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particular, fractal models have been found to provide an 
effective description of many natural image phenomena 
(e.g. Keller, Crownover & Chen, 1987; Pentland, 1984) 
and fractals are increasingly used in the study of visual 
processing (e.g. Cutting & Garvin, 1987; Knill, Field & 
Kersten, 1989; Westheimer, 1991). 

In this study, we have data from only a single fre- 
quency band. To determine how the human visual system 
integrates information across neighboring frequency 

bands would require further experiments, which we leave 
for a later paper. However, we should point out that the 
proposed association field may have a number of par- 
ameters other than those of orientation and position. 

Relation to texture segregation 
A number of studies have been concerned with the prin- 

ciples by which textures group together and segregate 
from other textures. The Gestalt rules of organization 

FIGURE 16. The a.ssociarion$eld. The diagram at the top of the figure (a) represents the rules by which the elements in the 
path are associated and segregated from the background. The precise size of this field would be difficult to determine from 
this study since it will certainly vary with the particular experimental conditions employed. For example, in this study, the 
subjects were required to detect 12 elements in a grid of 256 elements. Changing either the path size or the grid size would 
change our estimate of the association field. The curves in (b) represent the specific rules of alignment. Grouping occurs only 
when the orientation of elements conforms to first-order curves (i.e. curves with no points of inflection) like those shown by 
the rays extending from the center of the elements as shown in this figure. The integration process thus appears to show strong 
joint constraints of position and orientation. Thus, our results suggest that elements with alignment like that shown on the 
bottom left will be “associated” while elements like that shown on the right will not even though the difference in orientation 

is the same in both examples. 

demonstration of combined modular and axial specificity in the
tree shrew, and the observation of patchy distributions of labeled
neurons after large tracer injections in V1 of many species, sug-
gests that modular specificity alone might be insufficient to explain
the distribution of horizontal connections. Indeed, preliminary
results, using combined optical imaging and biocytin injections,
suggest that a combined modular and axial specificity might be
present in the squirrel monkey (Sincich and Blasdel, 1995). It is
possible that a relationship between preferred orientation and axis
of projection also exists in cats and other primates but is difficult
to demonstrate due to other factors such as large anisotropies in
the map of visual space.

Functional implications
Combined with the evidence that horizontal connections are
largely reciprocal (Kisvarday and Eysel, 1992), these results indi-
cate that individual neurons in layer 2/3 receive input from other
neurons whose receptive fields are co-oriented (of similar orien-
tation preference) and co-axial (displaced along an axis in visual
space that corresponds to their preferred orientation; Fig.
12A,B). This relationship raises the possibility that horizontal
connections might contribute to the orientation selectivity of layer
2/3 neurons. For example, a neuron that responds best to a
vertical stimulus might do so, at least in part, because it receives
input from a network of other layer 2/3 neurons whose receptive
fields are aligned along the vertical axis of visual space. This
arrangement could be viewed as the intracortical equivalent of the
Hubel and Wiesel model in which layer 4 neurons derive their
orientation selectivity by sampling from a population of lateral
geniculate nucleus neurons whose receptive fields are aligned

along an axis in visual space (Hubel and Wiesel, 1962). Presum-
ably, the intrinsic circuitry in layer 2/3 acts in concert with orien-
tation selective inputs derived from layer 4 to generate the orien-
tation selectivity of layer 2/3 neurons. Indeed, the contribution of
axially aligned horizontal connections could explain why layer 2/3
neurons in the tree shrew and ferret are more tightly tuned for
orientation than those in layer 4 (Humphrey et al., 1980a; Chap-
man and Stryker, 1993). It could also explain why many neurons
exhibit sharper orientation tuning (a smaller half width at half
height) when longer stimuli are used to determine tuning (Henry
et al., 1974).

Because of their extensive spread, horizontal connections
have been implicated as one of the potential substrates for
receptive field surround effects— changes in the response pat-
tern of neurons produced by visual stimulation of the region
that lies outside of the receptive field as defined by a small,
simple stimulus (for review, see Gilbert, 1992). In the tree
shrew, for example, these connections extend for up to 4 mm
from the injection site—a distance that corresponds to ;208 of
visual space—whereas the classically defined receptive field at
this eccentricity extends for less than 58. The results of the
present study suggest that horizontal connections could be the
source of a particular class of receptive field surround effects
that exhibit axial specificity, exerting a greater influence in
regions of visual space that lie along the axis of the neuron’s
preferred orientation (i.e., end-zones) than along the orthog-
onal axis (side-zones). Effects of this type have been described
in both cat and monkey striate cortex and in several cases the
effects are primarily facilitatory (Nelson and Frost, 1985; Fio-
rani et al., 1992; Kapadia, 1995). Some neurons in macaque

Figure 12. Summary of specificity of horizontal connections in V1. A, Example of axon arborizations from two cells shown over a combined map of visual
space and difference map of orientation preference. The dark regions of the difference map indicate regions that prefer 908, and the lighter areas indicate
areas that prefer 08. A neuron found in a dark region of the map projects to other areas of the map with the same orientation preference and that lie
along a line corresponding to a vertical line in the map of visual space. A neuron found in a light region of the map (orientation preference 08) projects
to other parts of the cortex that prefer 08 and that lie along a horizontal line in the map of visual space. B, Input to layer 2/3 cells via horizontal connections.
Because horizontal connections are largely reciprocal, cells in layer 2/3 will receive input from other layer 2/3 cells with the same orientation preference,
the receptive fields of which are displaced along a line in visual space. The solid rectangles indicate the receptive fields of the two cells shown in A. The
open rectangles indicate the receptive fields of cells that would provide input to these two cells via horizontal connections. Nearby cells with overlapping
receptive fields are omitted for clarity.
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Building high-level features using large-scale unsupervised learning

the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.
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and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-
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an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, !20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or

feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building

Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-
represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of
Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of
identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis
pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.
Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT
neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-
preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being
able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going
through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using
the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.
(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated
with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information
about the images.
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lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
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compare computational models to neuronal data: whereas
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might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Florham Park, NJ 07932, USA.
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Manifold of facial pose and lighting



Hand-written digits



Local Linear Landmarks (LLL)
(Vladymyrov & Carreira-Perpinán, 2013)
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Basis functions learned by sparse coding form a locally 
linear approximation to the manifold of natural images
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The Sparse Manifold Transform

. . .
�1�2 �3 �4

�1
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x (R2)

xlocal(R2)

Figure 1. Dictionary elements learned from natural signals with sparse coding may be conceptualized as landmarks on a smooth manifold.
A) A function defined on R2 (e.g. a gray-scale natural image) and one element from its reconstruction are represented by the black and
red curves, respectively. B) Inputs are encoded using sparse inference with a learned dictionary, �, resulting in a k-sparse vector ↵, which
is defined on a discrete set {0, · · · , N}. C) For a given input signal, ↵ can be viewed as a discrete k-sparse approximation to the true
k0-sparse function, ↵TRUE, defined on the smooth manifold, where k > k0 (k = 8 and k0 = 3 in this example). Each dictionary element in
� corresponds to a landmark on the smooth manifold, M . Red arrows indicate the interpolated k0-sparse function, while black arrows
indicate elements of � associated with non-zero values in the k-sparse vector ↵. D) Since � only contains a finite number of landmarks,
we must interpolate (i.e. “steer”) among a few dictionary elements to reconstruct each of the true image components. Only one out of k0

components is shown in this subfigure, but all of them are needed to approximate the input signal.

The similarity between equation (1) and equation (2) pro-
vides an intuition to bring sparse coding and manifold learn-
ing closer together. However, LLL still has a difficulty in
that it requires a nearest neighbor search and it is not clear
how to use a KNN solver efficiently when the underlying sig-
nal is k-sparse. We posit that temporal information provides
a solution.

The general idea of imposing a ‘slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002) to extract invariant or slowly varying features from
temporal sequences rather than using static order-less data
points. While it is still a common practice in both sparse
coding and manifold learning to collect data in an order-less
fashion, many other works have demonstrated that temporal
information can be used to build better signal representa-
tions (van Hateren & Ruderman, 1998; Olshausen, 2003;
Lee et al., 2003; Hyvärinen et al., 2003; Berkes et al., 2009;
Cadieu & Olshausen, 2012). Here, temporal adjacency can
be used to determine the nearest neighbors in the embedding
space (eq. (3)) by specifically minimizing the second order
temporal derivative, implying that video sequences form
linear trajectories in the manifold domain. This is a varia-
tion of ‘slowness’ that makes the connection to manifold
learning more explicit.

In the next section, we mathematically formulate the sparse

manifold transform. In section 3, we generalize classical
topologically-equivalent manifold embedding to functional
manifold embedding and show the approximate invertibil-
ity of the transform. In section 4, the affinity groups and
dictionary topology are discussed. In section 5 we present
a stacked SMT network to learn a hierarchical representa-
tion and we present a representation visualization method.
Finally, we discuss the general principles of the SMT in
section 6 and its broader connections.

2. The Sparse Manifold Transform
The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a relatively
small dictionary to “steer” a kernel by linearly combining
the elements in the dictionary. A set of kernels is steerable
if a property, such as orientation or position, can be inter-
polated by computing a linear combination of some subset.
In this paper, rather than using a small dictionary, we use
a 10-20 times overcomplete dictionary with positive-only
sparse coefficients. Empirically, we find that at such an over-
completeness the interpolation behavior of the dictionary
is close to locally linear. Therefore, steering the elements
can be accomplished by local neighborhood interpolation.
This choice makes the relative geometry of the dictionary
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We seek a geometric mapping f : Φ → P , s.t. each of the dictionary 
elements is mapped to a new vector, Pj = f(Φj).  Continuous temporal 
transformations in the input should have a linear flow on M and also in 
the geometrical embedding space. 

Pat ⇡
1

2
Pat�1 +

1

2
Pat+1We desire:

s.t.
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Sparse-Manifold Transform

LLL still has a difficulty in that a neighboring interpolation
is needed and it is not clear how to use a KNN solver ef-
ficiently when the underlying signal is k-sparse. We posit
that temporal information provides a solution.

A general idea of imposing a ’slowness prior’ was initially
proposed by (Földiák, 1991) and (Wiskott & Sejnowski,
2002). While a common practice in both sparse coding and
manifold learning is that the data is collected in an order-
less fashion, (van Hateren & Ruderman, 1998; Olshausen,
2003; Lee et al., 2003; Hyvärinen et al., 2003; Cadieu &
Olshausen, 2012) demonstrated temporal information can
be used to build better signal representations. Here the tem-
poral information can be used to efficiently solve equation
(3) in the embedding space, which leads to equation (5).
This linearity is a variation to ’slowness’, which makes the
connection to manifold learning more explicit.

The seminal works in deformable filter theory (Freeman
et al., 1991; Simoncelli et al., 1992; Simoncelli & Freeman,
1995; Perona, 1995) demonstrate how to use a parsimo-
nious dictionary to ’steer’ a kernel by linearly combining
the elements in the dictionary. In this paper, rather than
using a parsimonious dictionary, we choose to use 10-20
times overcomplete positive-only sparse coding since we
empirically find that at such an overcompleteness, most
dictionary elements can approximately be interpolated by
similar-shape neighboring elements with a L1 norm close
to 1. This choice makes the geometry of the dictionary
closer to a low-dimensional manifold. A thorough analysis
is beyond the scope of this paper.

In the following sections ...

2. Sparse-Manifold Transform Formulation
We assume the dictionary learned by sparse coding has an
ordering that it’s topologically equivalent to a low dimen-
sional smooth manifold. (see fig 2) The underlying signal
is a k-sparse function defined on the manifold. Since there
are only finitely many learned dictionary elements, they
are a landmark sampling of the underlying manifold. ↵ is
a discrete approximation of the true k-sparse function de-
fined on the landmarks. There exists a geometric mapping
M : � ! P , s.t. each of the dictionary elements is geomet-
rically mapped to a new vector, M(�i) = Pi. 1 We further
assume the continuous temporal transformation leads to a
linear flow on a manifold the manifold and it also leads to a
linear flow in the geometrical embedding space. The linear
flow can be formulated as follows:

1Here P is a general geometrical embedding, which has a higher
dimensionality than the dictionary manifold. This is different from
the conventional concept that P is the manifold embedding itself.
In section 3 we introduce a functional embedding concept.

P↵t ⇡
1

2
P↵t�1 +

1

2
P↵t+1 (5)

Figure 2. This is the figure caption where we explain the figure and
concepts related to the figure and maybe we reference some text
or something

where the index t represents time, this is equivalent to that
the second order temporal derivative of P↵ is approximately
zero. We can find the embedding matrix P by solving the
following optimization:

min
P

kPADk2F , s.t. PV PT = I. (6)

where V is a positive-definite matrix for normalization pur-
pose. We choose V to be the covariance matrix of ↵. 2 Each
column of A is the sparse coefficient vector at a particular
time step, or At = ↵t. D is the second-order differential
matrix such that:

D =

2

66666664

1 � 1
2 0 0 . . . 0

� 1
2 1 � 1

2 0 . . . 0
0 � 1

2 1 � 1
2 . . . 0

0 0 � 1
2 1 . . . 0

...
...

...
...

. . .
...

0 . . . 0 0 � 1
2 1

3

77777775

(7)

The solution to this generalized eigen-decomposition prob-
lem is given (Vladymyrov & Carreira-Perpinán, 2013) by
P = V � 1

2U , where U is a matrix of d trailing eigenvectors
of the matrix V � 1

2ADDTATV � 1
2 . Two major drawbacks

of this analytic solution are: 1) The embedding dimensions
are ordered, we prefer to make the information more dis-
tributed. 2)One more manifold constraints are introduced,

2This formulation is qualitatively similar to applying slow fea-
ture analysis to sparse coefficients, though the second order deriva-
tive is used rather than the first order derivative.
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V = Cov(a)
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The sparse manifold transform
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The Localized Sparse Manifold Transform: A Geometric Theory for Complex Cells
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Summary: A fundamental role of the visual cortex is to represent structure in natural scenes, including local
features and smooth transformations of these features. It is widely believed that simple cells learn and recognize
these local features, which can be modeled using unsupervised dictionary learning [12]. Previous approaches
for understanding complex cells fall into two major classes: 1) those motivated by invariant image processing
(pooling simple cell features) [8, 13] and 2) those motivated by modeling the multivariate higher-order statistics
of neural responses [9, 10, 11, 7].
Here we provide a unifying geometric perspective on the role of simple and complex cells based on the recently
proposed sparse manifold transform (SMT) model [2]. Inspired by slow feature analysis [5, 17] and manifold
learning [14], the SMT is a hierarchical model combining dictionary learning (neurons in the first layer) and
manifold smoothing (neurons in the second layer) to create temporally smooth representations that reflect trans-
formations in the sensory input. Here we propose a version of SMT in which neurons in the two layers correspond
to simple and complex cells. This provides a new functional explanation for these cell types: Simple cells can
be viewed as representing a discrete sampling of a smooth manifold in the sensor space, while complex cells can
be viewed as representing localized smooth linear functions on the manifold. While each individual complex cell
pools from a local region, together they tile [15] the manifold and build an untangled population representation
[4], which tends to preserve the identity of the signal while straightening the transformations [6]. In the local-
ized SMT, the complex cell layer is learned in an unsupervised manner based on a diffusion process. Our results
demonstrate that simple and complex cells are emergent properties in a neural system that is optimized to learn
the manifold structure of dynamic sensory inputs and is subject to sparse connectivity constraints.

Methods: We use highly overcomplete positive-only
sparse coding to model simple cells. For each input
image patch x, we use FISTA [1] to solve the positive
only sparse coefficient inference:

min
↵

1
2kx� �↵k22 + �k↵k1, s.t. ↵ ⌫ 0, (1)

where � 2 IRn⇥m is the learned dictionary matrix
with dictionary elements �i in each of its columns, and
↵ 2 IRm is a positive-only vector of coefficients.
The responses of simple cells are linearly pooled by
the complex cells such that � = P↵, where each of the
rows in P is a learned pooling unit. The pooling units
can be learned by solving a variation of the following
optimization problem:

min
P

hkPV � 1
2 ↵̈k22i+ �kPk1

s.t. kp0jk2 = c, kpik2 = 1, P ⌫ 0
(2)

where V � 1
2 is the whitening matrix for ↵, where V =

(↵ � h↵i)(↵ � h↵i)T , p0j is a row of P and pi is a col-
umn. The constraints are for row and column normal-
ization. The angular bracket h·i stands for temporal
average and ↵̈ is the second-order temporal derivative
of ↵. It is helpful to reexpress the first term in the ob-
jective above as:
hkPV � 1

2 ↵̈k22i = TrPUP T , U = V � 1
2 h↵̈↵̈T iV � 1

2 (3)
which has a gradient given by PU . Thus to solve (2),
we can use an iterative proximal gradient method: 1)
gradient descent via P = (1�⌘)P+⌘P (I�U), where

⌘ is the step size, 2) sparse shrinkage and rectification
P = relu(P � ⌘�), 3) row and column normalization.
Note that Step 1) is very similar to a diffusion process,
where the diffusion kernel is I�U . To better condition
the optimization, we replace I�U by a sparse diffusion
kernel K⇤, where K⇤ only preserves the largest 10 ab-
solute values in each column of I�U and each column
is normalized to unit L1 norm. Note that if the tempo-
ral sequence is randomly shuffled, both I � U and K⇤

are the identity matrix. Thus K⇤ only contains how the
activations of ↵ flow to the geometric neighbors under
transformations.

Figure 1: A) A group of simple cells pooled from one
complex cell. B) A random sample of 21 complex
cells, whose pooling fields are shown as bar plots, with
each bar representing a simple cell fit with a Gabor
function.
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The optimization (2) can be viewed as a variation of
the formulation used in [2], which leads to spectral
and thus global pooling functions rather than local-
ized pooling functions. However, both solutions lead
to smooth pooling functions defined on an underly-
ing simple cell manifold, which linearize the response
from the simple cells after pooling.

Figure 2: A) A phase sweep of the optimal grating
stimuli of a complex cell. Dotted lines are the re-
sponses from the simple cells it pools from. The in-
variant red dashed line is the complex cell’s response.
B) Orientation selectivity of 3 randomly sampled com-
plex cells. C) F1/F0 ratio bimodal distribution.

Experiments: Our dataset contains 53 minutes of
128x128 90fps whitened natural video taken on the UC
Berkeley campus. We extract 20x20 pixel random im-
age patches and train a 10x overcomplete sparse coding
model. Once the dictionary converges, we compute the
covariance matrix V and the whitening matrix V � 1

2 of
the sparse coefficient vectors, extract patch sequences
to estimate the matrix U , construct the diffusion kernel
K⇤ from I � U , and train 512 pooling units follow-
ing the sparse regularized diffusion process described
in the method section. The number of pooling units is
not critical and the result changes gracefully with re-
spect to variation of the pooling dimension.
In Figure 1, we show that learned pooling units are rel-
atively ‘localized’ in the sense that they pool simple
cells with similar shapes. To emphasize, ‘local’ is not

defined in the pixel domain but rather in the abstract
configuration space, e.g. spatial location, orientation
and scale. The distance in this space is determined by
the natural transformations in natural signals. Fig 2A
shows that a complex cell in our model has phase in-
variance while the simple cells it pools from tile dif-
ferent phases. Fig 2B shows the learned complex cells
maintain orientation selectivity while gaining phase in-
variance. Fig 2C displays the F1/F0 ratio [16] of com-
plex and simple cells in the model, revealing a clear bi-
modal distribution matching experimental data [3, 16].
Discussion:

In this work, we use the insights from SMT to view
simple cells as a discrete sampling of an underlying
smooth manifold and complex cells as a smooth tiling
of the manifold to build a locally equivariant represen-
tation. We show that localized complex pooling cells
can be learned from temporal signal dynamics. Mul-
tiple sensitivity tests show these units admit similar
properties to complex cells in V1. The model predicts
that populations of complex cells represent the struc-
ture in time-varying images in terms of smooth tra-
jectories that reflect the underlying continuous trans-
formations in images, as opposed to forming invariant
representations of objects per se.
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[5] Peter Földiák. Learning invariance from trans-
formation sequences. Neural Computation,
3(2):194–200, 1991.

[6] Olivier Henaff, Robbe Goris, and Eero Simon-
celli. Perceptual straightening of natural video

The optimization (2) can be viewed as a variation of
the formulation used in [2], which leads to spectral
and thus global pooling functions rather than local-
ized pooling functions. However, both solutions lead
to smooth pooling functions defined on an underly-
ing simple cell manifold, which linearize the response
from the simple cells after pooling.

Figure 2: A) A phase sweep of the optimal grating
stimuli of a complex cell. Dotted lines are the re-
sponses from the simple cells it pools from. The in-
variant red dashed line is the complex cell’s response.
B) Orientation selectivity of 3 randomly sampled com-
plex cells. C) F1/F0 ratio bimodal distribution.

Experiments: Our dataset contains 53 minutes of
128x128 90fps whitened natural video taken on the UC
Berkeley campus. We extract 20x20 pixel random im-
age patches and train a 10x overcomplete sparse coding
model. Once the dictionary converges, we compute the
covariance matrix V and the whitening matrix V � 1

2 of
the sparse coefficient vectors, extract patch sequences
to estimate the matrix U , construct the diffusion kernel
K⇤ from I � U , and train 512 pooling units follow-
ing the sparse regularized diffusion process described
in the method section. The number of pooling units is
not critical and the result changes gracefully with re-
spect to variation of the pooling dimension.
In Figure 1, we show that learned pooling units are rel-
atively ‘localized’ in the sense that they pool simple
cells with similar shapes. To emphasize, ‘local’ is not

defined in the pixel domain but rather in the abstract
configuration space, e.g. spatial location, orientation
and scale. The distance in this space is determined by
the natural transformations in natural signals. Fig 2A
shows that a complex cell in our model has phase in-
variance while the simple cells it pools from tile dif-
ferent phases. Fig 2B shows the learned complex cells
maintain orientation selectivity while gaining phase in-
variance. Fig 2C displays the F1/F0 ratio [16] of com-
plex and simple cells in the model, revealing a clear bi-
modal distribution matching experimental data [3, 16].
Discussion:

In this work, we use the insights from SMT to view
simple cells as a discrete sampling of an underlying
smooth manifold and complex cells as a smooth tiling
of the manifold to build a locally equivariant represen-
tation. We show that localized complex pooling cells
can be learned from temporal signal dynamics. Mul-
tiple sensitivity tests show these units admit similar
properties to complex cells in V1. The model predicts
that populations of complex cells represent the struc-
ture in time-varying images in terms of smooth tra-
jectories that reflect the underlying continuous trans-
formations in images, as opposed to forming invariant
representations of objects per se.

References

[1] Amir Beck and Marc Teboulle. A fast itera-
tive shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sci-

ences, 2(1):183–202, 2009.

[2] Yubei Chen, Dylan M Paiton, and Bruno A Ol-
shausen. The sparse manifold transform. arXiv

preprint arXiv:1806.08887, 2018.

[3] Russell L De Valois, Duane G Albrecht, and
Lisa G Thorell. Spatial frequency selectivity of
cells in macaque visual cortex. Vision research,
22(5):545–559, 1982.

[4] James J DiCarlo and David D Cox. Untangling
invariant object recognition. Trends in cognitive

sciences, 11(8):333–341, 2007.
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The stacked sparse manifold transform
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<latexit sha1_base64="PLtq6ld2VZhUtK/b4VqDwR3s+E4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh259KB6zinc26ZXKbtWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fja7eEJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0/dJX2jOUI4toUwLeythQ6opQxtS0YbgLb68TJrnVc+tencX5dp1HkcBjuEEKuDBJdTgFurQAAYKnuEV3hzjvDjvzse8dcXJZ47gD5zPH5mikDM=</latexit><latexit sha1_base64="PLtq6ld2VZhUtK/b4VqDwR3s+E4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh259KB6zinc26ZXKbtWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fja7eEJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0/dJX2jOUI4toUwLeythQ6opQxtS0YbgLb68TJrnVc+tencX5dp1HkcBjuEEKuDBJdTgFurQAAYKnuEV3hzjvDjvzse8dcXJZ47gD5zPH5mikDM=</latexit><latexit sha1_base64="PLtq6ld2VZhUtK/b4VqDwR3s+E4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh259KB6zinc26ZXKbtWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fja7eEJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0/dJX2jOUI4toUwLeythQ6opQxtS0YbgLb68TJrnVc+tencX5dp1HkcBjuEEKuDBJdTgFurQAAYKnuEV3hzjvDjvzse8dcXJZ47gD5zPH5mikDM=</latexit><latexit sha1_base64="PLtq6ld2VZhUtK/b4VqDwR3s+E4=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSLUS0lE0GPRi8cK9gPbWDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbG6x3HC/YgOlAgFo2ilh259KB6zinc26ZXKbtWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fja7eEJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm0/dJX2jOUI4toUwLeythQ6opQxtS0YbgLb68TJrnVc+tencX5dp1HkcBjuEEKuDBJdTgFurQAAYKnuEV3hzjvDjvzse8dcXJZ47gD5zPH5mikDM=</latexit>

P (1)
<latexit sha1_base64="hJqU2+H9+Gw5jBBAInQIt6PbYkE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFSu/GYVb3zab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWRc1za979ZaV+k8dRhBM4hSp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9ZUI7o</latexit><latexit sha1_base64="hJqU2+H9+Gw5jBBAInQIt6PbYkE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFSu/GYVb3zab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWRc1za979ZaV+k8dRhBM4hSp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9ZUI7o</latexit><latexit sha1_base64="hJqU2+H9+Gw5jBBAInQIt6PbYkE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFSu/GYVb3zab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWRc1za979ZaV+k8dRhBM4hSp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9ZUI7o</latexit><latexit sha1_base64="hJqU2+H9+Gw5jBBAInQIt6PbYkE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QxrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLFSu/GYVb3zab9ccWvuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+7pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY7GXCFzIiJJZQpbm8lbEQVZcYmVLIheMsvr5LWRc1za979ZaV+k8dRhBM4hSp4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx9ZUI7o</latexit>



Stacked Sparse Manifold Transform
(trained on MNIST)

Learned    (1)Φ Learned    (2)Φ


