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Figure 2.2: Why Bayes embodies Occam’s razor
This figure gives the basic intuition for why complex models are penalised. The horizontal axis
represents the space of possible data sets D. Bayes’ rule rewards models in proportion to how much
they predicted the data that occurred. These predictions are quantified by a normalised probability
distribution on D. In this paper, this probability of the data given model Hi, P (D|Hi), is called
the evidence for Hi.
A simple model H1 makes only a limited range of predictions, shown by P (D|H1); a more powerful
model H2, that has, for example, more free parameters than H1, is able to predict a greater variety
of data sets. This means however that H2 does not predict the data sets in region C1 as strongly as
H1. Assume that equal prior probabilities have been assigned to the two models. Then if the data
set falls in region C1, the less powerful model H1 will be the more probable model.

appreciated is how Bayes performs the second level of inference. It is here that Bayesian
methods are totally different from orthodox sampling theory methods. Indeed, when re-
gression and density estimation are discussed in most statistics texts (for example [24]),
the task of model comparison is virtually ignored; no general orthodox method exists for
solving this problem.

Model comparison is a difficult task because it is not possible simply to choose the model
that fits the data best: more complex models can always fit the data better, so the maximum
likelihood model choice would lead us inevitably to implausible over–parameterised models
which generalise poorly. ‘Occam’s razor’ is the principle that states that unnecessarily
complex models should not be preferred to simpler ones. Bayesian methods automatically
and quantitatively embody Occam’s razor [26, 38], without the introduction of ad hoc
penalty terms. Complex models are automatically self–penalising under Bayes’ rule. Figure
2.2 gives the basic intuition for why this should be expected; the rest of this chapter will
explore this property in depth.

Bayesian methods, simultaneously conceived by Bayes [6] and Laplace [80], were first laid
out in depth by the Cambridge geophysicist Sir Harold Jeffreys [38]. The logical basis for
the Bayesian use of probabilities as measures of plausibility was subsequently established by
Cox [17], who proved that consistent inference in a closed hypothesis space can be mapped
onto probabilities. For a general review of Bayesian philosophy the reader is encouraged
to read the excellent papers by Jaynes and Loredo [36, 47], and the recently reprinted text
of Box and Tiao [13]. Since Jeffreys, the emphasis of most Bayesian probability theory
has been ‘to formally utilize prior information’ [8], i.e., to perform inference in a way that
makes explicit the prior knowledge and ignorance that we have, which orthodox methods
omit. However, Jeffreys’ work also laid the foundation for Bayesian model comparison,
which does not involve an emphasis on prior information, but rather emphasises getting
maximal information from the data. Jeffreys applied this theory to simple model comparison
problems in geophysics, for example testing whether a single additional parameter is justified
by the data. Since the 1960s, Jeffreys’ model comparison methods have been applied and
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Figure 2.3: The Occam factor
This figure shows the quantities that determine the Occam factor for a hypothesis Hi having a single
parameter w. The prior distribution (dotted line) for the parameter has width ∆0w. The posterior
distribution (solid line) has a single peak at wMP with characteristic width ∆w. The Occam factor
is ∆w

∆0w .

P (D |Hi) ! P (D |wMP,Hi)
︸ ︷︷ ︸

P (wMP|Hi)∆w
︸ ︷︷ ︸

.

Evidence ! Best fit likelihood Occam factor

(2.5)

Thus the evidence is found by taking the best fit likelihood that the model can achieve and
multiplying it by an ‘Occam factor’ [26], which is a term with magnitude less than one that
penalises Hi for having the parameter w.

Interpretation of the Occam factor

The quantity ∆w is the posterior uncertainty in w. Imagine for simplicity that the prior
P (w|Hi) is uniform on some large interval ∆0w, representing the range of values of w that
Hi thought possible before the data arrived (figure 2.3). Then P (wMP|Hi) = 1

∆0w , and

Occam factor =
∆w

∆0w
,

i.e., the ratio of the posterior accessible volume of Hi’s parameter space to the
prior accessible volume, or the factor by which Hi’s hypothesis space collapses when the
data arrive [26, 38]. The model Hi can be viewed as being composed of a certain number of
equivalent submodels, of which only one survives when the data arrive. The Occam factor
is the inverse of that number. The log of the Occam factor can be interpreted as the amount
of information we gain about the model when the data arrive.

Typically, a complex model with many parameters, each of which is free to vary over a
large range ∆0w, will be penalised with a larger Occam factor than a simpler model. The
Occam factor also provides a penalty for models which have to be finely tuned to fit the
data; the Occam factor promotes models for which the required precision of the parameters
∆w is coarse. The Occam factor is thus a measure of complexity of the model, but unlike
the V–C dimension or algorithmic complexity, it relates to the complexity of the predictions
that the model makes in data space; therefore it depends on the number of data points and
other properties of the data set. Which model achieves the greatest evidence is determined
by a trade–off between minimising this natural complexity measure and minimising the data
misfit.
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“Boltzmann machine” with hidden units
(Hinton & Sejnowski)
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The Boltzmann machine learning rule

Clamped:

Free:



Gibbs sampling

To sample from           : P (x)

x1 ∼ P (x1|x2, ..., xn)

x2 ∼ P (x2|x1, x3, ..., xn)

x3 ∼ P (x3|x1, x2, x4, ..., xn)

xn ∼ P (xn|x1, ..., xn−1)

.

.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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Abstract

We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all
layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations
between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-
Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast
and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance
sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons
within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of
20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to
45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further
removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which
case the higher order models continued to perform best. These results demonstrate the importance of higher-order
interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units
provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation
and evaluation.
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Introduction

Electrophysiology is rapidly moving towards high density
recording techniques capable of capturing the simultaneous activity
of large populations of neurons. This raises the challenge of
understanding how networks encode and process information in
ways that go beyond tuning properties or feedforward receptive field
models. Modeling the distribution of states in a network provides a
way to discover communication patterns between neurons or
functional groupings such as cell assemblies which may exhibit a
more direct relation to stimulus or behavioral variables.

The Ising model, originally developed in the 1920s to describe
magnetic interactions [1], has been used to statistically characterize
electrophysiological data, particularly in the retina [2], and more
recently for cortical recordings [3,4]. This model treats spikes from a
population of neurons binned in time as binary vectors and captures
dependencies between cells with the maximum entropy distribution
for pairwise dependencies. This has been shown to provide a good
model for small groups of cells in the retina [5], though it is unable
to capture dependencies higher than second-order.

In this work, we apply maximum entropy models to neural
population recordings from the visual cortex. Cortical networks
have proven more challenging to model than the retina: The
magnitude and importance of pairwise correlations between
cortical cells is controversial [6,7] and higher-order correlations,

i.e. correlations which cannot be captured by a pair-wise
maximum entropy model, play a more important role [8–10].
One of the challenges with current recording technologies is that
we can record simultaneously only a tiny fraction of the cells that
make up a cortical circuit. Sparse sampling together with the
complexity of the circuit mean that the majority of a cell’s input
will be from cells outside the recorded population. In adult cat
visual cortex, direct synaptic connections have been reported to
occur between 11%–30% of nearby pairs of excitatory neurons in
layer IV [11], while a larger fraction of cell pairs show
‘‘polysynaptic’’ couplings [12], defined by a broad peak in the
cross-correlation between two cells. This type of coupling can be
due to common inputs (either from a different cortical area or
lateral connections) or a chain of monosynaptic connections. A
combination of these is believed to give rise to most of the
statistical interactions between recorded pairs of cells. The Ising
model, which assumes only pairwise couplings, is well suited to
model direct (and symmetric) synaptic coupling, but cannot
capture interactions involving more than two cells. We propose a
new approach, that addresses both incomplete sampling and
common inputs from other cell assemblies, by extending the Ising
model with a layer of hidden units or latent variables. The
resulting model is a semi-Restricted Boltzmann Machine (sRBM),
which combines pairwise connections between visible units with an
additional set of connections to hidden units.

PLOS Computational Biology | www.ploscompbiol.org 1 July 2014 | Volume 10 | Issue 7 | e1003684



Experiment
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From Correlations to Models
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Proposed Model
• Ising model, cells connect 

with pairwise coupling

• Additional hidden units

• Boltzmann Machine

• No connections between 
hidden units: Restricted 
Boltzmann Machine (RBM)

• Estimation of parameters is 
made efficient with Minimum 
Probability Flow (MPF)



Results: Model structure
• Ising model: Pairwise coupling parameters

• RBM with vertical connections only

• sRBM with horizontal connections between 
pairs

• Hidden units are localized to cortical layer
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Model comparison

• Normalized probabilities with 
Annealed Importance Sampling 
for model comparison 

• Model quality measured as 
likelihood gain over 
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hidden units significantly 
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Results: Pattern frequency

• Insight into where 
and how models 
fail

• Independent model 
fails on pairs of 
cells

• Ising model  
underestimates 
triplet activity

• RBMs capture all 
patterns well

none
single
double
triple
quad
higher

Ising
Indep.

RBM
sRBM

10−4 10−3 10−2 10−1 100
10−8

10−6

10−4

10−2

100

Empirical Pattern Frequency

M
od

el
 P

ro
ba

bi
lit

y

Empirical vs. Model Probabilities

10−4 10−3 10−2 10−1 100
10−8

10−6

10−4

10−2

100

Empirical Pattern Frequency

M
od

el
 P

ro
ba

bi
lit

y

Empirical vs. Model Probabilities

10−4 10−3 10−2 10−1 100
10−8

10−6

10−4

10−2

100

Empirical Pattern Frequency

M
od

el
 P

ro
ba

bi
lit

y

Empirical vs. Model Probabilities

10−4 10−3 10−2 10−1 100
10−8

10−6

10−4

10−2

100

Empirical Pattern Frequency

M
od

el
 P

ro
ba

bi
lit

y

Empirical vs. Model Probabilities

10−4 10−3 10−2 10−1 100
10−8

10−6

10−4

10−2

100

Empirical Pattern Frequency

M
od

el
 P

ro
ba

bi
lit

y

Empirical vs. Model Probabilities

 simultaneously
active cells:



The setup for measuring the SHG is described
in the supporting online material (22). We expect
that the SHG strongly depends on the resonance
that is excited. Obviously, the incident polariza-
tion and the detuning of the laser wavelength
from the resonance are of particular interest. One
possibility for controlling the detuning is to
change the laser wavelength for a given sample,
which is difficult because of the extremely broad
tuning range required. Thus, we follow an
alternative route, lithographic tuning (in which
the incident laser wavelength of 1.5 mm, as well
as the detection system, remains fixed), and tune
the resonance positions by changing the SRR
size. In this manner, we can also guarantee that
the optical properties of the SRR constituent
materials are identical for all configurations. The
blue bars in Fig. 1 summarize the measured SHG
signals. For excitation of the LC resonance in Fig.
1A (horizontal incident polarization), we find
an SHG signal that is 500 times above the noise
level. As expected for SHG, this signal closely
scales with the square of the incident power
(Fig. 2A). The polarization of the SHG emission
is nearly vertical (Fig. 2B). The small angle with
respect to the vertical is due to deviations from
perfect mirror symmetry of the SRRs (see
electron micrographs in Fig. 1). Small detuning
of the LC resonance toward smaller wavelength
(i.e., to 1.3-mm wavelength) reduces the SHG
signal strength from 100% to 20%. For ex-
citation of the Mie resonance with vertical
incident polarization in Fig. 1D, we find a small
signal just above the noise level. For excitation
of the Mie resonance with horizontal incident
polarization in Fig. 1C, a small but significant
SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.
1B shows the off-resonant case for the smaller
SRRs for vertical incident polarization.

Although these results are compatible with
the known selection rules of surface SHG from
usual nonlinear optics (23), these selection rules
do not explain the mechanism of SHG. Follow-
ing our above argumentation on the magnetic
component of the Lorentz force, we numerically
calculate first the linear electric and magnet-
ic field distributions (22); from these fields,
we compute the electron velocities and the
Lorentz-force field (fig. S1). In the spirit of a
metamaterial, the transverse component of the
Lorentz-force field can be spatially averaged
over the volume of the unit cell of size a by a
by t. This procedure delivers the driving force
for the transverse SHG polarization. As usual,
the SHG intensity is proportional to the square
modulus of the nonlinear electron displacement.
Thus, the SHG strength is expected to be
proportional to the square modulus of the
driving force, and the SHG polarization is
directed along the driving-force vector. Cor-
responding results are summarized in Fig. 3 in
the same arrangement as Fig. 1 to allow for a
direct comparison between experiment and
theory. The agreement is generally good, both
for linear optics and for SHG. In particular, we
find a much larger SHG signal for excitation of
those two resonances (Fig. 3, A and C), which
are related to a finite magnetic-dipole moment
(perpendicular to the SRR plane) as compared
with the purely electric Mie resonance (Figs.
1D and 3D), despite the fact that its oscillator
strength in the linear spectrum is comparable.
The SHG polarization in the theory is strictly
vertical for all resonances. Quantitative devia-
tions between the SHG signal strengths of ex-
periment and theory, respectively, are probably
due to the simplified SRR shape assumed in
our calculations and/or due to the simplicity of
our modeling. A systematic microscopic theory
of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is
currently not available.

References and Notes
1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart,

IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).
2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
3. R. A. Shelby, D. R. Smith, S. Schultz, Science 292, 77 (2001).
4. T. J. Yen et al., Science 303, 1494 (2004).
5. S. Linden et al., Science 306, 1351 (2004).
6. C. Enkrich et al., Phys. Rev. Lett. 95, 203901 (2005).
7. A. N. Grigorenko et al., Nature 438, 335 (2005).
8. G. Dolling, M. Wegener, S. Linden, C. Hormann, Opt.

Express 14, 1842 (2006).
9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis,

S. Linden, Science 312, 892 (2006).
10. J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780;

published online 25 May 2006.
11. U. Leonhardt, Science 312, 1777 (2006); published

online 25 May 2006.
12. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis,

S. Linden, Opt. Lett. 31, 1259 (2006).
13. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt,

Phys. Rev. Lett. 96, 107401 (2006).
14. D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Phys.

Rev. B 65, 195104 (2002).
15. S. O’Brien, D. McPeake, S. A. Ramakrishna, J. B. Pendry,

Phys. Rev. B 69, 241101 (2004).
16. J. Zhou et al., Phys. Rev. Lett. 95, 223902 (2005).
17. A. K. Popov, V. M. Shalaev, available at http://arxiv.org/

abs/physics/0601055 (2006).
18. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
19. M. Wegener, Extreme Nonlinear Optics (Springer, Berlin,

2004).
20. H. M. Barlow, Nature 173, 41 (1954).
21. S.-Y. Chen, M. Maksimchuk, D. Umstadter, Nature 396,

653 (1998).
22. Materials and Methods are available as supporting

material on Science Online.
23. P. Guyot-Sionnest, W. Chen, Y. R. Shen, Phys. Rev. B 33,

8254 (1986).
24. We thank the groups of S. W. Koch, J. V. Moloney, and

C. M. Soukoulis for discussions. The research of
M.W. is supported by the Leibniz award 2000 of the
Deutsche Forschungsgemeinschaft (DFG), that of S.L. through
a Helmholtz-Hochschul-Nachwuchsgruppe (VH-NG-232).

Supporting Online Material
www.sciencemag.org/cgi/content/full/313/5786/502/DC1
Materials and Methods
Figs. S1 and S2
References

26 April 2006; accepted 22 June 2006
10.1126/science.1129198

Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
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iZpixels

bivi j
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jZfeatures

bjhj

j
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i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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adjusting the weights and biases to lower the
energy of that image and to raise the energy of
similar, Bconfabulated[ images that the network
would prefer to the real data. Given a training
image, the binary state hj of each feature de-
tector j is set to 1 with probability s(bj þP

iviwij), where s(x) is the logistic function
1/E1 þ exp (–x)^, bj is the bias of j, vi is the
state of pixel i, and wij is the weight between i
and j. Once binary states have been chosen for
the hidden units, a Bconfabulation[ is produced
by setting each vi to 1 with probability s(bi þP

jhjwij), where bi is the bias of i. The states of

the hidden units are then updated once more so
that they represent features of the confabula-
tion. The change in a weight is given by

Dwij 0 e
!
bvihjÀdata j bvihjÀrecon

"
ð2Þ

where e is a learning rate, bvihjÀdata is the
fraction of times that the pixel i and feature
detector j are on together when the feature
detectors are being driven by data, and
bvihjÀrecon is the corresponding fraction for
confabulations. A simplified version of the

same learning rule is used for the biases. The
learning works well even though it is not
exactly following the gradient of the log
probability of the training data (6).

A single layer of binary features is not the
best way to model the structure in a set of im-
ages. After learning one layer of feature de-
tectors, we can treat their activities—when they
are being driven by the data—as data for
learning a second layer of features. The first
layer of feature detectors then become the
visible units for learning the next RBM. This
layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.
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Application to hand-written digits
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