Why does an animal need a brain?

- (1) Generate patterns for wireless signaling and appetitive behaviors.
- (2) "Preprocessing" to shape signals for higher processing.
- (3) High-level processing: assemble larger patterns, choose behaviors.
- (4) "Tag" high-level patterns for emotional significance.
- **5** Store and recall.
- (6) Evaluate reward predictions.

(hypothalamus)
(thalamus)
(cerebral cortex)
(amygdaloid complex)
(hippocampus)
(striatum - basal ganglia)

ME, medulla - detect and map local visual patterns LO, lobula - assemble local visual patterns into larger patterns AL, antennal lobe - preprocess olfactory signals for pattern recognition

VLP, ventrolateral protocerebrum - high-level integration SLP, superior lateral protocerebrum - high-level integration SMP, superior medial protocerebrum - high-level integration MB, mushroom body - store and recall

SEG, subesophageal ganglion - integrate information for wired and wireless output to body

"Cognitive Consilience" - Solari & Stoner (2011)

Optic nerve fibers: size distribution and myelination (larger = faster/higher bandwidth)

0.5 µm

Cerebral cortex: gray matter & white matter

Gray matter (stained purple): folded sheet containing cell bodies (100,000/mm³), dendrites, local axon branches (3 km/mm³!).

White matter: axons making long-range connections.

Total cortical surface area is about 2500 cm².

Zhang & Sejnowski (2000)

Movie courtesy of Mark Lescroart

Macaque visual cortex

inflated

flattened

Wallisch & Movshon (2008)

Laminar organization and 'canonical microcircuit'

(Douglas and Martin, 2007)

Felleman & Van Essen 1991

From: Solari & Stoner (2011) "Cognitive Consilience"

Where did this come from?

sand wasp

Vision in jumping spiders

(Wayne Maddison)

(Bair & Olshausen, 1991)

One-day old jumping spider (filmed in the Bower lab, Caltech)

One-day old jumping spider (filmed in the Bower lab, Caltech)

Prey capture

- attention
- orienting
- tracking

Orientation by Jumping Spiders During the Pursuit of Prey (D.E. Hill, 1979)

Figure 1 a-c.

Navigation

(Tarsitano & Jackson 1997)

Philanthus triangulum (sand wasp)

From: Curious Naturalists by Niko Tinbergen

Land & Collett (1973)

Fig. 4. Flight paths of chasing (•) and leading () flies during the longest recorded chase. Points at 20 ms intervals. Corresponding instants on the two paths numbered at 200 ms intervals

Fly lobula neurons selective to optic flow (Krapp & Hengstenberg, 1996)

Fly central complex maps horizontal lines of sight

From Rubin lab, HHMI/Janelia

Ring attractor model (Zhang 1996)

Head-direction cells in ellipsoid body of Drosophila (Seelig & Jayaraman 2015)

Main points

- Why have a brain?
 - to act, speed, make predictions, memory, coordination
- Core functions and modularity appear to be shared among many different brains, from fly to mammal.
- Basic components of mammalian brain
 - cerebral cortex, hippocampus, thalamus, basal ganglia, cerebellum
 - cortex: 2D sheet of neurons, intrinsically flat.
 - visual cortex subdivided into ~30 different areas with different functions, organized hierarchically.
 - Iaminar organization and canonical microcircuit, but is there a canonical algorithm?
- Origins of intelligence
 - fly and spider brains produce of rich, autonomous behavior, ability to navigate and reason about 3D world.
 - fly brain builds internal representation of head direction with respect to external environment.