
Fig. 1. Different models for glutamate spillover in the hippocampus. (a) ‘Local’ spillover
involving only a couple of synapses. Diffusion is fast enough that the time course of NMDA
receptor activation (right) may be similar at the site of release (red) and in adjacent synapses
(green). (b) More broadly distributed spillover, in which glutamate released from one synapse
reaches a larger number of synapses, though at a much lower concentration. As a result, very
few receptors are activated in any adjacent synapse (right). (c) Cooperation between active
synapses could enhance activation of receptors at quiescent synapses in between, resulting in
a larger postsynaptic response (right).
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the induction of LTP without violating Don-
ald Hebb’s postulated requirement for coin-
cident pre- and postsynaptic activity13. If
nearest neighbors were to experience an
intermediate influx of calcium, these synaps-
es could undergo depression14, resulting in
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a center–surround arrangement that
may even enhance synapse specificity.
Other factors, such as alternate routes of
calcium entry into the postsynaptic den-
drite or a possible role for postsynaptic
neuronal glutamate transporters8, are
likely to complicate this simplified sce-
nario. Although the evidence for spillover
continues to mount, it remains to be
seen whether the phenomenon, contrary
to its unfortunate, accidental moniker,
proves beneficial to neuronal informa-
tion processing.
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news and views

A new window on sound
Bruno A. Olshausen and Kevin N. O’Connor

Auditory filters must trade off frequency tuning against temporal
precision. The compromise achieved by the mammalian cochlea
seems well matched to the sounds of the natural environment.

In the vertebrate cochlea, sound is
detected by an array of several thou-
sand hair cells that transduce mechan-
ical vibrations into electrical activity.
The individual hair cells, and the audi-
tory nerve fibers to which they are con-
nected, are tuned to specific
frequencies. The population of audito-
ry nerve fibers thus provides us with a
frequency analysis of sound waveforms
in the enviorment, but there are as
many ways to perform a frequency
analysis as there are to build a house.
Which one is the most appropriate for
the auditory system? An article by

Lewicki in this issue sheds new light on
this question1. Using powerful new sta-
tistical methods, the author shows that
the frequency analysis performed by the
mammalian cochlea is well matched to
the range of sounds encountered in the
natural environment.

Each auditory nerve fiber may be
considered as a filter that signals infor-
mation about the temporal structure of
stimuli within its preferred frequency
range. As engineers have understood for
years, the design of a filter involves an
inevitable trade-off between the preci-
sion of frequency tuning and temporal
tuning. A tone consists of cyclical fluc-
tuations of air pressure, and to obtain an
accurate frequency estimate, many cycles
must be integrated. But a longer inte-
gration period means a decrease in the
temporal accuracy of the filter—in other
words, a filter cannot signal both the fre-
quency and the timing of a sound with

arbitrary precision. Yet discrimination
of real-world sounds often requires
accurate measurements of both fre-
quency and timing. In human speech,
for example, the difference between
vowel sounds depends on the relative
strengths of different frequencies (har-
monics), whereas the distinction
between certain consonant sounds (‘ta’
and ‘da’ or ‘ba’ and ‘pa’) is a matter of a
difference in voice onset time of a few
tens of milliseconds. Precise temporal
information is also important for sound
localization, which in many cases
depends on time-of-arrival differences
between the two ears. The challenge for
the auditory system, then, is to find the
right trade-off between timing and fre-
quency analysis.

One way to think about the time–fre-
quency tradeoff is in terms of a ‘tiling’
of the time–frequency plane (Fig. 1). At
one extreme, frequency discrimination
is sacrificed completely to maximize
temporal discrimination. At the other
extreme is the Fourier transform, in
which temporal discrimination is
ignored to extract the maximum infor-
mation about the frequency composi-
tion of the stimulus. Between these
extremes are many other possibilities.
Two schemes that are well known to
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engineers are the Gabor filter and the
wavelet filter. Gabor filters, which con-
sist of Gaussian-windowed sinusoids,
provide the optimal joint resolution in
both time and frequency, and they tile
the time–frequency plane with windows
of equal temporal width at all frequen-
cies. Wavelet filters can be viewed as
variants of Gabor filters in which the
temporal windows become narrower as
frequency increases, giving the filters the
property of self-similarity. They are pop-
ular for many signal-processing applica-
tions because they capture the
self-similar structure that is present in
many natural signals. But these are just
examples, and there is no end to the
variety of tiling schemes that can be
imagined.

Which scheme is ‘optimal’ would
seem to depend on a number of factors:
the relative behavioral importance of dif-
ferent types of information, neurobio-
logical or biophysical constraints, and
the statistical  properties of signals pre-
sent in the environment. Lewicki focus-
es on the last of these, attempting to find
a time–frequency tiling scheme that
maximizes statistical independence
among the filters. The motivation for
maximizing independence is related to
ideas proposed long ago by Attneave2

and Barlow3, who argued that the ner-
vous system should try to exploit the
redundancies present in signals in order
to form representations of the structure
present in the environment. It is also
related to principles of efficient coding,
which aim to make the most use of lim-
ited neural resources4.

Lewicki’s method1 for deriving a set
of optimal filters draws on a recent
advance in signal analysis called ‘inde-
pendent component analysis’ (ICA). ICA
provides a method for extracting a lin-

pre-existing properties of the peripheral
auditory system.

Lewicki’s analysis does not attempt to
provide a comprehensive account of
auditory coding. For example, it does not
consider the effect of changing sound
intensity. The tuning of Lewicki’s filters
is independent of sound intensity, but
this is not true of real auditory nerve
fibers. Most fibers reach the limit of their
dynamic range roughly 30–40 dB above
threshold, meaning their firing rates sat-
urate at even moderate intensities7. At
these intensities, their frequency tuning
also becomes considerably broader8. But
these facts are not necessarily inconsis-
tent with Lewicki’s results, because most
physiological measurements are made
using isolated pure tones. Less is known
about how auditory nerve fibers behave
in response to more ecologically realistic
broadband stimuli, and it is possible that
gain control mechanisms maintain fre-
quency selectivity even with high-inten-
sity stimuli9.

There are also a few peculiarities to
Lewicki’s filters that arise from the par-
ticular way in which ICA was imple-
mented. For example, the filters learned
by the algorithm are fairly symmetric in
time (the attack and decay occur at
about the same rate), whereas the
‘gamma-tone’ filters that have been char-
acterized physiologically are asymmet-
ric in time (they rise more steeply than
they decay). In addition, the algorithm
produces filters with the same frequen-
cy response but shifted in time, whereas
auditory nerve fibers do not show such
delays. But it would be fairly straight-
forward to modify the algorithm so that
the filters are constrained to be causal
(that is, filter outputs are determined
from present and past values of the
input), in which case their temporal

ear decomposition of signals that mini-
mizes not just correlations but many
higher-order statistical dependencies as
well5. Lewicki shows that when ICA is
applied to different ensembles of natur-
al sounds (using short samples of 8 ms
duration), the time–frequency tiling pat-
terns that emerge are strikingly differ-
ent. For environmental sounds (such as
crackling twigs), one obtains time–fre-
quency windows similar to a wavelet,
whereas for animal vocalizations (mon-
key coos), one obtains a tiling pattern
similar to the Fourier transform. Speech,
which (as noted above) contains a mix-
ture of temporal and frequency cues,
gives rise to an intermediate tiling pat-
tern, somewhere between a Gabor and a
wavelet; the temporal accuracy increases
with frequency, but to a lesser extent
than with wavelet filters.

The tiling pattern that is optimal for
speech is thus intermediate between
those optimized for environmental
sounds and animal vocalizations. As
Lewicki shows, a close match is obtained
with a 2:1 mixture of environmental to
animal sounds. Interestingly, this pattern
is similar to what has been observed
physiologically in cat auditory nerve
fibers, and it also bears similarity to the
auditory filters that have been charac-
terized psychophysically in humans and
other animals. Although auditory filters
measured behaviorally are not necessar-
ily determined by the cochlea6 (they
could theoretically arise anywhere with-
in the auditory system), these results,
taken together, suggest that the cochlea
and auditory nerve may be optimized to
transmit a wide range of naturally occur-
ring sounds to the brain. It is even pos-
sible, as the author suggests, that the
acoustic properties of human speech
have evolved to make efficient use of the
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Fig. 1. The time–frequency plane can be tiled in multiple ways, any of which  provides a complete representation of a signal. Some of these possi-
bilities have been named by engineers (Gabor, wavelet, Fourier  transform). Each row within a tiling represents one filter. The vertical dimension of
each row represents the frequency specificity  of the filter. The width of each box within a row represents the temporal resolution of the filter.
Note that although the shapes vary, the area of each box is the same; this area represents the lower bound imposed by the fact that it is impossible
to achieve arbitrarily precise resolution of both timing and frequency. How the boxes within a tiling are shaped reflects the chosen trade-off
between time and frequency.
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envelopes would most likely become
asymmetric, like gamma-tone filters.
And if the filters were also assumed to
be time-invariant, so that they are actu-
ally convolved with the input signal,
then there would be no need for time-
shifted filters. However, such modifica-
tions are unlikely to dramatically affect
the time-frequency tiling scheme learned
by the algorithm, which is really the
main point of the paper.

Lewicki’s results share an intriguing
similarity to recent work in vision. Neu-
rons in the visual cortex encode both the
location and the spatial frequency of
visual stimuli, and the trade-off between
these two variables is analogous to that
between timing and frequency in audi-
tory coding. It has been shown that
maximizing statistical independence or
‘sparseness’, of visual representations
yields spatial receptive field properties
similar to those of cortical neurons10–12.
Curiously, the space–frequency tiling
scheme of both the derived filters and
those measured physiologically deviates
from a wavelet in much the same way as
Lewicki finds for the auditory system;
bandwidth at high spatial frequencies is
narrower than one would expect13. It is
not yet clear whether this similarity is
profound or simply coincidental.

Perhaps an even deeper question is
why ICA accounts for neural response
properties at the very earliest stage of
analysis in the auditory system, whereas
in the visual system ICA accounts for the
response properties of cortical neurons,
which are many synapses removed from
photoreceptors. It seems likely that
structural or neurobiological constraints

are really just the tip of the iceberg, and
that ahead lies a vast territory ripe for
investigation.
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are crucial in determining the stage of
analysis appropriate for an independent
component analysis of sensory signals.
For example, the visual system is faced
with an early bottleneck, where infor-
mation from more than 100 million
photoreceptors is funneled into 1 mil-
lion optic nerve fibers. The representa-
tion is then expanded by a factor of 50
in the cortex. By contrast, in the audito-
ry system, there is no early bottleneck,
and the 3000 inner hair cells of the
cochlea immediately fan out onto 30,000
auditory nerve fibers. Thus it seems that
in both systems, ICA is applied at the
point of expansion in the representation.

It is tempting to speculate about
what additional insights may be gained
regarding neural mechanisms higher up
in the auditory stream—the midbrain,
thalamus and cortex—by considering
higher-order forms of structure over
longer time scales and across multiple
frequency bands. But this can not be
done by simply applying the same analy-
sis yet again. To add descriptive power,
any additional stage of analysis would
have to be nonlinear. Divisive normal-
ization9 or a signal power representation
(as in a spectrogram) seem like obvious
choices, and some preliminary work
along these lines has produced promis-
ing results14. Conceivably, this type of
approach could begin to account for
more complex properties of auditory
neurons such as multiple excitatory–
inhibitory band structure or frequency
modulation sensitivity15, or perhaps
even predict heretofore unnoticed
response properties of cortical neurons.
One gets the feeling that these findings
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Color visions in the brain

A vivid perception of color is evoked by spoken words ("seven" is blue, for instance)
in people with a condition called 'colored-hearing synesthesia'. This percept is
associated with activity in an area of the brain that responds to color vision, report
Julia Nunn and colleagues on page 371 of this issue. Because other visual areas are
not activated, these results suggest that a conscious perception of color can be
created by activation of the brain's 'color center' alone. 

In a control experiment, normal subjects did not show activity in the color center in
response to spoken words, even after they had been extensively trained to visualize
particular colors in association with those words. The authors conclude that synesthesia is
much more like a color hallucination than color imagery. Synesthesia may also have a
genetic basis, as it runs in families and is strongly sex-linked (six times more common in
women). The authors speculate that this condition may result from developmental errors
in the formation or retraction of connections between auditory cortex and visual cortex.
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