducing the
activity in the network.

The derived Lyapunov functions help to clarify the differ-
ence between constant and linear threshold control. Consider
the case of low memory load. With constant threshold, not only
are the individual stored patterns stable fixed points, but also
their superpositions will be stable. In contrast, dynamic threshold
control introduces competition between active stored memory
patterns. The coefficient ✓ can be tuned so that only individual
patterns are stable (as done here). When lowered, superposi-
tions of 2 (or more) patterns can become stable, but competition
still only allows a limited number of active superpositions. This
may be useful behavior for applications outside the scope of this
paper.
Information Capacity of TPAM Networks. To understand the
function of TPAM, the impact of its different features on mem-
ory performance was studied through simulation experiments.
After storing M random patterns, we initialized the network to
one of the stored patterns with a small amount of noise. The net-
work ran until convergence or for a maximum of 500 iterations.
To assess the quality of memory recall, we then compared the
network state with the errorless stored pattern.

Fig. 3A displays on the y axes “cosine similarity” (i.e., correla-
tion) between the output of the memory and the desired target
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The neural update is parallel, and the transfer function is a pha-
sor projection, with the complex value of each neuron set to unit
magnitude and preserving the phase angle of u(t): zi(t +1)=
ui(t)/|ui(t)|.

In contrast to the described phasor memory network, the
TPAM network is designed for storing patterns in which only
a sparse fraction of components phot =K/N have unit magni-
tude, and the rest have zero amplitude—i.e., are inactive—with
K the number of neurons active in a single pattern and N the
total number of neurons. TPAM uses the same learning rule [1]
and postsynaptic summation [2] as the original phasor network,
but differs in the neural-transfer function. The neural-transfer
function includes a threshold operation on the amplitude of the
synaptic sum [2]:

zi(t +1)= g(ui(t),⇥(t)) :=
ui(t)
|ui(t)|

H (|ui(t)|�⇥(t)), [3]

with H (x ) the Heaviside function. If the threshold ⇥(t) is met,
the output preserves the phase of the sum vector and normalizes
the amplitude. Otherwise, the output is zero.

To maintain a given level of network activation, the threshold
setting needs to be controlled as a function of the global net-
work activity (55). Here, we set the threshold proportional to the
overall activity:

⇥(t)= ✓
X

i

|zi(t)|= ✓|z(t)|, [4]

with ✓ a scalar between 0 and 1, typically slightly less than 1.
The memory recall in TPAM with N =400 neurons is demon-

strated in Fig. 2. The network has stored M =100 sparse random
phasor patterns with phot =10% and phase values drawn inde-
pendently from a uniform distribution. The iterative recall is
initialized by a partial memory pattern—with some nonzero com-
ponents set to zero (Fig. 2, Upper) and with a superposition of
several stored patterns (Fig. 2, Lower). In both cases, the network
dynamics relaxes to one of the stored memories (approximately).
Energy Function of TPAM Networks. For traditional phasor mem-
ory networks (without threshold), Noest (24) showed that the
corresponding Lyapunov function is

E(z)=�1
2

X

ij

Wij ziz
⇤
j . [5]

Note that, because [1] results in a Hermitian matrix W, [5] is
a real-valued function. Further note that the dynamics in pha-
sor networks is a generalization of phase-coupled systems well
studied in physics, such as the Kuramoto model (56) and the
XY model (57), and for describing coherent activity in neural
networks (58–60). Those models are governed by a Lyapunov
function of the form [5], but in which W is real-valued and
symmetric (61).

To see how the inclusion of the threshold operation in the
TPAM update [3] changes the Lyapunov function, we follow the
treatment in ref. 1 by extending [5] to describe the dynamics of
phasor networks with arbitrary invertible transfer function f (z ):

E(z)=�1
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Wij ziz
⇤
j +
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Z |zi |
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f
�1(v)dv . [6]

The neural-transfer function of TPAM, g(z ;⇥) in [3], is not
invertible. But it can be approximated by a smooth, invertible
function by replacing the Heaviside function in [3] with an invert-
ible function f (z )—for example, the logistic function. In the

Fig. 2. Memory recall in a TPAM network. Results of 2 retrieval exper-
iments, 1 initialized by a partial memory pattern (Upper) and 1 by a
superposition of 3 memory patterns (Lower), are shown. Both recalls were
successful, as indicated by the similarity between “converged” and “target”
patterns (phase values are color coded; black corresponds to zero ampli-
tude). Images on the right show that it takes only a few iteration steps until
only the overlap with the target memory is high (blue lines).

limit of making the approximation tight—i.e., f (z )⇡ g(z ;⇥)—
the corresponding update is given by [3]. For a constant global
threshold ⇥=⇥(t), the Lyapunov function [6] of TPAM is:

E(z)=�1
2

X

ij

Wij ziz
⇤
j +⇥kzk1, [7]

with kzk1 the L1 norm of the vector, the sum of its compo-
nents’ amplitudes. According to Eq. 7, a positive constant global
threshold [3] has the effect of adding a L1 constraint term, which
encourages a lower activity in the network.

For the dynamic threshold control [4], the Lyapunov function
for TPAM becomes

E(z)=
X

ij

✓
�1
2
Wij + ✓I

◆
ziz

⇤
j , [8]

with I the identity matrix. According to Eq. 8, a positive coeffi-
cient ✓ in the dynamic threshold control, [3] and [4], adds a repul-
sive self-interaction between active phasors, thereby reducing the
activity in the network.

The derived Lyapunov functions help to clarify the differ-
ence between constant and linear threshold control. Consider
the case of low memory load. With constant threshold, not only
are the individual stored patterns stable fixed points, but also
their superpositions will be stable. In contrast, dynamic threshold
control introduces competition between active stored memory
patterns. The coefficient ✓ can be tuned so that only individual
patterns are stable (as done here). When lowered, superposi-
tions of 2 (or more) patterns can become stable, but competition
still only allows a limited number of active superpositions. This
may be useful behavior for applications outside the scope of this
paper.
Information Capacity of TPAM Networks. To understand the
function of TPAM, the impact of its different features on mem-
ory performance was studied through simulation experiments.
After storing M random patterns, we initialized the network to
one of the stored patterns with a small amount of noise. The net-
work ran until convergence or for a maximum of 500 iterations.
To assess the quality of memory recall, we then compared the
network state with the errorless stored pattern.

Fig. 3A displays on the y axes “cosine similarity” (i.e., correla-
tion) between the output of the memory and the desired target
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The neural update is parallel, and the transfer function is a pha-
sor projection, with the complex value of each neuron set to unit
magnitude and preserving the phase angle of u(t): zi(t +1)=
ui(t)/|ui(t)|.

In contrast to the described phasor memory network, the
TPAM network is designed for storing patterns in which only
a sparse fraction of components phot =K/N have unit magni-
tude, and the rest have zero amplitude—i.e., are inactive—with
K the number of neurons active in a single pattern and N the
total number of neurons. TPAM uses the same learning rule [1]
and postsynaptic summation [2] as the original phasor network,
but differs in the neural-transfer function. The neural-transfer
function includes a threshold operation on the amplitude of the
synaptic sum [2]:

zi(t +1)= g(ui(t),⇥(t)) :=
ui(t)
|ui(t)|

H (|ui(t)|�⇥(t)), [3]

with H (x ) the Heaviside function. If the threshold ⇥(t) is met,
the output preserves the phase of the sum vector and normalizes
the amplitude. Otherwise, the output is zero.

To maintain a given level of network activation, the threshold
setting needs to be controlled as a function of the global net-
work activity (55). Here, we set the threshold proportional to the
overall activity:

⇥(t)= ✓
X

i

|zi(t)|= ✓|z(t)|, [4]

with ✓ a scalar between 0 and 1, typically slightly less than 1.
The memory recall in TPAM with N =400 neurons is demon-

strated in Fig. 2. The network has stored M =100 sparse random
phasor patterns with phot =10% and phase values drawn inde-
pendently from a uniform distribution. The iterative recall is
initialized by a partial memory pattern—with some nonzero com-
ponents set to zero (Fig. 2, Upper) and with a superposition of
several stored patterns (Fig. 2, Lower). In both cases, the network
dynamics relaxes to one of the stored memories (approximately).
Energy Function of TPAM Networks. For traditional phasor mem-
ory networks (without threshold), Noest (24) showed that the
corresponding Lyapunov function is

E(z)=�1
2
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Wij ziz
⇤
j . [5]

Note that, because [1] results in a Hermitian matrix W, [5] is
a real-valued function. Further note that the dynamics in pha-
sor networks is a generalization of phase-coupled systems well
studied in physics, such as the Kuramoto model (56) and the
XY model (57), and for describing coherent activity in neural
networks (58–60). Those models are governed by a Lyapunov
function of the form [5], but in which W is real-valued and
symmetric (61).

To see how the inclusion of the threshold operation in the
TPAM update [3] changes the Lyapunov function, we follow the
treatment in ref. 1 by extending [5] to describe the dynamics of
phasor networks with arbitrary invertible transfer function f (z ):

E(z)=�1
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⇤
j +
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The neural-transfer function of TPAM, g(z ;⇥) in [3], is not
invertible. But it can be approximated by a smooth, invertible
function by replacing the Heaviside function in [3] with an invert-
ible function f (z )—for example, the logistic function. In the

Fig. 2. Memory recall in a TPAM network. Results of 2 retrieval exper-
iments, 1 initialized by a partial memory pattern (Upper) and 1 by a
superposition of 3 memory patterns (Lower), are shown. Both recalls were
successful, as indicated by the similarity between “converged” and “target”
patterns (phase values are color coded; black corresponds to zero ampli-
tude). Images on the right show that it takes only a few iteration steps until
only the overlap with the target memory is high (blue lines).

limit of making the approximation tight—i.e., f (z )⇡ g(z ;⇥)—
the corresponding update is given by [3]. For a constant global
threshold ⇥=⇥(t), the Lyapunov function [6] of TPAM is:

E(z)=�1
2
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ij

Wij ziz
⇤
j +⇥kzk1, [7]

with kzk1 the L1 norm of the vector, the sum of its compo-
nents’ amplitudes. According to Eq. 7, a positive constant global
threshold [3] has the effect of adding a L1 constraint term, which
encourages a lower activity in the network.

For the dynamic threshold control [4], the Lyapunov function
for TPAM becomes

E(z)=
X

ij

✓
�1
2
Wij + ✓I

◆
ziz

⇤
j , [8]

with I the identity matrix. According to Eq. 8, a positive coeffi-
cient ✓ in the dynamic threshold control, [3] and [4], adds a repul-
sive self-interaction between active phasors, thereby reducing the
activity in the network.

The derived Lyapunov functions help to clarify the differ-
ence between constant and linear threshold control. Consider
the case of low memory load. With constant threshold, not only
are the individual stored patterns stable fixed points, but also
their superpositions will be stable. In contrast, dynamic threshold
control introduces competition between active stored memory
patterns. The coefficient ✓ can be tuned so that only individual
patterns are stable (as done here). When lowered, superposi-
tions of 2 (or more) patterns can become stable, but competition
still only allows a limited number of active superpositions. This
may be useful behavior for applications outside the scope of this
paper.
Information Capacity of TPAM Networks. To understand the
function of TPAM, the impact of its different features on mem-
ory performance was studied through simulation experiments.
After storing M random patterns, we initialized the network to
one of the stored patterns with a small amount of noise. The net-
work ran until convergence or for a maximum of 500 iterations.
To assess the quality of memory recall, we then compared the
network state with the errorless stored pattern.

Fig. 3A displays on the y axes “cosine similarity” (i.e., correla-
tion) between the output of the memory and the desired target
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real-valued output patterns, the output neural-transfer function
projects each component to the real part.

In SDM and heteroassociative memories in general, if the
indexing or cue patterns are noisy, the quality of the returned
data suffers significantly. To improve the retrieval quality in
these cases, we stored the indexing patterns S in TPAM accord-
ing to [1]. The TPAM performed error correction on the patterns
produced by the indexing stage, and corrected index patterns
were decoded by the heteroassociative memory stage.

Empirical comparisons of image storage and retrieval using
a simple Hebbian heteroassociative memory, an SDM, and the
full network with pattern separation and TPAM for error cor-
rection (Fig. 4B; see SI Appendix for implementation details)
were performed with simulation experiments. The simple
Hebbian model and the SDM were also extended by incor-
porating pattern separation in the indexing stage (solid lines
in Fig. 4B include pattern separation). We stored M =20
image patches of D =12⇥ 12⇥ 3 pixels into the networks
and measured the Pearson correlation ⇢ (“Similarity”) of the
retrieved pattern with the true pattern, given a noisy input
cue. We computed the total information per pixel as I

H =
� 1

2 log2(1� ⇢2) (SI Appendix). The full network returned a
larger amount of information about the stored data than the
simpler models. Errors in retrieved TPAM patterns (Fig. 4C)
were due to spurious local minima, which are usually super-
positions of stored memories. Similarly, errors in SDM were
spurious activations of incorrect patterns, leading to readout
errors also as superpositions of stored memories. Including the
PINV for indexing improves the likelihood of avoiding such
superposition errors.

Relating TPAM Networks to Spiking Neural Networks. Here, we
exploit a natural link between a complex state and a spike
raster through a phase-to-timing mapping. We describe 2 mod-
els with spiking neurons that perform the key computations in
TPAM: complex synaptic multiplication, summation of complex
postsynaptic signals [2], and the neural-transfer function [3].
Phase-to-Timing Mapping. Each component of a complex state
vector in TPAM, zi(t)=: z r

i (t)e
iz�

i
(t), can be uniquely mapped

to a spike pattern in a population of neurons through a phase-to-
timing mapping. Specifically, in the context of a cycle with period
T , the timing of a spike s

(t)
i

on a continuous time axis s repre-
sents the phase angle z

�
i
(t), nominally with s

(t)
i

=T (z�
i
(t)/2⇡+

t). Phasor values with magnitude zero are represented by silence
(Fig. 5). Thus, a fixed-point state in TPAM corresponds to a limit
cycle of precisely timed spiking activity, where neurons fire with
a period of T or are silent.

With this mapping, we can construct spiking neural net-
works evolving in continuous time that perform the operations
of TPAM. The complex multiplication between presynaptic
input and synaptic weight requires the addition of phases. The
phase-to-timing mapping also applies to the complex-valued
synapses, Wij=:W r

ij e
iW�

ij , in which synaptic phase-shift trans-
lates to synaptic delay by ⇣ij =T (W �

ij
/2⇡). The synaptic delay

adds with the spike timing, which computes the complex product.
In TPAM with time-discrete parallel update scheme, a state

z (t) depends exclusively on the previous state z (t � 1). The spik-
ing network, however, evolves in continuous time, and there is
no special demarcation between time steps. To match the time-
discrete update in the spiking network, one could hypothetically
construct appropriate synaptic delays by adding or subtracting
multiples of T based on the demarcation of the zero phase
(Fig. 5). This can be done for 1 pattern, but if a neuron is partici-
pating in more than 1 pattern, then it is not possible to guarantee
that all fixed points perfectly mirror the discrete update. Neu-
rons will potentially have influence within the same time step

Fig. 5. Mapping states and synapses of TPAM to spiking networks. The
complex TPAM state vector can be mapped to a pattern of precisely
timed spikes by using the phase-to-timing mapping. Similarly, the complex
synapses can be mapped to synaptic delays. At any stable fixed point (as
shown), a cycle time T can be subtracted or added to individual synaptic
delays, so that the discrete time dynamics is obeyed. However, this cannot
be guaranteed simultaneously for multiple patterns. Deterministic spiking
above a threshold implements the TPAM transfer function [3].

or 2 time steps later. Importantly, however, at the fixed points
where every spike train is T -periodic, altering the delays by T

does not change the postsynaptic coincidence structure. There-
fore, the continuous time dynamics is similar to the discrete
time dynamics near fixed points, but will, in general, not be
exactly the same.
Complex Algebra with Resonate-and-Fire Neurons. The phase-
to-timing mapping illustrates how complex phases can be trans-
lated to delays and how this can be used to compute complex
multiply. To fully implement a spiking version of TPAM, one
needs to also perform the complex dendritic sum, which requires
more than just coincidence detection (63). In the temporal
domain, addition of complex inputs can be translated into the
addition of sine waves matched to the cycle period. A simple
mechanism that can achieve this uses resonate-and-fire neurons
that have subthreshold dynamics of damped oscillators (64):

Ż i(s)= (�+ i!)Zi(s)+
X

j

X

k

Rij �(s � (s(k)
j

+ ⌘ij )), [10]

with the Cartesian decomposition of the complex state Zi(s)=
Vi(s)+ iUi(s), and where � is an attenuation parameter and
the angular frequency is !=2⇡/T . This neuron model will
bandpass-filter the incoming spike train and enable it to
(approximately) compute the complex summation.

Our model differs in 3 regards from the network studied in
ref. 64: 1) A spike is elicited at time s

(k)
j

if the internal vari-
ables cross 2 thresholds, on the real and imaginary axes: Vi >V✓

and Ui > 0. 2) A refractory period after each spike prevents
more than 1 spike per cycle. 3) The weights R can be complex,
influencing both real and imaginary parts of the neuronal state,
and have delays ⌘ij . The weights formed by the TPAM learn-
ing rule Wij [1] can be set through any combination such that
Wij =Rij e

i2⇡⌘ij /T , in particular, with instantaneous synapses
R=W, ⌘ij =0 or with real-valued synapses: R=Wr , ⌘ij = ⇣ij .

Each presynaptic spike elicits a jump in the internal state
(determined by magnitude and phase of the synapse), kick-
starting the damped oscillation (Fig. 6A). If subsequent jumps
are coherent, they add up to increase the oscillation magnitude.
If they are decoherent, they generate a random walk with-
out systematically increasing the oscillation magnitude. Fig. 6B
demonstrates spiking TPAM (with fixed threshold [4]).
Biophysical Model. Some biological neurons behave as individual
oscillators, as in the model [10]. However, oscillatory mem-
brane voltages and periodic spike trains can also be created
through network effects, such as the interplay between excita-
tory and inhibitory populations (65, 66). We next constructed
a biophysical model with integrate-and-fire neurons (67, 68)
(Fig. 7A) and real-valued synaptic connections which obey Dale’s
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Fig. 7. Biologically plausible TPAM with integrate-and-fire neurons. (A) Direct excitation and indirect inhibition produces a postsynaptic current oscillation.
Inhibition is nonspecific and acts to offset the oscillation. (B and C) The effect of a presynaptic spike raster (row 1) depends on the delay relationships of each
synapse. The resulting postsynaptic currents (row 2) can be rather small (decoherent; B), or quite large (coherent; C) (green, excitation; red, inhibition). If
the current is large and coherent, the neuron will reach threshold and fire a spike. (D) The spiking TPAM was incorporated into a data-indexing network for
images. The network is cued with a spiking pattern that encodes an overlap of 3 stored images (Init). After a short time, the network converges to a stored
attractor state, a sparse spiking pattern that persistently repeats. (E) Evolution of similarities between network state and index patterns of different images.
(F) Retrieved image as a function of time. (G) Retrieval performance of the spiking implementation of TPAM, measured by average similarity between
retrieved and target state as function of stored patterns (black x’s). The performance of the spiking model matches the performance of a similar TPAM
in the complex domain (green lines). The spiking network can store more patterns than the traditional Hopfield network (black) (15) or the dense phasor
network (orange) (24).

settled to one of the stored patterns superposed in the input,
outcompeting the other 2.

The capacity of the spiking network was examined in simu-
lation experiments (Fig. 7G). The spiking network tested was
robust even without careful parameter optimization. Retrieval
performance based on the number of stored patterns (Fig. 7G,
black x’s) easily exceeded the performance of a traditional bipo-
lar Hopfield network (Fig. 7G, black line). The performance
curve of the spiking model was predicted by the performance
curve of the complex TPAM with similar settings. However, the
spiking network did not reach the performance of the optimized
complex TPAM. Some of the approximations in the spiking net-
work added noise, which prevented it from reaching the full
capacity of the ideal complex model. Nonetheless, these exper-
iments show empirically that the spiking model behaves similarly
to the complex TPAM model.

Sequence-Associative Memories and Complex Attractor Networks.
Last, we investigated how complex fixed-point attractor net-
works can help to understand sequence-associative memories:
simple networks with binary threshold neurons and paral-
lel, time-discrete update dynamics for storing sequences of
patterns of fixed length (Background). Consider the storage
of closed sequences or limit cycles of fixed length L: ⇠1 !
⇠2 ! . . .! ⇠L ! ⇠1 ! . . ., with ⇠l 2RN 8l =1, . . . ,L. In the
case of storing multiple sequences, an index is added to label
the different sequences: {⇠µ,l ,µ=1, . . . ,M }. The learning in
these models is also described by a Hebbian outer-product learn-
ing scheme (45). Here, we use a combination of Hebbian and
anti-Hebbian learning to produce a skew-symmetric interaction
matrix:

J=
MX

µ=1

LX

l=1

⇠µ,l
⇣
⇠(µ,l�1) mod L � ⇠(µ,l+1) mod L

⌘
>. [13]

Since the matrix J is skew-symmetric, there is no Lyapunov
function describing the dynamics in the network. However, we
can use the spectral properties of the weights to construct an
equivalent fixed-point attractor network.

Consider [13] for the simple example with L=N =3, M =1
and the stored patterns ⇠ being the cardinal basis vectors of R3.
One of the complex eigenvectors of J is v=

⇣
e
i 2⇡3 , e i 4⇡3 , 1

⌘
>=:

(e i�1 , e i�2 , e i�3)
>, which is the (equidistant) phasor pattern that

represents the entire stored limit cycle in complex space. One can
now form a complex matrix W0 that possesses v as a fixed point—
i.e., has eigenvalue of 1—simply by dividing J by the eigenvalue
associated with v, which is �= i

p
3:

W0 =
1

i
p
3

J=
1

i
p
3

2

4
0 1 �1

�1 0 1
1 �1 0

3

5. [14]

Since the eigenvalues of any skew-symmetric matrix have zero
real part (71), the interaction matrix W0 is always Hermitian in
general. Thus, the described construction is a recipe to translate
sequence memory networks into complex neural networks gov-
erned by a Lyapunov dynamics. In the resulting networks, the
synaptic matrix is W0, the neural nonlinearity is g(ui)= ui/|ui |,
and the Lyapunov function is [5].

One could now suspect that storing the pattern v in a pha-
sor network (24) would result in the same network-interaction
matrix W0. However, this is not the case. The weight matrix
resulting from learning the phase vector v with the conjugate
outer product learning rule [1] is

W= vv⇤> � I=

2

4
0 e

i(�1��2) e
i(�1��3)

e
i(�2��1) 0 e

i(�2��3)

e
i(�3��1) e

i(�3��2) 0

3

5. [15]

The phase vector v is again an eigenvector of W.
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Optimization is a major part of human effort. While being math-

ematical, optimization is also built into physics. For example,

physics has the Principle of Least Action; the Principle of Mini-

mum Power Dissipation, also called Minimum Entropy Generation;

and the Variational Principle. Physics also has Physical Annealing,

which, of course, preceded computational Simulated Annealing.

Physics has the Adiabatic Principle, which, in its quantum form,

is called Quantum Annealing. Thus, physical machines can solve

the mathematical problem of optimization, including constraints.

Binary constraints can be built into the physical optimization.

In that case, the machines are digital in the same sense that a

flip–flop is digital. A wide variety of machines have had recent

success at optimizing the Ising magnetic energy. We demonstrate

in this paper that almost all those machines perform optimiza-

tion according to the Principle of Minimum Power Dissipation as

put forth by Onsager. Further, we show that this optimization

is in fact equivalent to Lagrange multiplier optimization for con-

strained problems. We find that the physical gain coefficients that

drive those systems actually play the role of the corresponding

Lagrange multipliers.

hardware accelerators | physical optimization | Ising solvers

O
ptimization is ubiquitous in today’s world. Everyday appli-
cations of optimization range from aerodynamic design

of vehicles and physical stress optimization of bridges to
airline crew scheduling and delivery truck routing. Further-
more, optimization is also indispensable in machine learning,
reinforcement learning, computer vision, and speech process-
ing. Given the preponderance of massive datasets and com-
putations today, there has been a surge of activity in the
design of hardware accelerators for neural-network training and
inference (1).

We ask whether physics can address optimization? There are
a number of physical principles that drive dynamical systems
toward an extremum. These are the Principle of Least Action;
the Principle of Minimum Power Dissipation (also called Min-
imum Entropy Generation); the Variational Principle; Physical
Annealing, which preceded computational Simulated Annealing;
and the Adiabatic Principle (which, in its quantum form, is called
Quantum Annealing).

In due course, we may learn how to use each of these prin-
ciples to perform optimization. Let us consider the Principle
of Minimum Power Dissipation in dissipative physical systems,
such as resistive electrical circuits. It was shown by Onsager
(2) that the equations of linear systems, like resistor networks,
can be reexpressed as the minimization principle of a power
dissipation function f (i1, i2, . . . , in) for currents in in various
branches of the resistor network. By reexpressing a merit func-
tion in terms of power dissipation, the circuit itself will find
the minimum of the merit function, or minimum power dissi-
pation. Optimization is generally accompanied by constraints.
For example, perhaps the constraint is that the final answers
must be restricted to be ±1. Such a digitally constrained
optimization produces answers compatible with any digital
computer.

A series of physics-based Ising solvers have been created in
the physics and engineering community. The Ising challenge is
to find the minimum energy configuration of a large set of mag-
nets. This is very hard even when the magnets are restricted to
only two orientations, North Pole up or down (3). Our main
insights in this paper are that most of these Ising solvers use
hardware based on the Principle of Minimum Power Dissipation
and that almost all of them implement the well-known Lagrange
multipliers method for constrained optimization.

An early work was by Yamamoto and coworkers in ref. 4, and
this was followed by further work from their group (5–8) and
other groups (9–15). These entropy-generating machines range
from coupled optical parametric oscillators to resistor–inductor–
capacitor electrical circuits, coupled exciton–polaritons, and sil-
icon photonic-coupler arrays. These types of machines have the
advantage that they solve digital problems orders of magnitude
faster, and in a more energy-efficient manner, than conventional
digital chips that are limited by latency and the energy cost (8).

Within the framework of these dissipative machines, con-
straints can be readily included. In effect, these machines per-
form constrained optimization equivalent to the technique of
Lagrange multipliers. We illustrate this connection by survey-
ing seven published physically distinct machines and showing
that each minimizes power dissipation in its own way, sub-
ject to constraints; in fact, they perform Lagrange multiplier
optimization.

In effect, physical machines perform local steepest descent
in the power-dissipation rate. They can become stuck in local
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Fig. 6. Maximization of function f(x, y) subject to the constraint g(x, y) = 0.
At the constrained local optimum, the gradients of f and g, namely rf(x, y)
and rg(x, y), are parallel.

In the Ising problem, there is magnetic coupling between
spins. The corresponding coupling between optical pulses is
achieved by specified interactions between the optical pulses. In
Yamamoto and coworkers’ approach (30), one pulse i is first
plucked out by an optical gate, amplitude modulated by the
proper connection weight specified in the Jij Ising Hamilto-
nian, and then reinjected and superposed onto the other opti-
cal pulse j , producing constructive or destructive interference,
representing ferromagnetic or antiferromagnetic coupling.

By providing saturation to the pulse amplitudes, the opti-
cal pulses will finally settle down, each to one of the two
bistable states. We will find that the pulse-amplitude configu-
ration evolves exactly according to the Principle of Minimum
Power Dissipation. If the magnetic dipole solutions in the Ising
problem are constrained to ±1, then each constraint is associ-
ated with a Lagrange multiplier. Surprisingly, we find that each
Lagrange multiplier turns out to be equal to the gain or loss
associated with the corresponding oscillator.
4.A.2. Lagrange multipliers as gain coefficients. Yamamoto and
coworkers (5) analyze their parametric oscillator system using
slowly varying coupled wave equations for the circulating optical
modes. We now show that the coupled wave equation approach
reduces to an extremum of their system “power dissipation.” The
coupled-wave equation for the slowly varying amplitude ci of the
in-phase electric field cosine component of the i th optical pulse
(representing magnetic spin in an Ising system) is as follows:

dci

dt
=(�↵i + �i)ci �

nX

j=1,j 6=i

Jij cj [4]

where the weights, Jij , are the dissipative coupling rate constants.
(The Jij arise from constructive and destructive interference and
can be positive or negative. Jij ⌘ |Jij |⇥ where =± 1 is
the corresponding weight in the binary Ising problem.) �i repre-
sents the parametric gain (1/sec) supplied to the i th pulse, and
↵i is the corresponding loss (1/sec). We shall henceforth use
normalized, dimensionless ci in the rest of the paper. The nor-
malization electric field is that which produces an energy of 1/2
joule in the normalization volume, while for voltages, the nor-
malization voltage is that which produces an energy of 1/2 joule
in the linear capacitor. For clarity of discussion, we dropped the
cubic terms in Eq. 4 that Yamamoto and coworkers (5) origi-
nally had. A discussion of these terms in given in SI Appendix,
section 3.

Owing to the nature of parametric amplification, the quadra-
ture sine components si of the electric fields die out rapidly. The
normalized power dissipation, h (in watts divided by one joule),
including the negative dissipation associated with gain can be
written:

h(c,�)=
nX

i=1

↵ic
2
i �

nX

i=1

�ic
2
i +

nX

i=1

nX

j=1,j 6=i

Jij cicj [5]

where the electric field cosine amplitudes ci are rendered dimen-
sionless. If we minimize the power dissipation h(c) without
invoking any constraints, that is, with �i =0, the amplitudes ci

simply go to zero.
If the gain �i is large enough, some of the amplitudes might go

to infinity. To avoid this, we employ the n constraint functions
gi(ci)=

�
1� c

2
i

�
=0, which enforce a digital ci =±1 outcome.

Adding the constraint function to the power dissipation yields
the Lagrange function, L (in units of watts divided by one joule),
(which includes the constraint functions times the respective
Lagrange multipliers):

L(c,�)=
nX

i=1

↵ic
2
i �

nX

i=1

�i(c
2
i � 1)+

nX

i=1

nX

j=1,j 6=i

Jij cicj [6]

The unconstrained Eq. 5 and the constrained Eq. 6 differ only in
the (�1) added to the �i term, which effectively constrains the
amplitudes and prevents them from diverging to 1. Eq. 6 is the
Lagrange function given at the end of Section 3. Surprisingly, the
gains �i emerge to play the role of Lagrange multipliers. This
means that each mode, represented by the subscripts in ci , must
adjust to a particular gain �i such that power dissipation is min-
imized. Minimization of the Lagrange function (Eq. 6) provides
the final steady state of the system dynamics. In fact, the right-
hand side of Eq. 4 is the gradient of Eq. 6, demonstrating that
the dynamical system performs gradient descent on the Lagrange
function. If the circuit or optical system is designed to dissipate
power in a mathematical form that matches the Ising magnetic
energy, then the system will seek out a local optimum of the
Ising energy.

Such a physical system, constrained to ci =±1, is digital in the
same sense as a flip–flop circuit, but unlike the von Neumann
computer, the inputs are resistor weights for power dissipa-
tion. Nonetheless, a physical system can evolve directly, without
the need for shuttling information back and forth as in a von
Neumann computer, providing faster answers. Without the com-
munications overhead but with the higher operation speed, the
energy dissipated to arrive at the final answer will be less,
despite the circuit being required to generate entropy during its
evolution toward the final state.

To achieve minimum power dissipation, the amplitudes ci and
the Lagrange multipliers �i must all be simultaneously opti-
mized using the Lagrange function as discussed in Section 4.E.
While a circuit will evolve toward optimal amplitudes ci , the
gains �i must arise from a separate active circuit. Ideally, the
active circuit that controls the Lagrange multiplier gains �i would
have its power dissipation included with the main circuit. A
more common method is to provide gain that follows a heuris-
tic rule. For example, Yamamoto and coworkers (5) follow the
heuristic rule �i = a + bt . It is not yet clear whether the heuristic-
based approach toward gain evolution will be equally effective
as using the complete Lagrange method in Section 4.E and
lumping together all main circuit and feedback components and
minimizing the total power dissipation.

We conclude this subsection by noting that the Lagrange func-
tion, Eq. 6, corresponds to the following merit function, the
normalized power dissipation, f (in watts divided by one joule),
and constraints:

Vadlamani et al. PNAS Latest Articles | 5 of 12
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26–1Light

This is the first of a number of chapters on the subject of electromagnetic radiation. Light, with which we see, is only one
small part of a vast spectrum of the same kind of thing, the various parts of this spectrum being distinguished by different
values of a certain quantity which varies. This variable quantity could be called the “wavelength.” As it varies in the visible
spectrum, the light apparently changes color from red to violet. If we explore the spectrum systematically, from long
wavelengths toward shorter ones, we would begin with what are usually called radiowaves. Radiowaves are technically
available in a wide range of wavelengths, some even longer than those used in regular broadcasts; regular broadcasts have
wavelengths corresponding to about  meters. Then there are the so-called “short waves,” i.e., radar waves, millimeter
waves, and so on. There are no actual boundaries between one range of wavelengths and another, because nature did not
present us with sharp edges. The number associated with a given name for the waves are only approximate and, of course, so
are the names we give to the different ranges.

Then, a long way down through the millimeter waves, we come to what we call the infrared, and thence to the visible
spectrum. Then going in the other direction, we get into a region which is called the ultraviolet. Where the ultraviolet stops,
the x-rays begin, but we cannot define precisely where this is; it is roughly at  m, or  m. These are “soft” x-rays;
then there are ordinary x-rays and very hard x-rays; then -rays, and so on, for smaller and smaller values of this dimension
called the wavelength.

Within this vast range of wavelengths, there are three or more regions of approximation which are especially interesting. In
one of these, a condition exists in which the wavelengths involved are very small compared with the dimensions of the
equipment available for their study; furthermore, the photon energies, using the quantum theory, are small compared with the
energy sensitivity of the equipment. Under these conditions we can make a rough first approximation by a method called
geometrical optics. If, on the other hand, the wavelengths are comparable to the dimensions of the equipment, which is
difficult to arrange with visible light but easier with radiowaves, and if the photon energies are still negligibly small, then a
very useful approximation can be made by studying the behavior of the waves, still disregarding the quantum mechanics. This
method is based on the classical theory of electromagnetic radiation, which will be discussed in a later chapter. Next, if we go
to very short wavelengths, where we can disregard the wave character but the photons have a very large energy compared with
the sensitivity of our equipment, things get simple again. This is the simple photon picture, which we will describe only very

500

10−8 10−2 µ
γ
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roughly. The complete picture, which unifies the whole thing into one model, will not be available to us for a long time.

In this chapter our discussion is limited to the geometrical optics region, in which we forget about the wavelength and the
photon character of the light, which will all be explained in due time. We do not even bother to say what the light is, but just
find out how it behaves on a large scale compared with the dimensions of interest. All this must be said in order to emphasize
the fact that what we are going to talk about is only a very crude approximation; this is one of the chapters that we shall have
to “unlearn” again. But we shall very quickly unlearn it, because we shall almost immediately go on to a more accurate
method.

Although geometrical optics is just an approximation, it is of very great importance technically and of great interest
historically. We shall present this subject more historically than some of the others in order to give some idea of the
development of a physical theory or physical idea.

First, light is, of course, familiar to everybody, and has been familiar since time immemorial. Now one problem is, by what
process do we see light? There have been many theories, but it finally settled down to one, which is that there is something
which enters the eye—which bounces off objects into the eye. We have heard that idea so long that we accept it, and it is
almost impossible for us to realize that very intelligent men have proposed contrary theories—that something comes out of the
eye and feels for the object, for example. Some other important observations are that, as light goes from one place to another,
it goes in straight lines, if there is nothing in the way, and that the rays do not seem to interfere with one another. That is, light
is crisscrossing in all directions in the room, but the light that is passing across our line of vision does not affect the light that
comes to us from some object. This was once a most powerful argument against the corpuscular theory; it was used by
Huygens. If light were like a lot of arrows shooting along, how could other arrows go through them so easily? Such
philosophical arguments are not of much weight. One could always say that light is made up of arrows which go through each
other!

26–2Reflection and refraction

Fig. 26–1.The angle of incidence is equal to the angle of reflection.

The discussion above gives enough of the basic idea of geometrical optics—now we have to go a little further into the
quantitative features. Thus far we have light going only in straight lines between two points; now let us study the behavior of
light when it hits various materials. The simplest object is a mirror, and the law for a mirror is that when the light hits the
mirror, it does not continue in a straight line, but bounces off the mirror into a new straight line, which changes when we
change the inclination of the mirror. The question for the ancients was, what is the relation between the two angles involved?
This is a very simple relation, discovered long ago. The light striking a mirror travels in such a way that the two angles,
between each beam and the mirror, are equal. For some reason it is customary to measure the angles from the normal to the
mirror surface. Thus the so-called law of reflection is

That is a simple enough proposition, but a more difficult problem is encountered when light goes from one medium into
another, for example from air into water; here also, we see that it does not go in a straight line. In the water the ray is at an
inclination to its path in the air; if we change the angle  so that it comes down more nearly vertically, then the angle of
“breakage” is not as great. But if we tilt the beam of light at quite an angle, then the deviation angle is very large. The question
is, what is the relation of one angle to the other? This also puzzled the ancients for a long time, and here they never found the
answer! It is, however, one of the few places in all of Greek physics that one may find any experimental results listed.
Claudius Ptolemy made a list of the angle in water for each of a number of different angles in air. Table 26–1 shows the angles

= .θi θr (26.1)

θi
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in the air, in degrees, and the corresponding angle as measured in the water. (Ordinarily it is said that Greek scientists never
did any experiments. But it would be impossible to obtain this table of values without knowing the right law, except by
experiment. It should be noted, however, that these do not represent independent careful measurements for each angle but only
some numbers interpolated from a few measurements, for they all fit perfectly on a parabola.)

Fig. 26–2.A light ray is refracted when it passes from one medium into another.
Table 26–1
Angle in air Angle in water

-
-

-
-

This, then, is one of the important steps in the development of physical law: first we observe an effect, then we measure it and
list it in a table; then we try to find the rule by which one thing can be connected with another. The above numerical table was
made in 140 a.d., but it was not until 1621 that someone finally found the rule connecting the two angles! The rule, found by
Willebrord Snell, a Dutch mathematician, is as follows: if  is the angle in air and  is the angle in the water, then it turns
out that the sine of  is equal to some constant multiple of the sine of :

For water the number  is approximately . Equation (26.2) is called Snell’s law; it permits us to predict how the light is
going to bend when it goes from air into water. Table 26–2 shows the angles in air and in water according to Snell’s law. Note
the remarkable agreement with Ptolemy’s list.

Table 26–2
Angle in air Angle in water

-

-

10∘ 8∘

20∘ 15 1/2∘

30∘ 22 1/2∘

40∘ 29∘

50∘ 35∘

60∘ 40 1/2∘

70∘ 45 1/2∘

80∘ 50∘

θi θr

θi θr

sin = n sin .θi θr (26.2)

n 1.33

10∘ 7 1/2∘

20∘ 15∘

30∘ 22∘

40∘ 29∘

50∘ 35∘

60∘ 40 1/2∘

70∘ 45∘

Fermat’s principle of least-time
(Feynman lectures, chapter 26)

reflection refraction
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26–3Fermat’s principle of least time

Now in the further development of science, we want more than just a formula. First we have an observation, then we have
numbers that we measure, then we have a law which summarizes all the numbers. But the real glory of science is that we can
find a way of thinking such that the law is evident.

The first way of thinking that made the law about the behavior of light evident was discovered by Fermat in about 1650, and it
is called the principle of least time, or Fermat’s principle. His idea is this: that out of all possible paths that it might take to get
from one point to another, light takes the path which requires the shortest time.

Let us first show that this is true for the case of the mirror, that this simple principle contains both the law of straight-line
propagation and the law for the mirror. So, we are growing in our understanding! Let us try to find the solution to the
following problem. In Fig. 26–3 are shown two points,  and , and a plane mirror, . What is the way to get from  to 

 in the shortest time? The answer is to go straight from  to ! But if we add the extra rule that the light has to strike the
mirror and come back in the shortest time, the answer is not so easy. One way would be to go as quickly as possible to the
mirror and then go to , on the path . Of course, we then have a long path . If we move over a little to the right, to 

, we slightly increase the first distance, but we greatly decrease the second one, and so the total path length, and therefore
the travel time, is less. How can we find the point  for which the time is the shortest? We can find it very nicely by a
geometrical trick.

Fig. 26–3.Illustration of the principle of least time.

We construct on the other side of  an artificial point , which is the same distance below the plane  as the point 
 is above the plane. Then we draw the line . Now because  is a right angle and ,  is equal to .

Therefore the sum of the two distances, , which is proportional to the time it will take if the light travels with
constant velocity, is also the sum of the two lengths . Therefore the problem becomes, when is the sum of these
two lengths the least? The answer is easy: when the line goes through point  as a straight line from  to ! In other words,
we have to find the point where we go toward the artificial point, and that will be the correct one. Now if  is a straight
line, then angle  is equal to angle  and thence to angle . Thus the statement that the angle of incidence
equals the angle of reflection is equivalent to the statement that the light goes to the mirror in such a way that it comes back to
the point  in the least possible time. Originally, the statement was made by Hero of Alexandria that the light travels in such a
way that it goes to the mirror and to the other point in the shortest possible distance, so it is not a modern theory. It was this
that inspired Fermat to suggest to himself that perhaps refraction operated on a similar basis. But for refraction, light obviously
does not use the path of shortest distance, so Fermat tried the idea that it takes the shortest time.

Before we go on to analyze refraction, we should make one more remark about the mirror. If we have a source of light at the
point  and it sends light toward the mirror, then we see that the light which goes to  from the point  comes to  in
exactly the same manner as it would have come to  if there were an object at , and no mirror. Now of course the eye
detects only the light which enters it physically, so if we have an object at  and a mirror which makes the light come into the
eye in exactly the same manner as it would have come into the eye if the object were at , then the eye-brain system

80∘ 48∘

A B MM ′ A
B A B

B ADB DB
E

C

MM ′ B′ MM ′

B EB′ BFM BF = FB′ EB EB′
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interprets that, assuming it does not know too much, as being an object at . So the illusion that there is an object behind the
mirror is merely due to the fact that the light which is entering the eye is entering in exactly the same manner, physically, as it
would have entered had there been an object back there (except for the dirt on the mirror, and our knowledge of the existence
of the mirror, and so on, which is corrected in the brain).

Now let us demonstrate that the principle of least time will give Snell’s law of refraction. We must, however, make an
assumption about the speed of light in water. We shall assume that the speed of light in water is lower than the speed of light in
air by a certain factor, .

Fig. 26–4.Illustration of Fermat’s principle for refraction.

Fig. 26–5.The minimum time corresponds to point , but nearby points correspond to nearly the same time.

In Fig. 26–4, our problem is again to go from  to  in the shortest time. To illustrate that the best thing to do is not just to go
in a straight line, let us imagine that a beautiful girl has fallen out of a boat, and she is screaming for help in the water at point 

. The line marked  is the shoreline. We are at point  on land, and we see the accident, and we can run and can also swim.
But we can run faster than we can swim. What do we do? Do we go in a straight line? (Yes, no doubt!) However, by using a
little more intelligence we would realize that it would be advantageous to travel a little greater distance on land in order to
decrease the distance in the water, because we go so much slower in the water. (Following this line of reasoning out, we would
say the right thing to do is to compute very carefully what should be done!) At any rate, let us try to show that the final
solution to the problem is the path , and that this path takes the shortest time of all possible ones. If it is the shortest
path, that means that if we take any other, it will be longer. So, if we were to plot the time it takes against the position of point 

, we would get a curve something like that shown in Fig. 26–5, where point  corresponds to the shortest of all possible
times. This means that if we move the point  to points near , in the first approximation there is essentially no change in
time because the slope is zero at the bottom of the curve. So our way of finding the law will be to consider that we move the
place by a very small amount, and to demand that there be essentially no change in time. (Of course there is an infinitesimal
change of a second order; we ought to have a positive increase for displacements in either direction from .) So we consider a
nearby point  and we calculate how long it would take to go from  to  by the two paths, and compare the new path with
the old path. It is very easy to do. We want the difference, of course, to be nearly zero if the distance  is short. First, look
at the path on land. If we draw a perpendicular , we see that this path is shortened by the amount . Let us say we gain
by not having to go that extra distance. On the other hand, in the water, by drawing a corresponding perpendicular, , we
find that we have to go the extra distance , and that is what we lose. Or, in time, we gain the time it would have taken to go
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26–3Fermat’s principle of least time

Now in the further development of science, we want more than just a formula. First we have an observation, then we have
numbers that we measure, then we have a law which summarizes all the numbers. But the real glory of science is that we can
find a way of thinking such that the law is evident.

The first way of thinking that made the law about the behavior of light evident was discovered by Fermat in about 1650, and it
is called the principle of least time, or Fermat’s principle. His idea is this: that out of all possible paths that it might take to get
from one point to another, light takes the path which requires the shortest time.

Let us first show that this is true for the case of the mirror, that this simple principle contains both the law of straight-line
propagation and the law for the mirror. So, we are growing in our understanding! Let us try to find the solution to the
following problem. In Fig. 26–3 are shown two points,  and , and a plane mirror, . What is the way to get from  to 

 in the shortest time? The answer is to go straight from  to ! But if we add the extra rule that the light has to strike the
mirror and come back in the shortest time, the answer is not so easy. One way would be to go as quickly as possible to the
mirror and then go to , on the path . Of course, we then have a long path . If we move over a little to the right, to 

, we slightly increase the first distance, but we greatly decrease the second one, and so the total path length, and therefore
the travel time, is less. How can we find the point  for which the time is the shortest? We can find it very nicely by a
geometrical trick.

Fig. 26–3.Illustration of the principle of least time.

We construct on the other side of  an artificial point , which is the same distance below the plane  as the point 
 is above the plane. Then we draw the line . Now because  is a right angle and ,  is equal to .

Therefore the sum of the two distances, , which is proportional to the time it will take if the light travels with
constant velocity, is also the sum of the two lengths . Therefore the problem becomes, when is the sum of these
two lengths the least? The answer is easy: when the line goes through point  as a straight line from  to ! In other words,
we have to find the point where we go toward the artificial point, and that will be the correct one. Now if  is a straight
line, then angle  is equal to angle  and thence to angle . Thus the statement that the angle of incidence
equals the angle of reflection is equivalent to the statement that the light goes to the mirror in such a way that it comes back to
the point  in the least possible time. Originally, the statement was made by Hero of Alexandria that the light travels in such a
way that it goes to the mirror and to the other point in the shortest possible distance, so it is not a modern theory. It was this
that inspired Fermat to suggest to himself that perhaps refraction operated on a similar basis. But for refraction, light obviously
does not use the path of shortest distance, so Fermat tried the idea that it takes the shortest time.

Before we go on to analyze refraction, we should make one more remark about the mirror. If we have a source of light at the
point  and it sends light toward the mirror, then we see that the light which goes to  from the point  comes to  in
exactly the same manner as it would have come to  if there were an object at , and no mirror. Now of course the eye
detects only the light which enters it physically, so if we have an object at  and a mirror which makes the light come into the
eye in exactly the same manner as it would have come into the eye if the object were at , then the eye-brain system
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nearby, and say, “No, my friend, those all correspond to different times.” On the other hand, if we prevent the radiation from
checking the paths by closing the slit down to a very narrow crack, then there is but one path available, and the radiation takes
it! With a narrow slit, more radiation reaches  than reaches it with a wide slit!

Fig. 26–13.The passage of radiowaves through a narrow slit.

One can do the same thing with light, but it is hard to demonstrate on a large scale. The effect can be seen under the following
simple conditions. Find a small, bright light, say an unfrosted bulb in a street light far away or the reflection of the sun in a
curved automobile bumper. Then put two fingers in front of one eye, so as to look through the crack, and squeeze the light to
zero very gently. You will see that the image of the light, which was a little dot before, becomes quite elongated, and even
stretches into a long line. The reason is that the fingers are very close together, and the light which is supposed to come in a
straight line is spread out at an angle, so that when it comes into the eye it comes in from several directions. Also you will
notice, if you are very careful, side maxima, a lot of fringes along the edges too. Furthermore, the whole thing is colored. All
of this will be explained in due time, but for the present it is a demonstration that light does not always go in straight lines, and
it is one that is very easily performed.

26–6How it works

Finally, we give a very crude view of what actually happens, how the whole thing really works, from what we now believe is
the correct, quantum-dynamically accurate viewpoint, but of course only qualitatively described. In following the light from 
to  in Fig. 26–3, we find that the light does not seem to be in the form of waves at all. Instead the rays seem to be made up of
photons, and they actually produce clicks in a photon counter, if we are using one. The brightness of the light is proportional
to the average number of photons that come in per second, and what we calculate is the chance that a photon gets from  to 

, say by hitting the mirror. The law for that chance is the following very strange one. Take any path and find the time for that
path; then make a complex number, or draw a little complex vector, , whose angle  is proportional to the time. The
number of turns per second is the frequency of the light. Now take another path; it has, for instance, a different time, so the
vector for it is turned through a different angle—the angle being always proportional to the time. Take all the available paths
and add on a little vector for each one; then the answer is that the chance of arrival of the photon is proportional to the square
of the length of the final vector, from the beginning to the end!

Fig. 26–14.The summation of probability amplitudes for many neighboring paths.

Now let us show how this implies the principle of least time for a mirror. We consider all rays, all possible paths , 
, , etc., in Fig. 26–3. The path  makes a certain small contribution, but the next path, , takes a quite

different time, so its angle  is quite different. Let us say that point  corresponds to minimum time, where if we change the
paths the times do not change. So for awhile the times do change, and then they begin to change less and less as we get near
point  (Fig. 26–14). So the arrows which we have to add are coming almost exactly at the same angle for awhile near , and
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It is easy to show that there are a number of new things predicted by Fermat’s principle. First, suppose that there are three
media, glass, water, and air, and we perform a refraction experiment and measure the index  for one medium against another.
Let us call  the index of air ( ) against water ( );  the index of air ( ) against glass ( ). If we measured water against
glass, we should find another index, which we shall call . But there is no a priori reason why there should be any
connection between , , and . On the other hand, according to the idea of least time, there is a definite relationship.
The index  is the ratio of two things, the speed in air to the speed in water;  is the ratio of the speed in air to the speed
in glass;  is the ratio of the speed in water to the speed in glass. Therefore we cancel out the air, and get

In other words, we predict that the index for a new pair of materials can be obtained from the indexes of the individual
materials, both against air or against vacuum. So if we measure the speed of light in all materials, and from this get a single
number for each material, namely its index relative to vacuum, called  (  is the speed in vacuum relative to the speed in
air, etc.), then our formula is easy. The index for any two materials  and  is

Using only Snell’s law, there is no basis for a prediction of this kind.1 But of course this prediction works. The relation (26.5)
was known very early, and was a very strong argument for the principle of least time.

Another argument for the principle of least time, another prediction, is that if we measure the speed of light in water, it will be
lower than in air. This is a prediction of a completely different type. It is a brilliant prediction, because all we have so far
measured are angles; here we have a theoretical prediction which is quite different from the observations from which Fermat
deduced the idea of least time. It turns out, in fact, that the speed in water is slower than the speed in air, by just the proportion
that is needed to get the right index!

26–5A more precise statement of Fermat’s principle

Actually, we must make the statement of the principle of least time a little more accurately. It was not stated correctly above. It
is incorrectly called the principle of least time and we have gone along with the incorrect description for convenience, but we
must now see what the correct statement is. Suppose we had a mirror as in Fig. 26–3. What makes the light think it has to go
to the mirror? The path of least time is clearly . So some people might say, “Sometimes it is a maximum time.” It is not a
maximum time, because certainly a curved path would take a still longer time! The correct statement is the following: a ray
going in a certain particular path has the property that if we make a small change (say a one percent shift) in the ray in any
manner whatever, say in the location at which it comes to the mirror, or the shape of the curve, or anything, there will be no
first-order change in the time; there will be only a second-order change in the time. In other words, the principle is that light
takes a path such that there are many other paths nearby which take almost exactly the same time.

The following is another difficulty with the principle of least time, and one which people who do not like this kind of a theory
could never stomach. With Snell’s theory we can “understand” light. Light goes along, it sees a surface, it bends because it
does something at the surface. The idea of causality, that it goes from one point to another, and another, and so on, is easy to
understand. But the principle of least time is a completely different philosophical principle about the way nature works.
Instead of saying it is a causal thing, that when we do one thing, something else happens, and so on, it says this: we set up the
situation, and light decides which is the shortest time, or the extreme one, and chooses that path. But what does it do, how does
it find out? Does it smell the nearby paths, and check them against each other? The answer is, yes, it does, in a way. That is the
feature which is, of course, not known in geometrical optics, and which is involved in the idea of wavelength; the wavelength
tells us approximately how far away the light must “smell” the path in order to check it. It is hard to demonstrate this fact on a
large scale with light, because the wavelengths are so terribly short. But with radiowaves, say -cm waves, the distances over
which the radiowaves are checking are larger. If we have a source of radiowaves, a detector, and a slit, as in Fig. 26–13, the
rays of course go from  to  because it is a straight line, and if we close down the slit it is all right—they still go. But now if
we move the detector aside to , the waves will not go through the wide slit from  to , because they check several paths
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nearby, and say, “No, my friend, those all correspond to different times.” On the other hand, if we prevent the radiation from
checking the paths by closing the slit down to a very narrow crack, then there is but one path available, and the radiation takes
it! With a narrow slit, more radiation reaches  than reaches it with a wide slit!

Fig. 26–13.The passage of radiowaves through a narrow slit.

One can do the same thing with light, but it is hard to demonstrate on a large scale. The effect can be seen under the following
simple conditions. Find a small, bright light, say an unfrosted bulb in a street light far away or the reflection of the sun in a
curved automobile bumper. Then put two fingers in front of one eye, so as to look through the crack, and squeeze the light to
zero very gently. You will see that the image of the light, which was a little dot before, becomes quite elongated, and even
stretches into a long line. The reason is that the fingers are very close together, and the light which is supposed to come in a
straight line is spread out at an angle, so that when it comes into the eye it comes in from several directions. Also you will
notice, if you are very careful, side maxima, a lot of fringes along the edges too. Furthermore, the whole thing is colored. All
of this will be explained in due time, but for the present it is a demonstration that light does not always go in straight lines, and
it is one that is very easily performed.

26–6How it works

Finally, we give a very crude view of what actually happens, how the whole thing really works, from what we now believe is
the correct, quantum-dynamically accurate viewpoint, but of course only qualitatively described. In following the light from 
to  in Fig. 26–3, we find that the light does not seem to be in the form of waves at all. Instead the rays seem to be made up of
photons, and they actually produce clicks in a photon counter, if we are using one. The brightness of the light is proportional
to the average number of photons that come in per second, and what we calculate is the chance that a photon gets from  to 

, say by hitting the mirror. The law for that chance is the following very strange one. Take any path and find the time for that
path; then make a complex number, or draw a little complex vector, , whose angle  is proportional to the time. The
number of turns per second is the frequency of the light. Now take another path; it has, for instance, a different time, so the
vector for it is turned through a different angle—the angle being always proportional to the time. Take all the available paths
and add on a little vector for each one; then the answer is that the chance of arrival of the photon is proportional to the square
of the length of the final vector, from the beginning to the end!

Fig. 26–14.The summation of probability amplitudes for many neighboring paths.

Now let us show how this implies the principle of least time for a mirror. We consider all rays, all possible paths , 
, , etc., in Fig. 26–3. The path  makes a certain small contribution, but the next path, , takes a quite

different time, so its angle  is quite different. Let us say that point  corresponds to minimum time, where if we change the
paths the times do not change. So for awhile the times do change, and then they begin to change less and less as we get near
point  (Fig. 26–14). So the arrows which we have to add are coming almost exactly at the same angle for awhile near , and
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