Computing with oscillations and waves
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Retinal oscillations carry information to cortex
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The Hippocampal Theta Rhythm
(Agarwal, Sommer & Buzsaki 2013)
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Experimental Setup




Oscillatory descriptors
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Demodulation reveals behaviorally relevant
sighal components
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ICA reveals ‘place components’
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Coupled oscillator models



https://www.youtube.com/watch?v=Aaxw4zbULMs

Kuramoto model
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Oscillation-based Ising machines for solving

combinatorial optimization problems
(Wang & Roychowdhury 2019)

min H £ — Z JijSiSj — thsz, such that s; € {—1, -+ 1}

1<i<j<n i=1
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Lyapunov function and dynamics

n

E(¢(t)) = —K - Z Jij - cos(¢i(t) — ¢;(t)) — K - ZCOS (2¢:(t))

i,J, 1#] =1



Implementation

Fig. 8. A simple oscillator-based Ising machine solving size-8 cubic graph MAX-CUT
problems: (a) breadboard implementation with 8 CMOS LC oscillators; (b) illustration
of the connections; (c) oscilloscope measurements showing waveforms of oscillator 1~4.
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Fig. 9. A size-32 oscillator-based Ising machine: (a) photo of the implementation on
perfboards; (b) illustration of the connectivity; (c) a typical histogram of the energy
values achieved in 200 runs on a random size-32 Ising problem; the lowest energy level
is -88 and is achieved once in this case.
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Fig. 10. Coupled oscillators solving MAX-CUT benchmark problem G1 [43] to its
best-known cut size 11624.
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Threshold phasor associative memory (TPAM)
(Frady & Sommer 2019)
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Implementation in spiking neurons
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Physics successfully implements Lagrange
multiplier optimization

Sri Krishna Vadlamani®'®, Tianyao Patrick Xiao®, and Eli Yablonovitch®'

2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; and PSandia National Laboratories,
Albuquerque, NM 87185-1084

Contributed by Eli Yablonovitch, August 25, 2020 (sent for review July 27, 2020; reviewed by Thomas Kailath and Stanley Osher)
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Fig. 6. Maximization of function f(x, y) subject to the constraint g(x, y) = 0.
At the constrained local optimum, the gradients of f and g, namely Vf(x, y)

and Vg(x, y), are parallel.



Fermat’s principle of least-time
(Feynman lectures, chapter 26)

Surrnsrg Lol 27, tpinecfh f ot Trs o Ofcs
If o W{:ﬁmlpﬂf%) ,w%, Lu}/u“m arortofune pn T il
, QaMIQ fu.w@m *C/umg) ,&JMW:;;%M/L, et
a) ng wwrone gty — clasainal T4y fj A Waﬁt Jr Ao,

ot/

Shit v tuagha — got0 e fuiltihin ( Jielss)
?ﬂoa;,z'i—fm% Qf{w‘(/" blefuion o)
B _;A/{“ﬂf A it zézzs 4 Nf/

77?;2 MJA /é&/t/ll MW Mld//;i /ul/u,t//él %W(‘; 5 4 /51;_ y

: I//ML’ A
I‘F M /ucw ol //Oﬁl;d}t ZJ’ M?/WL/ ,&/Mz o a/éé /?,60114 U ;';,/u[' |
9’” 4 i —(/]L V#wi “in /A’MM”/;’{% ﬁ//u%v{ ~ 5X /O';:rf“'/ézc. ) m@ M, S @

M (= R AP S AN LA 5




26-3Fermat’s principle of least time

Now in the further development of science, we want more than just a formula. First we have an observation, then we have
numbers that we measure, then we have a law which summarizes all the numbers. But the real glory of science is that we can
find a way of thinking such that the law is evident.
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Fig. 264 Illustration of Fermat’s principle for refraction.
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Fermat’s principle of least time

a a

| light decides which is the shortest time, or the extreme one, and chooses that path. But what does it do. how does
it find out? Does it smell the nearby paths, and check them against each other? The answer is, yes, it does, in a way.

M/

' Take any path and find the time for thai
path; then make a complex number, or draw a little complex vector, pe? whose angle 0 is proportional to the time. The
number of turns per second is the frequency of the light. Now take another path; it has, for instance, a different time, so the
vector for it is turned through a different angle —the angle being always proportional to the time. Take all the available paths
and add on a little vector for each one; then the answer is that the chance of arrival of the photon is proportional to the square
of the length of the final vector, from the beginning to the end!
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Fig. 26—14.The summation of probability amplitudes for many neighboring paths.



