
the high affinity of carbon for certain metals (11),
molten metal nanoparticles are able to act as
catalytic sites for the uptake of carbon with sub-
sequent carbon nanotube outgrowth (12).

Under continuing heating, we observed nano-
wire growth over the course of 10 min (Fig. 3).
Movie S2, taken at a higher resolution, better shows
the initial stages of growth at high temperature (10).
The faceted end of the emerging wire indicates
that the free end of the wire is solid during the
growth process.

Because the walls of the microcrucible con-
tain the ions that are consumed in the formation
of the nanowire, as the nanowire grows it would
be expected that the dimensions of the micro-
crucible itself would change, leading to alteration
of the nanowire morphology. The continual evo-
lution of the liquid-solid interface of the micro-
crucible is a dynamic process that leads to creep
of the interface and the concomitant morphogen-
esis of nonclassical crystal structures. Changes in
the structure of the microcrucible have been ob-
served previously in the growth of BSCCO and
Y123 whiskers at the microscale, with the resultant
creation of single-crystal morphologies as unor-
thodox as bows and rings (13, 14). In this work,
microcrucible creep resulted in two distinct nano-
wiremorphologies: (i) those that underwent growth
in both length and width and (ii) those for which
two nearby microcrucibles joined together to form
wires with “stepped” ends. Figure 4 shows nano-
wires with stepped ends as a result of two micro-
crucibles joining together (Fig. 4, A and B), as well
as the progression of a growing wire over the
course of 5 min, which shows the walls of the mi-
crocrucible breaking down (Fig. 4, C and D). Be-
cause the nanowire in Fig. 4C is short and at high
temperature, the molten material is able to wet the
side edge of the nanowire as the microcrucible
supporting it breaks down (allowing for a droplet
of greater diameter), causing a rapid and uniform
increase in width. Evidence of creep can also be
seen in Fig. 1D, where the regions of the nanowire
at the edges of themicrocrucible are crystallograph-
ically distinct from those in the center. A degree of
control of the liquid-solid interface is exhibited here,
as the BaCO3 nanoparticles are of low-size poly-
dispersity (15) and therefore limit the type and
amount of creep in the system and, consequently,
the diversity of structural features in the nanowires.

In previous studies on the synthesis of quater-
nary oxide nanowires (15, 16), nanowires grew
with a tapered morphology and a VLS-like cata-
lytic drop. The key difference in those studies
was that carbon-rich precursors such as citrate
and acetate were used in the syntheses; these
substances tend to persist for longer under cal-
cination (17, 18) than do the nitrates used here
(fig. S7). In turn, this leads to a lower-density
matrix, enabling nanoparticles to leave the sur-
face and act as catalytic sites on the leading edges
of the outgrowing nanowires. This is followed by
tapered growth as the nanoparticle is consumed,
producing morphologies more reminiscent of a
VLS process. The loss of nitrates at a lower cal-

cination temperature means that in this work, the
matrix is denser at the point at which nanowire
growth begins. We deduce that here the matrix is
still porous and reticulated, but the higher density
will therefore tend to entrap Ba-rich nanoparticles at
the surface and lead to the microcrucible growth
observed. It is likely that in previous reports where
nitrate precursors were used to form the complex
oxides of La3Ga5SiO14 (19) and La0.67Sr0.33MnO3

(20) via a porous matrix, the faceted-ended nano-
wires produced were also the result of a micro-
crucible mechanism.

Through judicious design of the synthetic pro-
tocol, we have demonstrated the direct observation
of a microcrucible growth mechanism and confirmed
that it is a viable method for the growth of complex
oxide nanowires. The successful formation of
nanowires is predicated on the presence of a cat-
alytic nanoparticle and a porous matrix that enables
migration of the former through the latter, leading
to nanowire outgrowth at the surface. The uniform
cross section arising from the microcrucible mech-
anism means that the nanowires produced in this
way will have the same physical properties along
their entire length, leading to more uniform current-
carrying ability, ferroic behavior, and tensile strength
for the future use of complex functional oxide
nanowires in applications.
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Spatially Distributed Local Fields in
the Hippocampus Encode Rat Position
Gautam Agarwal,1 Ian H. Stevenson,1* Antal Berényi,2,3 Kenji Mizuseki,2†
György Buzsáki,2†† Friedrich T. Sommer1††

Although neuronal spikes can be readily detected from extracellular recordings, synaptic and
subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus,
neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical
sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse
and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP
recordings. Using high-density sampling of LFP and computational methods, we show that the
spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking
populations. Because our approach exploits the rhythmicity and sparse structure of neural activity,
features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.

Two qualitatively different types of electric
signals can be detected extracellularly, ac-
tion potentials (spikes) and local field po-

tentials (LFPs) (1–5), and these signals are regarded
as complementary readouts of information about
neuronal computation (5,6).As a ratmoves through

its environment, hippocampal pyramidal cells spike
at specific locations (place cells) (7). In contrast, the
LFP maintains rhythmic (8 to 9 Hz) theta oscilla-
tions, independent of the rat’s position (8, 9). We
hypothesized that the theta rhythm also contains
information about the rat’s position, since it is
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primarily the place cell population whose mem-
brane potential fluctuations give rise to theLFP (10).

Rats were implanted with 32-, 64-, or 256-site
silicon probes in the hippocampus to monitor
both LFP and unit firing (Fig. 1A) while they
traversed a linear track (Fig. 1B), open field, or a
Tmaze (11).Whenmapped onto electrode space,
the theta rhythm showed spatiotemporal variations
(Fig. 1A) that changed gradually over multiple
cycles (movie S1). By analogy to radio commu-
nication, we defined the theta oscillation to be a
carrier wave whose modulation contains informa-
tion. This informationwas extracted from the theta
rhythm using a demodulation operation (fig. S1).

First, the theta-band-filtered oscillatory activity
of each electrode was converted to a complex-
valued signal, representing its instantaneous
phase and amplitude (Fig. 1D). The carrier
signal, identified by principal component analy-
sis, was highly coherent across electrodes (Fig.
1D, lower trace). The demodulation operation
then removed the phase of the theta carrier from
each electrode, resulting in a spatiotemporal pat-
tern of relative phase and amplitude that covaried
smoothly (Fig. 1, E and F) with the rat’s position.

The position of the rat during navigation was
estimated from the demodulated LFP (Fig. 2 and
fig. S2) and compared to spike-based decoding
(1, 7, 12, 13). Although the cross-validated ac-
curacy of the two decoders was comparable [op-
timal linear estimator (OLE) median error 6.7 T
0.2 cm (LFP) and 9.2 T 0.2 cm (spiking)] (Fig. 2G
and fig. S2), they had distinct velocity and position
dependence (Fig. 2, B and D). Accurate decoding
of the theta rhythm depended on demodulation, as
well as preserving the high dimensionality of the
signal, even though the variance of the multi-
electrode signal was largely concentrated in a low-
dimensional subspace (Fig. 2C), visible in the
strong correlations in the LFP recorded at differ-

ent electrodes (Fig. 1, C and D). Whitening and
Bayesian decoding methods further improved ac-
curacy, especially in the open field (120 by 120
or 180 by 180 cm2) (Fig. 2G).

Because position encoding is sparse, a theo-
retical result (14) based on compressed sensing
(15) suggests that unsupervised learning can dis-
cover position-dependent sparse structure in the
LFP without explicit knowledge of the rat’s po-
sition.We tested this prediction by examining the
evolving spatiotemporal distribution of the theta-
filtered LFP using independent component anal-
ysis (ICA) (16, 17). A subset of the components
[termed feature-tuned field potentials (FFPs)]
showed selective activation at specific positions
along one direction of motion (Fig. 3A and figs.
S3 and S4) and comprised the major portion of
the signal variance (53%, 69%, and 79% of total
variance for n = 3 rats). When FFPs were pro-
jected back onto the anatomical space, they were
distributed across the entire surface of the elec-
trode array (Fig. 3B and movie S2).

We next asked whether the sparse structure of
the broadband LFP (4 to 80 Hz) is also position
dependent by training a convolutional sparse
coding algorithm (18), which models signals as
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California, Berkeley, Berkeley, CA 94720, USA. 2The Neuroscience
Institute, Center for Neural Science, NewYorkUniversity, School of
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Fig. 1. Recording space- and
time-dependent variations in
theta rhythm. (Ai) Arrange-
ment of 64 (yellow) and 2 by
256 (red) electrode arrays im-
planted in the hippocampi of
different rats. Left and right pan-
els depict recordings along or-
thogonal axes: D/V, dorsoventral;
A/P, anteroposterior; M/L, me-
diolateral. (Aii) Average spa-
tial distribution of theta recorded
by the electrode array in the
right panel of (Ai) reveals sys-
tematic differences in the ana-
tomical distribution of the theta
rhythm. Arrows depict local
phase gradients. (B) A rat runs
across a 250-cm track to receive
a water reward (w) at both ends.
(C to E) (Left) LFP recorded
during one run across the track.
(Right) schematic of signal rep-
resentation. Axes: T, time; R,
real; I, imaginary. (C) Velocity
of the rat (top) and the orig-
inal, broadband signal (bot-
tom), which shows a strong
theta rhythm during running.
(D) (Top) Filtering the signal
with Morlet wavelet (5 to 11 Hz
half-power cutoff) results in a
complex-valued waveform with
time-varying amplitude and
phase. (Bottom) The first prin-
cipal component (PC1) of the
complex-valued signal, which tracks the global theta oscillation. (E) De-
modulating the signal using PC1 as a carrier identifies modulations in
amplitude and phase. (F) Averaging the demodulated signal over multiple

runs reveals that its variations depend systematically on the rat’s position.
For (E) and (F), phase is scaled by a factor of 16 to emphasize time-varying
structure.
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a sparse superposition of spatiotemporal features.
Despite differences in the analysis method and
training data, the broadband components activated
at single positions were spaced along the whole
track, similar to the theta-band components (Fig.
3D and fig. S5). Each broadband feature
exhibited the sawtooth waveform characteristic
of hippocampal theta, with unique spatial var-
iations in attributes such as onset and peak time
(Fig 3C). Broadband features, similar to theta-
band FFPs, remained largely silent outside a small
range of preferred positions, each activating briefly
at theta frequency (Fig. 3D).

The entire population of FFPs in a given ses-
sion uniformly tiled the linear track (Fig. 4A). The
phase of each demodulated FFP showed progres-
sive advancement as the rat traversed the corre-
sponding place field (Fig. 4A), reminiscent of the
theta-phase precession of place cell spikes (19), and
suggesting that the theta-rhythm arises largely from
a population of phase-precessing neurons (10). The

distribution of the place fields of pyramidal cells
was more irregular than that of the FFPs (Fig. 4B
and fig. S6), consistent with the performance of the
corresponding decoders (Fig. 2). Unlike FFPs,
pyramidal cells had multiple place fields in one or
both directions of travel, leading to distinct pairwise
activity profiles of the populations (Fig. 4C and fig.
S6). We also examined FFPs as the rat performed a
spatial alternation memory task (20) in a T maze
with a 10-s delay period in a large waiting area (Fig.
4D). Recordings from two 256-electrode arrays (11)
contained ~50 FFPs that together covered the entire
maze (Fig. 4D).About half of all FFPs densely tiled
the two-dimensional (2D) waiting area (Fig. 4D).
Most 2D place fields occupied largely similar po-
sitions independent of whether the rat came from
a leftward or rightward journey (fig. S7). Accurate
LFP decoding and identification of FFPs could also
be performed on recording sites within the den-
dritic layers (fig. S8), excluding somatic layers
where spikes were detected.

To understand how properties of FFPs relate
to the activity of the underlying neuronal popu-
lation, a simulation was constructed in which the
LFP was modeled as the superimposed activity
generated by numerous place-modulated synaptic
inputs (fig. S9). Although individual electrodes
showed weak place-tuning, their collective activity
could nonetheless be decoded. Furthermore, ICA
identified a large number of learned FFPs tuned to
very specific locations of the track, consistent with
theory (fig. S10) (14). However, as the trial-by-trial
variability of neuronal activity was increased, ICA
identified a decreasing number of FFPs. For noisy
populations, FFP width increased in proportion
to, but never exceeded, the tuning width of the
underlying population’s place fields.

We demonstrated that the rat’s location is en-
coded by spatial variations of the hippocampal
LFP. An often-assumed limitation of the LFP is that
each electrode subsamples (pools) the activity of
a large population of neurons. In topographically

Fig. 2. Decoding of position by demodulated LFP and spikes. (A)
Decoding of rat position on a linear track by LFP and spikes. Lines indicate
actual trajectory, while dots indicate OLE estimate of position (y axis) at each
time point (x axis). (B) LFP-based decoder performs best at high velocities,
unlike spike-based decoder. The lower histogram shows the time spent at
different speeds. (C) Variance is largely explained by PC1 (~85% of total
variance, falling outside of plotted range), and accurate, cross-validated
decoding depends on a large number of PC dimensions. (D) Histogram of
decoder predictions; dark squares indicate high-probability events. Decoders

trained on subsets of LFP channels (right) degrade uniformly, whereas those
trained on spikes from subsets of neurons (left) degrade in a patchy manner. (E)
Decoding of rat position in a 2D open field using a Bayesian filter-based
decoder. Lines indicate actual trajectory in x and y coordinates; dots indicate
decoder estimates. (F) Bird’s eye view of actual (black) and estimated (color)
position at different time points. Ellipses indicate ~1 SD confidence regions. (G)
Median error of decoders as a function of the number of (random) channels
used. Data is from rat ec014, with 64 electrodes straddling the cornu ammonis
1 (CA1) pyramidal layer. Identical color codes are used for (A), (B), (E), and (G).
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Fig. 3. Sparse decompositions of oscillatory features in
multielectrode data. (A) ICA of the signal reveals components,
termed FFPs, that activate selectively at particular locations. (B)
Each FFP exhibits a unique phase-amplitude relationship across
the recorded area. For display purposes, FFPs are mean-subtracted
to reveal differences (see supplementary materials). (C) Sparse
decomposition of the broadband signal (4 to 80 Hz) reveals
components that activate at corresponding locations and have
distinctive broadband structure, consisting of diverse onsets
and peaks. Individual traces are colored according to their cor-
responding electrodes in (B). (D) Broadband sparse compo-
nents activate sequentially on the track, also exhibiting theta
periodicity; components that activate in the reverse direction
(black lines) remain silent. (Inset) Mean power spectrum of
component activations. Data was recorded by a 64-electrode
array implanted in CA1.

Fig. 4. Populationproperties of FFPs andneuronal spikesduringa single
session. (A) FFPs uniformly tile the length of the track. The spatial extent and
spacing of different FFPs is largely homogeneous across the track (middle).
FFPs exhibit phase precession with respect to PC1 (bottom). (B) Pyramidal cells
have place fields that are more variable in extent and distribution. (C) The
overlap of FFP activations is largely restricted to neighbors, unlike that for
pyramidal cells [grayscale range of P(Overlap) = 0 to 0.1]. (D) Activation of FFPs

in a T maze. Waiting area is enclosed in a red box. Right panels show close-up of
activations in waiting area, separated by direction of entry. Asterisks mark acti-
vations that are entry-direction selective. Each point represents a time bin where
FFP activation exceeds a threshold, its size indicating the magnitude of activation.
In (A) and (B), place-field hues are assigned based on location of maximal
activation; in (D), hues are assigned to distinguish neighbors. Data for (A), (B), and
(C) are collected by a 64-electrode array; (D) was from 2- by 256-electrode arrays.
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organized brain regions, this limitation is less ham-
pering, because the electrode conveys the activity
of similarly tuned neurons (21, 22). In contrast,
because place cells in the hippocampus are dis-
tributed without topographic ordering (23), the
LFP measured at any single location exhibits only
weak place-modulation (fig. S9). However, com-
pressed sensing methods can recover sparse signals
even from mixed and subsampled measurements
(15). During movement, population activity in the
hippocampus is largely determined by a single (i.e.,
highly sparse) cause: the rat’s current position.There-
fore, distributed messages can be discovered by
unsupervised learning methods such as ICA (14).
Our experimental and simulation results show
that the ICA-derived FFPs exhibit several proper-
ties reminiscent of place cells: They have smooth,
localized place fields, exhibit phase precession,
and show considerable trial-by-trial variability (24).
Building on earlier work [e.g., (25)], these findings
showhow large-scale recordings of LFP can help in
understanding the organization of activity in other
brain regions, as well as developing robust de-
coders for brain-computer interfaces.
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Vascular and Neurogenic
Rejuvenation of the Aging Mouse
Brain by Young Systemic Factors
Lida Katsimpardi,1,2* Nadia K. Litterman,1,2 Pamela A. Schein,1,2 Christine M. Miller,1,2,3

Francesco S. Loffredo,1,2,4 Gregory R. Wojtkiewicz,5 John W. Chen,5 Richard T. Lee,1,2,4

Amy J. Wagers,1,2,3 Lee L. Rubin1,2*

In the adult central nervous system, the vasculature of the neurogenic niche regulates neural stem
cell behavior by providing circulating and secreted factors. Age-related decline of neurogenesis
and cognitive function is associated with reduced blood flow and decreased numbers of neural
stem cells. Therefore, restoring the functionality of the niche should counteract some of the
negative effects of aging. We show that factors found in young blood induce vascular remodeling,
culminating in increased neurogenesis and improved olfactory discrimination in aging mice.
Further, we show that GDF11 alone can improve the cerebral vasculature and enhance
neurogenesis. The identification of factors that slow the age-dependent deterioration of the
neurogenic niche in mice may constitute the basis for new methods of treating age-related
neurodegenerative and neurovascular diseases.

In the adult brain, neural stem cells reside in a
three-dimensional (3D) heterogeneous niche,
where they are in direct contact with blood

vessels and the cerebrospinal fluid. The vascula-
ture can influence neural stem cell proliferation
and differentiation by providing a local source of
signaling molecules secreted from endothelial
cells (1) as well as by delivering systemic regu-
latory factors (2). The hormone prolactin (3),
dietary restriction (4), and an exercise/enriched

environment (5) positively modulate neurogenesis,
whereas increased levels of glucocorticoids as-
sociated with stress have the opposite effect (6).
In the aging niche, the vasculature deteriorates
with a consequent reduction in blood flow (7),
and the neurogenic potential of neural stem cells
declines, leading to reduced neuroplasticity and
cognition (8–10). Systemic factors can also affect
these aging-associated events, either positively in
which circulating monocytes enhance remyelina-

tion in aged mice (11, 12) or negatively in which
the accumulation of chemokines in old blood can
reduce neurogenesis and cognition in young
mice (10).

To test whether the age-related decline of
the neurogenic niche can be restored by extrinsic
young signals, we used a mouse heterochronic
parabiosis model. Our experiments reveal a re-
modeling of the aged cerebral vasculature in
response to young systemic factors, producing
noticeably greater blood flow, as well as activa-
tion of subventricular zone (SVZ) neural stem
cell proliferation and enhanced olfactory neuro-
genesis, leading to an improvement in olfactory
function. Furthermore, we tested GDF11, a cir-
culating transforming growth factor–b (TGF-b)
family member that reverses cardiac hypertrophy
in aged mice (13), and found that it can also
stimulate vascular remodeling and increase neu-
rogenesis in aging mice. Thus, we have observed
that age-dependent remodeling of this niche is
reversible by means of systemic intervention.
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information from coherent population activity anywhere in the brain.
precise as that derived from spiking place cells. The approach might also be applicable more generally for deciphering
positional information exclusively from multiple-site LFP measurements in the rat hippocampus. The information was as 

 (p. 626) worked out how to recoveret al.Agarwal large hippocampal cell populations, has been hard to decode. 
place-selective neurons. In contrast, the local field potential (LFP), which arises from the coherent voltage fluctuations of 

The location of a rat can be deciphered from hippocampal activity by detecting the firing of individual
Extracting Spatial Information

ARTICLE TOOLS http://science.sciencemag.org/content/344/6184/626

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2014/05/07/344.6184.626.DC1

REFERENCES

http://science.sciencemag.org/content/344/6184/626#BIBL
This article cites 23 articles, 7 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on January 28, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/344/6184/626
http://science.sciencemag.org/content/suppl/2014/05/07/344.6184.626.DC1
http://science.sciencemag.org/content/344/6184/626#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

