Inference

- Wiener filter
- coring/shrinkage

How to compute \hat{x} ?

 $P(x|y) \propto P(y|x) P(x)$

$$-\log P(x|y) = \frac{(y-x)^2}{2\sigma_n^2} + \frac{(x-\mu_x)^2}{2\sigma_x^2} + \text{const.}$$

$$-\frac{\partial}{\partial x}\log P(x|y) = -\frac{(y-x)}{\sigma_n^2} + \frac{(x-\mu_x)}{\sigma_x^2} = 0$$

$$\Rightarrow \hat{x} = \frac{\sigma_x^2 y + \sigma_n^2 \mu_x}{\sigma_x^2 + \sigma_n^2}$$

NOISE REMOVAL VIA BAYESIAN WAVELET CORING

Eero P. Simoncelli

Computer and Information Science Dept. University of Pennsylvania Philadelphia, PA 19104

The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. Subband decompositions of natural images have significantly non-Gaussian higher-order point statistics; these statistics capture image properties that elude Fourier-based techniques. We develop a Bayesian estimator that is a natural extension of the Wiener solution, and that exploits these higher-order statistics. The resulting nonlinear estimator performs a "coring" operation. We provide a simple model for the subband statistics, and use it to develop a semi-blind noise-removal algorithm based on a steerable wavelet pyramid.

Edward H. Adelson

Figure 1 Histograms of a mid-frequency subband in an octave-bandwidth wavelet decomposition for two different images. Left: The "Einstein" image. Right: A white noise image with uniform pdf.

y = x + n

$$y = x + n$$
$$P(x) = \frac{1}{Z_s} e^{-|\frac{x}{s}|^p}$$

$$P(x|y) \propto P(y|x) P(x)$$

original image

Wiener filter

wavelet coring

Learning Horizontal Connections in a Sparse Coding Model of Natural Images

Pierre J. Garrigues Department of EECS Redwood Center for Theoretical Neuroscience Univ. of California, Berkeley Berkeley, CA 94720 garrigue@eecs.berkeley.edu Bruno A. Olshausen Helen Wills Neuroscience Inst. School of Optometry Redwood Center for Theoretical Neuroscience Univ. of California, Berkeley Berkeley, CA 94720 baolshausen@berkeley.edu

(a) 10 most positive weights

(b) 10 most negative weights

(c) Weights visualization

(d) Association fields

Dynamical models (Kalman filter)

First-order Markov process

Linear generative model:

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{w}_{t-1}$$

$$\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{n}_t$$

Prediction:

Sparse coding of time-varying images

$$I(x, y, t) = \sum_{i} a_i(t) * \phi_i(x, y, t) + \nu(x, y, t)$$

Learned basis space-time basis functions (200 bfs, $12 \times 12 \times 7$)

Sparse coding and reconstruction

