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Class meets TTH 3:30-5 online

Challenge problem assignments (60% of grade)

Final Project (40% of grade)

Readings:  
Handouts
Hertz, Krogh & Palmer, Introduction to the Theory of Neural Computation
Dayan & Abbott, Theoretical Neuroscience
MacKay, Information Theory, Inference and Learning Algorithms
Sterling & Laughlin, Principles of Neural Design.

All reading materials and assignments on website at
  http://redwood.berkeley.edu/courses/vs265

Piazza discussion forum

http://redwood.berkeley.edu/courses/vs265
http://redwood.berkeley.edu/courses/vs265


Readings for this week
(available on the website)

Today:

■ Sterling & Laughlin, Chapter 1
■ Bell, A.J. Levels and loops: the future of artificial intelligence and 

neuroscience. Phil Trans: Bio Sci. 354:2013--2020 (1999)
■ Dreyfus, H.L. and Dreyfus, S.E. Making a Mind vs. Modeling the Brain: 

Artificial Intelligence Back at a Branchpoint. Daedalus, Winter 1988.

Next week:

■ Sterling & Laughlin, Chapters 2-4
■ Solari & Stoner (2011) Cognitive Consilience.

■ Mead, Analog VLSI and Neural Systems, Chapter 1: Introduction and 
Chapter 4: Neurons 

■ Carandini M, Heeger D (1994) Summation and division by neurons in 
primate visual cortex.



Redwood Center for Theoretical Neuroscience - April 2018



What have brain scans and single-unit recording 
taught us about the computations underlying 

perception and cognition?



 

(from Stringer et al., 2019)

https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001
https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001
https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001


Why hasn’t machine intelligence scaled with Moore’s law?



After 50 years of concerted research efforts...

•  there is little understanding of how neurons 
interact to process sensory information or to 
control actions.

• machines are still incapable of solving simple 
perceptual or motor control tasks.

We are missing something fundamental on both 
fronts:  we are ignorant of the underlying principles 
governing perception and action.



How did we get here?



Among the most challenging scientific questions of our time are the 
corresponding analytic and synthetic problems:  How does the brain 
function?  Can we design a machine which will simulate a brain?
-- Automata Studies, 1956

Alan Turing John von Neumann Marvin Minsky John McCarthy

Artificial Intelligence







Machines will be capable, 
within twenty years, of 
doing any work that a 
man can do. 
— Herbert Simon, 1965  

Within a generation...the 
problem of creating 
‘artificial intelligence’ will be 
substantially solved.
— Marvin Minsky, 1967 

I confidently expect that 
within a matter of 10 or 
15 years, something will 
emerge from the 
laboratory which is not 
too far from the robot of 
science fiction fame.  
— Claude Shannon, 
1961  



http://www.aiai.ed.ac.uk/events/lighthill1973/

vs.

The Lighthill debate (1973)

Sir James Lighthill

http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov
http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov


http://www.aiai.ed.ac.uk/events/lighthill1973/

vs.

The Lighthill debate (1973)

Sir James Lighthill

http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov
http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov


Our first foray into Artificial Intelligence was a program that did 
a credible job of solving problems in college calculus.  Armed 
with that success, we tackled high school algebra;  we found, to 
our surprise, that it was much harder.  Attempts at grade school 
arithmetic, involving the concept of numbers, etc., provide 
problems of current research interest.  An exploration of the 
child’s world of blocks proved insurmountable, except under the 
most rigidly constrained circumstances.  It finally dawned on us 
that the overwhelming majority of what we call intelligence is 
developed by the end of the first year of life.

 --Minksy, 1977



lens eye is indeed specialized for looking up through the water
surface to exploit terrestrial or celestial visual cues.

With this result, it is tempting to speculate that the upper
lens eye is used to detect the mangrove canopy through
Snell’s window, such that the approximately 1 cm large
animals can find their habitat between the mangrove prop
roots and remain there even in the presence of tidal or storm-
water currents. To evaluate the possibility that the upper lens
eye detects the position of the mangrove canopy through
Snell’s window, we made still pictures using a wide-angle
lens looking up through Snell’s window in the natural habitat.
The pictures were taken from just under the surface to make
Snell’s window cover the same area of the surface as seen
by the medusae. In the pictures, it was easy to follow the
mangrove canopy, which shifted from covering most of Snell’s
window to covering just the edge of Snell’s window when the
camera was slowly moved outward to about 20 m away from
the lagoon edge (Figure 2).

To determine what medusae of T. cystophora would see
with their upper lens eyes, we used the optical model [2] of
the eye to calculate the point-spread function of the optics at
different retinal locations. Applying these point-spread func-
tions to still images of Snell’s window in themangrove swamp,
we were able to simulate the retinal image formed in the upper
lens eyes as a jellyfish moves about in the mangrove lagoon.
The results (Figure 2) confirm that despite the severely under-
focused eyes and blurred image [2], the approximately 5 m tall
mangrove canopy can be readily detected at a distance of 4 m
from the lagoon edge and, with some difficulty, can be de-
tected even at a distance of 8 m (detection depends on the
amount of surface ripple and the height of themangrove trees).
These results thus predict that if T. cystophora medusae use
their upper lens eyes to guide them to the correct habitat at
the lagoon edge, then they would swim toward this edge if
they are closer than about 8 m away from it. Also, if they are
farther out in the lagoon, surface ripple and their poor visual

resolution will prevent detection of the mangrove canopy,
and the animals would not be able to determine the direction
to the closest lagoon edge.

Behavioral Assessment of Visual Navigation
Experiments were conducted on wild populations of
T. cystophora medusae in the mangrove lagoons near La
Parguera, Puerto Rico. Preliminary tests demonstrated that if
jellyfish were displaced about 5 m from their habitat at the
lagoon edge, they rapidly swam back to the nearest edge,
independent of compass orientation. To make controlled
experiments, we introduced a clear experimental tank consist-
ing of a cylindrical wall and a flat bottom, open upward, to the
natural habitat under the mangrove canopy. When the tank
was filled with water, it was lightly buoyant such that the walls
extended 1–2 cm above the external water surface, effectively
sealing off the water around the animals but without affecting
the visual surroundings. A group of medusae was released
in the tank, and as long as the tank remained under the canopy,
the medusae showed no directional preference but occasion-
ally bumped into the tank wall. The tank, with the trapped
water andmedusae, was then slowly towed out into the lagoon
from the original position under themangrove canopy. In steps
of 2–4 m, starting at the canopy edge, the positions of the
medusae within the tank were recorded by a video camera
suspended under the tank. At all positions, from the canopy
edge and outward, the medusae ceased feeding and swam
along the edges of the tank, constantly bumping into it, sug-
gesting that they responded to the displacement (Figure 3).
Most importantly, their mean swimming direction differed
significantly from random and coincided with the direction
toward the nearest mangrove trees (Table S1). This behavior
was indicated already at the canopy edge but was strongest
when the tank was placed 2 or 4 m into the lagoon (Figure 3).
At 8 m from the canopy edge, the medusae could still detect

Figure 1. Rhopalial Orientation and Visual Field
of the Upper Lens Eye

(A andB) In freely swimmingmedusae, the rhopa-
lia maintain a constant vertical orientation. When
the medusa changes its body orientation, the
heavy crystal (statolith) in the distal end of the
rhopalium causes the rhopalial stalk to bend
such that the rhopalium remains vertically
oriented. Thus, the upper lens eye (ULE) points
straight upward at all times, irrespective of
body orientation. The rhopalia in focus are situ-
ated on the far side of the medusa and have the
eyes directed to the center of the animal.
(C) Modeling the receptive fields of the most
peripheral photoreceptors in the ULE (the relative
angular sensitivity of all peripheral rim photore-
ceptors are superimposed and normalized ac-
cording to the color template). The demarcated
field of view reveals a near-perfect match to the
size and orientation of Snell’s window (dashed
line).
(D) The visual field of the ULE, of just below 100!,
implies that it monitors the full 180! terrestrial
scene, refracted through Snell’s window. LLE
denotes lower lens eye. Scale bars represent
5 mm in (A) and (B) and 500 mm in insets.

Visual Navigation in Box Jellyfish
799

jumping spider sand wasp

box jellyfish

Even ‘simple’ nervous systems can exhibit 
profound visual intelligence



“The theory reported here clearly demonstrates the feasibility and fruitfulness of a 
quantitative statistical approach to the organization of cognitive systems. By the study of 
systems such as the perceptron, it is hoped that those fundamental laws of organization 
which are common to all information handling systems, machines and men included, may 
eventually be understood.”  -- Frank Rosenblatt 

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. 
In, Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.

Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt



Perceptron model
(Rosenblatt, ca. 1960)
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Hubel & Wiesel (1962, 1965)
280 D. H. HUBEL AND T. N. WIESEL 

FIG. 38. Wiring diagrams that might 
account for the properties of hypercomplex 
cells. A: hypercomplex cell responding to 
single stopped edge (as in Figs. 8 through 
11) receives projections from two complex 
cells, one excitatory to the hypercomplex 
cell (E), the other inhibitory (I). The ex- 
citatory complex cell has iti receptive field 
in the region indicated by the left (con- 
tinuous) rectangle; the inhibitory cell has 
its field in the area indicated by the right 
(interrupted) rectangle. The hypercomplex 
field thus includes both areas, one being the 
activating region, the other the antagonistic. 
Stimulating the left region alone resulti in 
excitation of the cell, whereas stimulating 
both regions together is without effect. & 
scheme proposed to explain the properties 
of a hypercomplex cell responding to a 
double-stopped slit (such as that described 
in Figs. 16 and 17, except for the difference 
in orientation, or the hypercomplex cell with 
small spikes in Fig. 27). The cell receives 
excitatory input from a complex cell whose 
vertically oriented field is indicated to the 
left by a continuous rectangle; two addi- 
tional complex cells inhibitory to the hyper- 
complex cell have vertically oriented fields 
flanking the first one above and below, 
shown by interrupted rectangles. In an al- 
ternative scheme (C), the inhibitory input is 

supplied by a single cell with a large field indicated by the entire interrupted rectangle. In 
either case (13 or C), a slit covering the entire field of the hypercomplex cell would be in- 
effective. Scheme C requires that a slit covering but restricted to the center region be too 
short to affect the inhibitory cell. 

its field stopped at only one end, is given in Fig. 38A; the cell could be the 
one illustrated in Figs. 8 through 11, Only two afferent cells are shown, an 
excitatory and an inhibitory, but there might be many of each type. In Fig. 
38, B and C, two possible arrangements are suggested to account for the 
properties of a double-stopped hypercomplex cell (see Figs. 16 through 20, 
and 27). Figure 38B requires two inhibitory cells, or sets of cells, both com- 
plex, with their fields covering the two flanking areas. In an alternative 
scheme (Fig. 38C), the hypercomplex cell receives an excitatory input from a 
complex cell whose field covers the activating center, as before, and an 
inhibitory input from a single complex cell with a field having the same size 
and position as the entire hypercomplex field, both center and flanks. This 
arrangement could only work efficiently if the inhibitory afferent gave a good 
response to a long slit, but little or no response to a stimulus confined to 
the activating area. This was true for the complex cell (large spikes) of 
Fig. 27, which responded well to a large slit, but not to a small one. Except 
for the difference in ocular dominance, one might imagine that the two 
simultaneously recorded cells in Fig. 27 were interconnected, the complex 
cell sending inhibitory connections to the hypercomplex one. 

D. H. HUBEL AND T. N. WIESEL
field such as that of Text-fig. 2F) are of the same order of magnitude as
the diameters of geniculate receptive-field centres, at least for fields in or
near the area centralis. Hence the fineness of discrimination implied by
the small size of geniculate receptive-field centres is not necessarily lost at
the cortical level, despite the relatively large total size of many cortical
fields; rather, it is incorporated into the detailed substructure of the
cortical fields.

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with 'on' centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated 'on' centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

In a similar way, the simple fields of Text-fig. 2D-G may be constructed
by supposing that the afferent 'on'- or 'off'-centre geniculate cells have
their field centres appropriately placed. For example, field-type G could
be formed by having geniculate afferents with 'off' centres situated in the
region below and to the right of the boundary, and 'on' centres above and
to the left. An asymmetry of flanking regions, as in field E, would
be produced if the two flanks were unequally reinforced by 'on'-centre
afferents.
The model of Text-fig. 19 is based on excitatory synapses. Here the

suppression of firing on illuminating an inhibitory part of the receptive
field is presumed to be the result of withdrawal of tonic excitation, i.e. the
inhibition takes place at a lower level. That such mechanisms occur in the
visual system is clear from studies of the lateral geniculate body, where
an 'off'-centre cell is suppressed on illuminating its field centre because of
suppression of firing in its main excitatory afferent (Hubel & Wiesel, 1961).
In the proposed scheme one should, however, consider the possibility of
direct inhibitory connexions. In Text-fig. 19 we may replace any of the
excitatory endings by inhibitory ones, provided we replace the corre-
sponding geniculate cells by ones of opposite type ('on '-centre instead of
' off'-centre, and conversely). Up to the present the two mechanisms have
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CAT VISUAL CORTEX1
not been distinguished, but there is no reason to think that both do not
occur.
The properties of complex fields are not easily accounted for by sup-

posing that these cells receive afferents directly from the lateral geniculate
body. Rather, the correspondence between simple and complex fields
noted in Part I suggests that cells with complex fields are of higher order,
having cells with simple fields as their afferents. These simple fields would
all have identical axis orientation, but would differ from one another in
their exact retinal positions. An example of such a scheme is given in
Text-fig. 20. The hypothetical cell illustrated has a complex field like that

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, ofwhich three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

of Text-figs. 5 and 6. One may imagine that it receives afferents from a set
of simple cortical cells with fields of type C, Text-fig. 2, all with vertical
axis orientation, and staggered along a horizontal line. An edge of light
would activate one or more of these simple cells wherever it fell within the
complex field, and this would tend to excite the higher-order cell.

Similar schemes may be proposed to explain the behaviour of other
complex units. One need only use the corresponding simple fields as
building blocks, staggering them over an appropriately wide region. A
cell with the properties shown in Text-fig. 3 would require two types of
horizontally oriented simple fields, having 'off' centres above the hori-
zontal line, and 'on' centres below it. A slit of the same width as these
centre regions would strongly activate only those cells whose long narrow

143

Simple

Complex

Hypercomplex



Neocognitron
(Fukushima 1980)

objectsimage
poolingpoolingfeature 

extraction
feature 

extraction





The approach of David Marr (ca. 1980)



Nervous systems are difficult to observe and 
manipulate









1 mm2 of cortex contains 100,000 neurons







Anatomy of a 
synapse



Are there principles?

“God is a hacker”
– Francis Crick

“Individual nerve cells were formerly thought to 
be unreliable… This was quite wrong, and we 
now realise their apparently erratic behavior was 
caused by our ignorance, not the neuron’s 
incompetence.”
 – H.B. Barlow (1972)



Der Vogelflug als Grundlage der Fliegekunst (1889)

Otto Lilienthal experiments 
with flight (1890’s)



Wright Flyer (1903)



Principles of optics 
govern the design 

of eyes



squares of perpendicular distance, and least absolute deviations,
the third of which is more robust against outliers (13). The
standard deviations for the slope and intercept were estimated
directly for the first method and by bootstrap for the last two
methods (14). Bootstrap may help detect outliers in the data
because, when they are left out from a same-size resample, the
correlation coefficient often increases, which could be exploited
to improve estimation. Systematic bias caused by outliers was not
detected in Fig. 2.

3. Theory of Scaling
Our analysis rests on two assumptions. First, we assume that each
small piece of cortex of unit area, regardless of its thickness and
the overall brain size, sends and receives about the same total
cross-sectional area of long-distance connection fibers to and
from other cortical regions. Second, we assume that the global

geometry of the cortex minimizes the average length of the
long-distance fibers.

The second assumption follows from Ramon y Cajal’s prin-
ciple for conservation of space, conduction time, and cellular
materials (Chap. V in ref. 15). This principle has been explored
more recently as the principle of minimal axon length (16–18).
Consistent with previous observations on the basic uniformity of
the cortex (19–21), the first assumption is supported loosely by
the evidence that the total number of neurons beneath a unit
cortical surface area is about 105!mm2 across different cortical
regions for several species, from mouse to human (22) (after
shrinkage correction). But there are exceptions, including the
higher density in striate cortex of primates (22, 23), the lower
density in dolphin cortex (24), and the variability observed in cat
cortex (25). The number of axons leaving or entering the
gray–white boundary per unit cortical area should be compara-

Fig. 2. Cortical white and gray matter volumes of various species (n ! 59) are related by a power law that spans five to six orders of magnitude. Most data points
are based on measurement of a single adult animal. The line is the least squares fit, with a slope around 1.23 " 0.01 (mean " SD). The average and median
deviations of the white matter volumes from the regression line are, respectively, 18% and 13% on a linear scale. Sources of data: If the same species appeared
in more than one source below, the one mentioned earlier was used. All 38 species in table 2 in ref. 3 were taken, including 23 primates, 2 tree shrews, and 13
insectivores. Another 11 species were taken from table 2 in ref. 8, including 3 primates, 2 carnivores, 4 ungulates, and 2 rodents. Five additional species came
from table 1 in ref. 11, including 1 elephant and 4 cetaceans. The data point for the mouse (G ! 112 mm3 and W ! 13 mm3) was based on ref. 30, and that for
the rat (G ! 425 mm3 and W ! 59 mm3) was measured from the serial sections in a stereotaxic atlas (42). The estimates for the fisherman bat (Noctilio leporinus,
G ! 329 mm3 and W ! 43 mm3) and the flying fox (Pteropus lylei, G ! 2,083 mm3 and W ! 341 mm3) were based on refs. 43 and 44, with the ratios of white
and gray matters estimated roughly from the section photographs in the papers. The sea lion data (Zalophus californianus, G ! 113,200 mm3 and W ! 56,100
mm3) were measured from the serial sections at the website given in the legend to Fig. 1, with shrinkage correction.

5622 " www.pnas.org Zhang and Sejnowski

Zhang & Sejnowski (2000)



Principles

Compute with chemistry

Compute directly with analog primitives 

Combine analog and pulsatile processing

Sparsify

Send only what is needed

Send at the lowest acceptable rate 

Minimize wire

Make neural components irreducibly small 

Complicate

Adapt, match, learn, and forget 



• Efficient coding

• Unsupervised learning

• Bayesian inference

• Dynamical systems

• Prediction

• High-dimensional vector arithmetic

• Computing with waves

Computational principles



Experiment Theory




