VS 265 - Neural Computation

Bruno A. Olshausen, Instructor
baolshausen@berkeley.edu

Sophia Sanborn, GSI

sophia.sanborn@gmail.com



Class meets TTH 3:30-5 online
Challenge problem assignments (60% of grade)
Final Project (40% of grade)

Readings:
Handouts
Hertz, Krogh & Palmer, Introduction to the Theory of Neural Computation
Dayan & Abbott, Theoretical Neuroscience
MacKay, Information Theory, Inference and Learning Algorithms
Sterling & Laughlin, Principles of Neural Design.

All reading materials and assignments on website at
http://redwood.berkeley.edu/courses/vs265

Piazza discussion forum


http://redwood.berkeley.edu/courses/vs265
http://redwood.berkeley.edu/courses/vs265

Readings for this week
(available on the website)

Today:

Sterling & Laughlin, Chapter 1

Bell, A.J. Levels and loops: the future of artificial intelligence and
neuroscience. Phil Trans: Bio Sci. 354:2013--2020 (1999)
Dreyfus, H.L. and Dreyfus, S.E. Making a Mind vs. Modeling the Brain:
Artificial Intelligence Back at a Branchpoint. Daedalus, Winter 1988.

Next week:

Sterling & Laughlin, Chapters 2-4
Solari & Stoner (2011) Cognitive Consilience.

Mead, Analog VLS| and Neural Systems, Chapter 1: Introduction and
Chapter 4: Neurons

Carandini M, Heeger D (1994) Summation and division by neurons in
primate visual cortex.
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What have brain scans and single-unit recording
taught us about the computations underlying
perception and cognition!?
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https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001
https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001
https://players.brightcove.net/53038991001/default_default/index.html?videoId=6029063847001

Why hasn’t machine intelligence scaled with Moore’s law?

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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After 50 years of concerted research efforts...

* there is little understanding of how neurons
interact to process sensory information or to
control actions.

* machines are still incapable of solving simple
perceptual or motor control tasks.

We are missing something fundamental on both
fronts: we are ignorant of the underlying principles
governing perception and action.



How did we get here?



Artificial Intelligence

Alan Turing John von Neumann Marvin Minsky John McCarthy

Among the most challenging scientific questions of our time are the
corresponding analytic and synthetic problems: How does the brain
function? Can we design a machine which will simulate a brain?

-- Automata Studies, 1956



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100.

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The.pAtticular task was chosen part%z because it can be segmented into
sub~problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition!l.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Subgoal for July

Anzlysis of scenes consisting of non-overlapping objects from the
following set:

balls
bricks with faces of the same or different colors or texturés
cylinders.

Each face will be of uniform and distinct color and/or texture.-

Background will be homogeneous.

Extensions for August

The first priority will be to handle objects of the same sort but
with cemplex surfaces and backgrounds, e.g. cigarette pack with writing
and bands of diffcrint color, or a cylindrical battery.

Then extend class of objects to objects like tools, cups, etc.



Machines will be capable, Within a generation...the

I confidently expect that ~ Within twenty years, of problem of creating
within a matter of 10 or doing any work that a ‘artificial intelligence’ will be
15 years, something will ~ ™an can do. substantially solved.

emerge from the — Herbert Simon, 1965 — Marvin Minsky, 1967

laboratory which is not
too far from the robot of
science fiction fame.

— Claude Shannon,
1961



The Lighthill debate (1973)

http://www.aiai.ed.ac.uk/events/lighthill 1973/

VS.

Sir James Lighthill

PROF. RICHARD GREGORY
Experimental Psychologist



http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov
http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov

The Lighthill debate (1973)

http://www.aiai.ed.ac.uk/events/lighthill 1973/

PROF. RICHARD GREGORY
Experimental Psychologist


http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov
http://www.aiai.ed.ac.uk/events/lighthill1973/1973-BBC-Lighthill-Controversy.mov

Our first foray into Artificial Intelligence was a program that did
a credible job of solving problems in college calculus. Armed
with that success, we tackled high school algebra; we found, to
our surprise, that it was much harder. Attempts at grade school
arithmetic, involving the concept of numbers, etc., provide
problems of current research interest. An exploration of the
child’s world of blocks proved insurmountable, except under the
most rigidly constrained circumstances. It finally dawned on us
that the overwhelming majority of what we call intelligence is
developed by the end of the first year of life.

--Minksy, 1977



Even ‘simple’ nervous systems can exhibit
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jumping spider sand wasp




Cybernetics/neural networks

Norbert Wiener Warren McCulloch & Walter Pitts Frank Rosenblatt

“The theory reported here clearly demonstrates the feasibility and fruitfulness of a
quantitative statistical approach to the organization of cognitive systems. By the study of
systems such as the perceptron, it is hoped that those fundamental laws of organization
which are common to all information handling systems, machines and men included, may

eventually be understood.” -- Frank Rosenblatt

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.
In, Psychological Review, Vol. 65, No. 6, pp. 386-408, November, 1958.



Perceptron model
(Rosenblatt, ca. 1960)
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Hubel & Wiesel (1962, 1965)
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Neocognitron
(Fukushima 1980)
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image objects



THE WALL STREET JOURNAL

English Edition ¥ | Print Edition = Video @ Podcasts = Latest Headlines

Home World US. Politics Economy Business Tech Markets Opinion Life&Arts Real Estate WSJ. Magazine

LIFE&ARTS | IDEAS | ESSAY

An Al Breaks the Writing Barrier

A new system called GPT-3 is shocking experts with its ability to use and understand language as well as human beings do

Word has been making its way out from the technology community: The world changed
this summer with the rollout of an artificial intelligence system known as GPT-3. Its ability
to interact in English and generate coherent writing have been startling hardened experts,
who speak of “GPT-3 shock.”

Icopied and pasted the first paragraph of

George Washington’s 1796 Farewell Address:
“The period for a new election of a citizen to administer the executive government of the
United States being not far distant, and the time actually arrived when your thoughts must
be employed in designating the person who is to be clothed with that important trust, it
appears to me proper, especially as it may conduce to a more distinct expression of the
public voice, that I should now apprise you of the resolution I have formed, to decline being
considered among the number of those out of whom a choice is to be made.”

GPT-3 gave me its translation: “I am not going to run for president.” Take a bow, HAL 9000.

ILLUSTRATION: WREN MCDONALD

By David A. Price
Aug.22,202012:01amET



The approach of David Marr (ca. 1 980)

Computational theory

Representation and
algorithm

Hardware
implementation

What is the goal of the
computation, why is it

appropriate, and what

is the logic of the strat-
egy by which it can be
carried out?

How can this computa-
tional theory be imple-
mented? In particular,
what is the representa-
tion for the input and
output, and what is the
algorithm for the trans-
formation?

How can the represen-
tation and algorithm be
realized phvsically?

Figure 1-4. The three levels at which any machine carrving out an information-

processing task must be understood.



Nervous systems are difficult to observe and

manipulate
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| mm?2 of cortex contains 100,000 neurons
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Anatomy of a
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Are there principles?

“God is a hacker”
— Francis Crick

“Individual nerve cells were formerly thought to
be unreliable... This was quite wrong, and we
now realise their apparently erratic behavior was
caused by our ignorance, not the neuron’s
incompetence.”

— H.B. Barlow (1972)



Otto Lilienthal experiments
with flight (1890’s)

Lilienthat’s Bird - fght.

Fig.2. D - 9.046 . C-0.0¥60m.

Scale s : 20.

AB+CD < 0.230™

Wing of « stork (weight 4 kg).

Scate 1:6.

Jor Dewnstroke.

Longmans, Grees & O). Londnn. New York, Bombay acd Clontta.

Der Vogelflug als Grundlage der Fliegekunst (1889)



Wright Flyer (1903)

ORVILLE WRIGHT
DAavyrown, Onio

December 27, 1941.

Mr. Horace Lytle, President,
The J. Horace Lytle Company,
Dayton, Ohio.

Dear Mr. Lytle:-

Your letter of November 26th was duly
received, but having become buried among other papers,
it has Just come to my attention again.

I can not think of any part dbird flight had
in the development of human flight excepting as an
inspiration. Although we intently watched birds fly
in a hope of learning something from them I can not
think of anything that was first learned in that way.
After we had thought out certain principles, we then
watched the dird to see whether i1t used the same
principles. 1In a few cases we did detect the same
thing in the bird's flight.

Learning the secret of flight from a bird
was a good deal like learning the secret of magic
from a magician. After you once know the trick and
know what to look for you see things that you did not
notice when you did not know exactly what to look for.

Sincerely yours,

Owre m,‘&



THE EVOLUTION OF EYES

Michael F. Land Russell D. Fernald

Principles of optics
govern the design
of eyes




Zhang & Sejnowski (2000)
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Principles of
Neural Design

Peter Sterling and Simon Laughlin

Principles

Compute with chemistry

Compute directly with analog primitives
Combine analog and pulsatile processing
Sparsify

Send only what is needed

Send at the lowest acceptable rate
Minimize wire

Make neural components irreducibly small
Complicate

Adapt, match, learn, and forget



Computational principles

e Efficient coding

* Unsupervised learning

e Bayesian inference

* Dynamical systems

* Prediction

e High-dimensional vector arithmetic

 Computing with waves



T T

Experiment Theory

.




THAT'S THE WHOLE PROBLEM WITH

SCENCE. YOU'VE GOT A BUNCH OF
EMPIRICISTS TRYING TO DESCRIBE
THINGS OF UNIMAGINABLE WONDER.

/




