
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995 623

Holographic Reduced Representations
Tony A. Plate

Abstract- Associative memories are conventionally used to
represent data with very simple structure: sets of pairs of vectors.
This paper describes a method for representing more com-
plex compositional structure in distributed representations. The
method uses circular convolution to associate items, which are
represented by vectors. Arbitrary variable bindings, short se-
quences of various lengths, simple frame-like structures, and
reduced representations can be represented in a fixed width
vector. These representations are items in their own right and
can be used in constructing compositional structures. The noisy
reconstructions extracted from convolution memories can be
cleaned up by using a separate associative memory that has good
reconstructive properties.

I. INTRODUCTION
ISTRIBUTED representations [13] are attractive for a D number of reasons. They offer the possibility of repre-

senting concepts in a continuous space, they degrade gracefully
with noise, and they can be processed in a parallel network
of simple processing elements. The problem of representing
compositional structure’ in distributed representations, how-
ever, has been for some time a prominent concern of both
proponents and critics of connectionism [9], [32], [12].

Most work on neural-network style associative memories
has focussed on either auto-associative or hetero-associative
memories. Auto-associative memories, e.g., Hopfield networks
[14], store an unordered set of items. They can be used to recall
item given a distorted version. Hetero-associative memories,
e.g., holographic memories and matrix memories [37], [8],
[22], [5], [38], store a set of pairs of items. One item of a pair
can be recalled using the other as a cue. Matrix style memories
are the more popular class, owing to superior storage capacity
and fewer constraints on vectors to be stored.

For artificial intelligence tasks such as language processing
and reasoning the need arises to represent more complex
data structures such as sequences and trees. It is difficult
to represent sequences or trees in distributed representations
using associations of pairs (or even n-tuples) of items and
retain the benefits of distributed representations. The problem
with representing compositional structure in most associative
memories is that items and associations are represented in
different spaces. For example, in a Hopfield memory (a matrix
style memory) items are represented on unit activations (a vec-
tor) and associations are represented on connections weights

Manuscript received August 1991; revised April 1993. This work was
performed at the University of Toronto and was supported in part by the
Canadian Natural Sciences and Engineering Research Council.

The author is with the British Columbia Cancer Agency, 601 West 10th
Ave., Vancouver, British Columbia V5Z 1L3 Canada.

IEEE Log Number 9400109.
‘i.e., recursive, or tree-like structure.

(a matrix). This makes it difficult to represent relationships
with recursive structure in which an association of items may
be the subject of another association.

Hinton [12] discusses this problem and proposes a frame-
work in which “reduced descriptions” are used to represent
parts and objects in a part-whole hierarchy (a frame-like rep-
resentation). This framework requires that a number of vectors,
each a part and together forming a whole, be compressed
(reduced) into a single vector of the same dimension as the
original vectors. This reduced vector can in turn be used as a
part in the representation of some greater whole. The reduction
must be reversible so that one can move in both directions in
a part-whole hierarchy, i.e., reduce a set of vectors (a whole)
to a single vector (a potential part), and expand a single
vector (a part) to a set of vectors (a whole). In this way,
compositional structure is represented. An essential aspect
of reduced descriptions is that they should be systematically
related to their components, so that information about the
components can be. gleaned without expansion. It is this aspect
that distinguishes reduced descriptions from arbitrary pointers.
Unfortunately, Hinton does not suggest any concrete way of
performing the reduction and expansion mappings.

Some researchers have built models or designed frame-
works in which some compositional structure is present in
distributed representations. For some examples see the papers
of Touretzky [33], Pollack [27], or Smolensky [32].

In this paper I propose a new method for representing
compositional structure in distributed representations. Circular
convolutions are used to construct associations of vectors. The
representation of an association is a vector of the same dimen-
sionality as the vectors which are associated. This allows the
construction of representations of objects with compositional
structure. I call these holographic reduced representations
(IBR’s), since convolution and correlation based memories
are closely related to holographic storage, and they provide
an implementation of Hinton’s [121 reduced descriptions. I
describe how HRR’s and auto-associative item memories can
be used to build distributed connectionist systems which ma-
nipulate complex structures. The item memories are necessary
to clean up the noisy items extracted from the convolution
representations.

Convolutiodcorrelation (holographic) memories have been
generally regarded as inferior to matrix style associative mem-
ories for associating pairs of items, for reasons concerning
capacity and constraints (see [37] and [8]). Matrix style
memories have a problem of expanding dimensionality when
used for representing compositional structure, however. Con-
volutiodcorrelation memories do not have this problem. Their
storage capacity is sufficient to be useful and restrictions on

1045-9227/95$04.00 0 1995 IEEE

624 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

the classes of vectors can be coped with by using matrix style
associative memories to transform unsldtlltrle vectors.

Associative memories are reviewed in Section II. A interpre-
tation of convolution as a compressed outer product is given. In
Section I11 addition memories are reviewed. The need for high
capacity error-correcting associative memories is discussed in
Section IV. Representations of more complex structures are
discussed in Section V; some sequence representations are
reviewed and ways of doing variable binding and repsenting
simple frame structures are suggested. The idea of HBR's falls
naturally out of these representations, and is discussed in Sec-
tion V-E. Section VI discusses h u e s of represen- features
and tokens with the types of vectors that convolution memories
can work with. Two simple machines that use HRR's are
described in Section VII. Various mathematical properties are
discussed in Section VIII, including the relationship between
convolution and fast Fourier tmnsforrns and the status of
correlation as an approximate inverse to convolution. The
capacity of convolution memories and HRR's are discussed
in Section IX. In Section X are examples of the construction
and decoding of HRR's.

11. HETERO-ASSOCIATIVE MEMORIES-
MATRIX AND CONVOLUTION IMPLEMENTATIONS

Hetero-associative memories are used to store associations
between pairs of vectors. The vectors are usually distributed
representations of discrete items (e.g., images).

Convolution-correlation memories (sometimes referred to
as holographic-like memories) and matrix memories have
been regarded as alternative methods for implementing hetero-
associative memory [37], [19], [23], [30], [8]. Matrix memo-
ries have received more interest, due to their relative simplic-
ity, their higher capacity in terms of the dimensionality of the
vectors being associated, and the relative lack of constraints
on those vectors.

A. Associative Memories

There are three operations used in most nonadaptive asso-
ciative memories: encoding, decoding, and trace composition.
The encoding operation takes two item vectors and produces a
memory trace (a vector or a matrix). The decoding operation
takes a memory trace and a single item (the cue) and produces
the item that was originally associated with the cue, or a
noisy version thereof. Memory traces can be composed by
addition or the binary-OR operation. The decoding operation
will work with this sum of individual traces, but the retrieved
items may be noisier. In some models the encoding and
decoding operations are bilinear, e.g., Murdock [19], in others
the decoding operation in nonlinear, e.g., Hopfield [14], and
in others all the operations are nonlinear, e.g., Willshaw [37].

To illustrate this, let I be the space of vectors representing
items, and T be the space of vectors or matrices representing
memory traces. There are often constraints on the vectors, e.g.,
they should be nearly orthogonal. Let

I X I : l x I - r T

be the encoding operation

p : I x T + I

be the decoding operation, and

EEl:TxT+T

be the trace composition operation. Let 6, b, E , d, 8, and f be
item vectors, and let Ti be memory trcces.

The association of two items B and b is represented by the
trace

We can recover b from TI by using the decoding operation
on TI and the cue 6

gives b, or a noisy version of it. Noisy versions of H can
also be used as cues and, depending on the properties of the
particular s_cheme, the retrieved vector will be more or less
similar to b.

A trace can represent a number of associations, e.g.,

TZ = (a H b) EEI (E [XI d) EE (6 [XI i).

The first item from any pa$ can be used as a cue to recover
the other item of the pair, e.g.,

gives a noisy version of d. The noisiness of the recovered
vector increases with the number of associations stored in a
single memory trace. The number of associations that can be
represented usefully in a single trace is usually referred to as
the capacity of the memory model.

In matrix memories the encoding operation is the outer
product and in convolution memories the encoding operation
is convolution. Addition and the binary-OR operation have
both been used as the trace composition operation in matrix
and convolution memories.

Both matrix and convolution memories, especially the ver-
sions with linear encoding operations, have the property that
they preserve similjwity. That is, if items a and a' are s ie lar ,
and ite_ms b and b' are similar, then the traces a [XI b and
a' [XI b' will also be similar. The degree of similarity of the
traces will be related to the degree of similarity of the items.
This property is potentially very useful because it allows an
estimate of the similarity of traces to be computed without
decoding.

Matrix memories are usually not symmetric; to use d as a cue T2 must be
transposed. Convolution memories are symmetric, either member of the pair
can be used as a cue.

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 625

CO c1 c2 B. The Problem of Complex Structure

Pairwise associations do not suffice for the practical repre-
sentation of more complex data structures, such as trees. The
need to represent such data structures arises in systems which
use higher-order predicates, e.g., predicates such as “cause,”
“think,” and “believe,” in language processing or reasoning
systems.

One approach to representing more complex data structures
in associative memory is to use three-way associations, as are
used in LISP data structures (car, cdr, and address). Touretzky
and Hinton [35] and Touretzky [33] describe systems based on
this idea. A major problem with this approach is that access
is slow; many pointers must be followed to determine the
constituents of a structure. This removes one of the major
advantages of distributed representations; fast determination
of similarity.

Another approach is to use an associative memory operator
that can be applied recursively. This corresponds to an operator
that can map from I x T t TI, and I x TI + TI’, etc. A
major problem with most implementations of this approach
is the expanding dimensionality of the association spaces I,
TI, T”, etc. Vectors that grow arbitrarily in dimension are
difficult to use in practical systems. This approach has been
used by a number of researchers, and the problem of expanding
dimensionality has been tackled in a number of ways. Eich [181
and Murdock [20] both describe methods based on aperiodic
convolution. Eich discards outside elements of convolution
products to avoid expanding dimensionality. Murdock uses
infinite-dimensional vectors. Smolensky [32] proposes Tensor-
product memories, which use a generalized outer product as
the associative operator. In these memories the dimensionality
of the association space is exponential in the depth of recursion
involved. Smolensky suggests placing a hard limit on the
depth of recursion in order to keep the size of the association
space tractable (e.g., no structure can be more than four levels
deep). In a later paper Legendre et al. [16] describe a scheme
which permits a soft limit on the depth of recursion, though
its properties as the limit is approached or exceeded are not
clear. In Pollack’s [27] recursive auto-associative memories
(RAAM’s) items, associations, and recursive associations are
all represented in the same vector space. A backpropagation
network learns the encoding and decoding mappings. This
solves the problem of expanding dimensionality. The learning
is slow and the generalization of the mappings to novel items
and structures is highly variable, however. In HRR’s items and
associations are also represented in the same vector space and
circular convolution and its approximate inverse are used as
the encoding and decoding operators.

C. Convolution-Correlation Memories

0 8

xo -.& _ _ _ _ Q - - - - - &-
: : a

j : :

: : :

; j i /--
x1 - -o _ _ _ _ _ 6 _..-e--

:

x 2 --b _ _ _ _ _ - - - - &-

Fig. 1.
example location shown.

The outer product of two vectors, Z: and X with the content of an

t 2

k = - (n - 1) / 2

f o r j = -(n - 1) ton - 1

Fig. 2. A periodic convolution represented as a compressed outer product
for n = 3. The indices are centered on zero since vectors “grow” (at both
ends) in dimensionality with repeated convolutions.

Fig. 3.
pressed outer product for n = 3.

Metcalfe’s truncated aperiodic convolution represented as a com-

with another vector (recursive convolution); and if that vector
has n elements, the result has 3n - 2 elements. Thus the
dimensionality of the resulting vectors expands with recursive
convolution.4

The problem of expanding dimensionality can be avoided
entirely by the use of circular convolution, an operation well
known in signal processing (e.g., see [lo]). The circular
convolution of two vectors of n elements has just n elements.

Matrix and convolution memories provide different instan-
tiations of the abstract associative memory operators set out
in Section 11-A. They are more closely related, however,
than might be suggested by this. The convolution of two
vectors (whether circular or aperiodic) can be regarded as a
compression of the outer product of those two vectors. The
compression is achieved by summing along the top-right to
bottom-left diagonals of the outer product, as illustrated in

In nearly all convolution memory models the aperiodic
convolution operation has been used to form association^.^
Traces are usually composed by addition. The aperiodic con-

vector with 2n - 1 elements. This result can be convolved

Figs. ’-’.

4For the sake of mathematical elegance, many authors have considered
the vectors to have an infinite number of elements centered on the zero’th
element, i.e., indexed from -CG through 0 to CG. The vectors must have a

Of two vectors each with in a

finite number of nonzero elements in order for the convolution operation to
be defined, and these are usually centered about the zero’th element [201, [31, 3The exception is the nonlinear correlograph of Willshaw [37], first

published in 1969. [261.

626 IEEE TRANSAmONS ON NEURAL, NETWORKS, VOL. 6, NO. 3, MAY 1995

t = CQDX

t o = cox0 + C Z X l + C l X Z

11 = clxo+coxl + c z x 2

t z = C Z X O + C l X l + c0x.l

forj = 0 ton - 1
(Subscripts are modulo-n)

Y2 Y l YO

y = c e t

Yo =
Y I =
92 =

cot0 + C l t l + e222

clto + cot1 + Cl t2

clto + czt1 + cot2

n -1

& = k=O Cktk+j

for j = 0 t o n - 1
(Subscripts are modulo-n)

Fig. 4.
n = 3.

Circular convolution represented as a compressed outer product for Fig. 5. circular
n = 3.

repsented as a Outer product for

The outer product of two vectors is illustrated in Fig. 1,
which is intended to help with the understanding of the four
subsequent figures. Fig. 2 shows standard aperiodic convoy
lution, and Fig. 3 shows the truncated aperiodic convolution
used by Metcalfe Eich [HI. The circular convolution opera-
tion, @, is illustrated in Fig. 4. Elements are summed along the
indicated trans-diagonals in these figures. While the circular
convolution operation is straightforward, what is remarkable
is that circular correlation, @, (illustrated in Fig. 5) is an
approximate inverse operation of it.5 If a pair of vectors is
convolved together to give a memory trace, then one member
of the pair can be correlated with the trace to produce the
other member of the pair. Suppose we have! trace which is
the convolution of a cue with another vector, t = 2. 0 2. Then
correlation allows the reconstruction of a distorted version of x
from i and 2. : y = 2.e- and y NN x. The correlation operation
also has an aperiodic version, which is an approximate inverse
of aperiodic convolution.

Multiple associations can be represented by the sum of the
individual associations. Upon decoding the contribution of the
irrelevant terms can be ignored as distortion. For example, if
i = 2.1 0 x 1 + 2.2 Q x 2 , then the result of decoding of i with
El is el@ Cl 0 x 1 + El@ 2.2 0 5i2. If the vectors have been
chosen randomly the second term will, with high probability,
have low conelation with all of 2.1, 2 .2 , j i l and k 2 and the sum
will be recognizable as a distorted version of 21.

D. Distributional Constraints on the Elements of Vectors

A sufficient condition for correlation to decode convolution
is that the elements of each vector (of dimension n) be

5Pr0vided that the elements of the vectors satisfy certain distributional
constraints.

independently and identically distributed with mean zero and
variance l/n. This results in the expected Euclidean length
of a vector being one. Examples of suitable distributions
for elements are the normal distribution and the discrete
distribution with values, equiprobably kl / f i . The reasons
for these distributional constraints should become apparent in
the next subsection.

The tension between these constraints and the conventional
use of particular elements of vectors to represent mean-
ingful features in distributed representations is discussed in
Section VI.

E. Why Correlation Decodes Convolution

It is not immediately obvious why correlation decodes
convolution. It is not hard to see, however, if an example
is worked through. Consider vectors with three elements,
E = (C O , C ~ , C ~) and f = (2 0 , 2 1 , 2 2) where the 2; and c; are
independently drawn from N(0 , i) (i.e., a normal distribution
with mean zero and variance l /n ,n = 3 in this example).
The convolution of 2. and x is

The decoding of this trace with 2. to retrieve 17: is shown at
the bottom of the page, where E and the can be treated
as zero mean noise. The variances of 5 and the are
inversely proportional to n. The distributions of the and

are normal in the limit as n goes to infinity, but the
approximation is good for n as small as 16. ?Lpical values
for n in convolution associative memory systems are in the
hundreds and thousands.

__I

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 627

Using the central limit theorem, and assuming the c; and 2;
and independent and distributed as N (0 , :), the distributions
of < and the rl; for large n are

I = N 0, - , s i n c e < = ($ + c ~ + . . . + c ~) - l , andthe (3
cf are independent and have mean 1/n and
variance 2 / n 2 .

vi = N (0, - “i ’), since the n(n - 1) terms like

zjcr~cl (I C # 1) have mean zero and variance l/n3,
and the pairwise covariances of these terms
are zero.

It is most useful to calculate the variance of the dot product
x.(E @ (E: 0 x)) as this gives a measure of the similarity of the
original and reconstructed versions of x. This requires taking
into account the covariances of the noise terms in the different
elements, however. Extensive tables of variances for dot
products of various convolution products have been compiled
by Weber [36] for aperiodic convolution. Unfortunately, these
do not apply exactly to circular convolution. The means
and variances for dot products of some common circular
convolution products are given in Table I in Section VIII-A.

F. Relationship of Convolution to Correlation
The correlation of E and t is equivalent to the convolution

(If t with the involution6 of E. The involution of E is the vector
d = E* such that di = c-i, where subscripts are modulo-n.
For example, if E: = (CO, c1, c2, cg), then E* = (CO, c3, c2, cl).
Writing E* 0 is preferable to writing E @ i because it
simplifies algebra, since correlation is neither associative nor
commutative whereas convolution is both. Furthermore, in an
analogy with inverse matrices, it is sometimes convenient
to refer to E:* as the approximate inverse of E. The exact
inverse of vectors under convolution (i.e., E-’) are discussed
in Section VIE-C.

G. How Much Information Is Stored in a Convolution Trace
Since a convolution trace only has n numbers in it, it may

seem strange that several pairs of vectors can be stored in
it, as each of those vectors also has n numbers. The reason
is that the vectors are stored with very poor fidelity. The
convolution trace stores enough information to recognize the
vectors in it, but not enough to reconstruct them accurately.
To store a vector in a recognition memory we only need to
store enough information to discriminate it from the other
vectors. If M vectors are used to represent M different
(equiprobable) items, then about 2k: log2 M bits of information
are needed to represent k: pairs of those items for the purposes
of re~ognition.~ The dimensionality of the vectors does not
enter into this calculation, only the number of vectors matters.

61nvolution has a more general meaning, but in this paper I use it to mean

’Actually, slightly less than 2klog2 A4 bits are required since the pairs are
a particular operation.

unordered.

For example, if we have 1024 items (each represented by a
different vector), then the number of bits required to store three
pairs of those items is slightly less than 2 x 3 x log, 1024
= 60 bits. A convolution memory using random vectors with
512 elements would be able to store three pairs comfortably.
Storing 60 bits of information in 512 floating point numbers
is not very efficient, but for the storage of complex structure
this is not a critical issue.

III. ADDITION MEMORIES
One of the simplest ways to store a set of vectors is to

add them together. Such storage does not allow for recall
or reconstruction of the stored item, but it does allow for
recognition, i.e., determining whether a particular items has
been stored or not. A real-world example of this is the
easy recognition of objects in a multiple-exposure photograph.
Addition memories are discussed here because their properties
determine the characteristics of storage of multiple items in
convolution memories.

The principle of addition memory can be stated as “adding
together two high dimensional vectors gives a vector which is
similar to each and not very similar to anything else.”8 This
principle underlies both convolution and matrix memories and
the same sort of analysis can be applied to the linear versions
of each.

An analysis for the capacity of addition memories is given
in Appendix A. Note that it is not necessary for elements
of vectors to have continuous value for addition memories
to work. Furthermore, their capacity can be improved by
applying a suitable nonlinear (e.g., threshold) function to
the trace. Touretzky and Hinton [35] and Rosenfield and
Touretzky [28] discussed binary-OR memories? which can
be viewed as a nonlinear version of an addition memories.
Binary-OR memories were used in the model of Touretzky
and Hinton [35].

Iv . THE NEED FOR RECONSTRUCTIVE ITEM MEMORIES

Convolution memories share the inability of addition mem-
ories to provide accurate reconstructions. Consequently, if a
system using convolution representations is to do some sort of
recall (as opposed to recognition), it must have an additional
error-correcting auto-associative item memory. This is needed
to clean up the noisy vectors retrieved from the convolution
traces. This reconstructive memory must store all the items
that the system can produce. When given as input a noisy
version of one of those items it must either output the closest
item or indicate that the input is not close enough to any of the
stored items. Note that one convolution trace stores only a few
associations or items, and the item memory stores many items.

For example, suppose the system is to store pairs of random
vectors a,b,...,B . The item memory must store these 26
vectors and must be table to output the closest item for

*This applies to the degree that the elements of the vectors are randomly

91n a binary-OR memory binary vectors are logically OR’ed together
and independently distributed.

instead of being added.

628 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

Input Cue

Fig. 6. A hetero-associator machine. The "*" on the operand to the convo-
lution indicates the approximate inverse is taken.

any input vector (the "clean" operation). Such a system is
shown in Fig. 6. Th_e trace is-a sum of convolved pairs, e.g.,
i = 0 b + E 0 d + 6 0 f. The system is given one item
as an input cue, and its task is to output the item that cue
was associated with in the trace. It should also output a scalar
value (the strength) which is high when the input cue was
a member of a pair, and low when the input cue was not a
member of a pair. Wh:n given the above trace i and 1 as a
cue it should produce b and a high strength. When given g as
a cue it should give a low strength. The item it outputs when
the strength is low is unimportant.

The exact method of implementation of the item memory
is unimportant. Hopfield networks are probably not a good
candidate because of their low capacity in terms of the
dimension of the vectors being stored. Kanerva networks [15]
have sufficient capacity, but can only store binary vectors."
For the simulations reported in Appendix B, I stored vectors
in an array and computed all dot-products in order to find the
closest match.

V. REPRESENTING MORE COMPLEX STRUC~URE
Pairs of items are easy to represent in many types of

associative memory, but convolution memory is also suited
to the representation of more complex structure.

A. Sequences
Sequences can be represented in a number of ways using

convolution encoding. An entire sequence can be represented
in one memory trace, with the probability of error increasing
with the length of the stored sequence. Alternatively, chunking
can be used to represent a sequence of any length in a number
of memory traces.

Murdock [19], [21], and Lewandowsky and Murdock [17]
propose a chaining method of representing sequences in a
single memory trace and model a large number of psycholog-
ical phenomena with it. The technique used stores both item
and pair information in the memory frace, for example, if the
sequence of vectors to be stored is abE, then the trace is

alii + p,a 0 b + 021; + pzb 0 E + a 3 E

where the ai and pi are weighting parameters, with ai >
ai+l. The retrieval of the sequence begins with retrieving
the strongest component of the trace, which will be 5. From
there the retrieval is by chaining-correlating the trace with
the current items to retrieve the next item. The end of the

'OAlthough most of this paper assumes items are represented as real vectors,
convolution memories also work with binary vectors [37].

sequence is detected when the correlation of the trace with the
c m n t item is not similar to any item in the item memory. This
representation of sequences has the ptoperties that sequence
is similar to all of the items in it, retrieval can start from
any given element of the sequence, and similar sequences will
have similar representations. It has the disadvantage that some
sequences with repeated items cannot be properly represented.

Another way to represent sequences is to use the entire
previous sequence as context rather than just the previous item
[21]. This makes it p_ossible to store sequences with repeated
of items. To store iibE. the trace is

a + a 0 b.+a 0 b 0 2.

This type of sequence can be retrieved in a similar way to the
previous, except that the retrieval cue must be built up using
convolutions.

The retrieval of later items in both these representations
could be improved by subtracting prefix components as the
items in the sequence are retrieved.

Yet another way to represent sequences is to, use a fixed cue
for each position of the sequence. To store abE, the trace is

p 1 0 a+p2 0 b + p 3 0 E.

The retrieval (and storage) cues pi can be arbitrary or gener-
ated in some manner from a single vector, e.g., p i = (p)i."

These methods for representing sequences can also be used
to represent stacks. For example, a stack of n items, 21 - ji,,
with X I on top, can be represented by

The operations for manipulating such a stack are

push(l,f) = j7: + p 0 S

top@) = clean - up@) .
pop(S) = (a - top@)) 0 p*

An empty stack is noticed when the clean operation finds
nothing similar to S.

A problem with this type of stack implementation is that pop
(push (a,%))= 5 0 p 0 p* is only approximately equal to S.
This is because p* is an approximate inverse. A consequence
is that successive pushes and pops at one level lead to the
continual degradation of the lower level items. After a pair of
push-pop actions, the stack will be ii 0 p 0 p*, which is only
approximately equal to H. Additional push-pop pairs further
corrupt the remaining part of the stack. There are two possible
solutions to this problem-use chunking (see next section) or
restrict p to be a vector for which the exact inverse is equal
to the approximate inverse, in which case S 0 p 0 p* = S
(see Section VIII-C).

"The power of a.vector is defined in Section VIII-E. When using cues of
the form p; = (p)a care must taken since the length of (p)' can increase
exponentially with i.

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 629

B. Chunking of Sequences

All of the above methods have soft limits on the length of
sequences that can be stored. As the sequences get longer,
the noise in the retrieved items increases until the items are
impossible to identify. This limit can be overcome by chunk-
ing-creating new “nonterminal” items representing subse-
quences [2 11.

The second sequence representation method is the more
suitable one to do chunkhg-with. Suppose we want to repre-
sent the sequence abCd6fgh. We can create three new items
representing subsequences

gabc = a + a @ b + a @ b @ 5
Sde = d + d @ 6

gfgh = f + f @ g + f @ g @ h.

These new items must be added to the item memory. The
representation for the whole sequence is

filler). The role vectors for different frames can be frame
specific, i.e., agt,,, can be different from agt,,,, or they can
be the same (or just similar).

A role filler binding such as agt,,, @ mark is uncorrelated
with either the role or the filler, because the expected value of
x 0 y . x is zero. If it is desired that the representation for
a frame be somewhat similar to its fillers they can be added
in an appropriate proportion.

E. Recursive Frames: Holographic Reduced Representations

The vector representation of a frame is of the same dimen-
sion as the vector representation of a filler and can be used
as a filler in another frame. In this way, convolution encoding
affords the representation of hierarchical structure in a fixed
width vector.12

For example, we can use an instantiated frame13 from the
previous section as a filler in another frame representing
“Hunger caused Mark to eat the fish”

Decoding this chunked sequence is slightly more difficult,
requiring the use of a stack and decisions on whether an item
in a nonterminal that should be further decoded. A machine
to decode such representations is described in Section VII-B.

C. Variable Binding

It is simple to implement variable binding with convolution:
convolve the variable representation with the value represen-
tation. For example, the binding of the value a to the variable
x and the value b to the variable y is

i = x 0 a + y @ b.

Variables can be unbound by convolving the binding with
the approximate inverse of the variable. This binding method
allows multiple instances of variable in trace to be substituted
in a single-operation (approximately).

Nonrecursive variable binding can also be implemented
easily in other types of associative memory, e.g., the triple-
space of BoltzCONS [35], or the outer product of roles and
fillers in DUCS [34].

D. Simple Frame (Slot/Filler) Structures
Simple frame-like structures can be represented using con-

volution encoding in a manner analogous to cross products
of roles and fillers in Hinton [l l] or the frames of DUCS
[34]. A frame consists of a frame label and a set of roles,
each represented by a vector. An instantiated frame is the
sum of the frame label and the roles (slots) convolved with
their respective fillers. For example, suppose we have a (very
simplified) frame for “eating.” The vector for the frame label
is eat and the vectors for the roles are agteat and obj,,,. This
frame can be instantiated with the fillers mark and thefish,
to represent “Mark ate the fish”

51 = eat + agt,,, @ mark + obj,,, @ thefish.

Fillers (or roles) can be retrieved from the instantiated frame
by convolving with the approximate inverse of the role (or

= cause + agtcause @ hunger + objCause @ eat
+obj,,,,, @ agt,,, o mark
+objC,,,, @ obj,, 0 thefish.

The decoding of this and other frames is discussed in
Section X, where simulation results are also given.

These recursive representations can be manipulated with
or without chunking. Without chunking, we could extract
the agent of the object by convolving with (obj,,,,,O
agteat)* = obj,+,,,, agt:,,. Using chunking, we could first
extract the object, clean it up, and then extract its agent, giving
a less noisy result. There is a tradeoff between accuracy and
speed-if intermediate chunks are not cleaned up the retrievals
are faster but less accurate.

The commutativity of the circular convolution operation CZI

cause ambiguity in some situations. This results from the fact
that i 0 f; 0 fa = i 0 Fa 0 f;. The ambiguity is greatly
alleviated by using frame specific role vectors rather than
generic role vectors (e.g., a generic “agent” vector). A situation
when ambiguity can still arise is when two instantiations of
the same frame are nested in another instantiation of that same
frame. In this case the agent of the object can be confused
with the object of the agent. Whether this causes problems
remains to be seen. In any case, there are variants of circular
convolution that are not commutative (Section VIII-G).

Holographic reduced representations provide a way of real-
izing Hinton’s [12] hypothetical system that could, in the same
physical set of units, either focus attention on constituents
or have the whole meaning present at once. Furthermore,
the systematic relationship between the representations for
components and frames (i.e., reduced descriptions) means that
frames do not need to be decoded to gain some information
about the components (see Section X-B).

‘*Slack [31] suggests a distributed memory representation for Fees involv-
ing convolution products that is similar to the representation suggested here,
except that it uses noncircular convolution, and thus does not work with fixed
width vectors.

‘3Normalization of Euclidean lengths of the frame becomes an issue, see
Section X-E.

630 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3. MAY 1995

VI. CONSTRAINTS ON THE VECTORS
AND hATLJRES, TYPES, AND TOKENS

In many connectionist systems, the vectors representing
items are analyzed in terms of “mimfeatures.” For example,
Hinton’s family trees network [12] learned micro-features
representing concepts such as age and nationality. The re-
quirement of I ’ s that elements of vectors be randomly and
independently distributed seems at odds with th is interpreta-
tion. Furthermore, if every element of a vector is regarded as
a “micro-feature” it is unclear how to use the large number of
them that the vector of HBR’s provide. This section describes
a way of resolving these issues.

A. The Representation of Features, Types, and Tokens
There is no requirement that single microfeatures be repre-

sented by single bits in a distributed representation. Features
also can be represented by high-dimensional distributed rep-
resentations as wide as the representation of the whole object.
An item having some features can be partly the s u m of those
features. Tokens of a type can be distinguished from each
other by the addition of some identity-giving vector that is
unique for each token. Features can be represented by random
vectors. For example, the person “Mark” can be represented
by mark = being+person+id,,k, where idmark is some
random vector that distinguishes mark from representations
of other people. Each component feature can be weighted
according to its importance or salience, if necessary.

Advantages of this scheme over a local micro-feature r e p
resentation are:

The representation of any, feature of an item will degrade
gracefully as the elements of the vector representing the
item are corrupted.
The number of features in an item is only loosely related
to the dimensionality of the vectors representing items.
The vectors can be of as high a dimension as desired,
and higher dimensionality will give better fidelity in the
representation of features.
The vectors representing items can be expressed as sums
of vectors with random independently distributed ele-
ments.

When a set of vectors representing items is constructed from
distributed features in this way the elements of the vectors
will not be consistent with being drawn from independent
distributions. If linear circular convolution is used to construct
representations, however, all the expressions describing the
recall and matching of vectors can be expanded to be in
terms of the random feature vectors. Thus, the means and
variances for the signals in a system with nonrandom vectors,
and consequently the probabilities of correct retrieval, can be
analytically derived. This is done for an example in Section

This idea of distributing features over the entire vector
representing an item is not new. It is a linear transform
and has been suggested by other authors under the name
“randomization” or “random maps” (e.g., [30]).

Care must be taken that the “ownership” of features is
not confused when using this method to represent features

X-D.

(or attributes) of objects. Ambiguity of feature ownership
can arise when multiple objects are stored in an addition
memory. For example, suppose color and shape are encoded
as additive components. If the representations for “red circle”
and “blue triangle” were summed, the result would be the
same as for the sum of “red triangle” and “blue circle.” If
the representations were convolved with distinct vectors (e.g.,
different role vectors), before they were added, however, the
results would not be ambiguous.

B. Constraints on Vectors

Some authors have argued that the constraints on vectors
necessary for holographic memories to perform well are too
restrictive for holographic memories to be useful, e.g., [8].
This argument is based on the entirely valid observation that
most vectors produced by sensory apparatus are unlikely to
satisfy these constraints.

This argument is made in the context ,of storing associations
between pairs of items, however, and is not entirely applicable
to the task of storing the types of complex and structured as-
sociations that HRR’s are designed for. Matrix memories have
the problem of expanding dimensionality when used for this
latter task and thus do not provide a clearly superior alternative
as they do in the case of storing pairwise associations.

If it is desired to interface a system which uses HFWs
with another system that uses vector representations which do
not conform to the constrains (e.g., a perceptual system), a
hetero-associative memory can be used to translate between
representatjons. The combination of a holographic memory
(for HRR’s) and matrix based hetero-associative memory (for
mapping between nonconforming and conforming representa-
tions) allows the representation of complex associations that
are difficult to represent with matrix memories alone.

w. SIMPLE MACHINES THAT USE HRRS
In this section two simple machines that operate on HRR’s

are described. Both of these machines have been successfully
simulated on a convolution calculator using vectors with 1024
elements. The control sequencing of the second machine was
done manually.

It is important to understand that HRR’s are a representation
for small cohesive chunks. For example, HRR‘s can be used
as a representation for the graphemic structure of words, but
they are not a suitable representation for a long unstructured
list of words. A long list or large set is best stored in some
other type of associative memory.

A. Rolefliller Selector
To manipulate frames with roles and fillers one must be able

to select the appropriate roles and fillers before convolving
them. I describe here a machine which can extract the most
appropriate role from an uninstantiated frame for a particular
filler. The most appropriate role might be either the “first”
role in the frame or the role that combines best with the given
filler. Both of these selection criteria can be combined in single
mechanism. An uninstantiated frame is stored as the sum of
the roles and a frame label. Each role and filler also must be

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 63 1

Best

Fig. 7.
indicates the approximate inverse is taken.

A role selection machine. The “*” on the operand to the convolution

stored separately in item memory. This machine demonstrates
one way in which high-level choices can be made in parallel
in systems using HRR’s.

Let the uninstantiated frame be Pi + a121 + a 2 f 2 + a3f3,
where 1 is the frame label, the fi are role vectors, and the
ai and P are scalar constants. The task is to select the role
that combices best with f , the filler. Suppose there is some
item f 2 0 f’ in an itcm memory containing roles and typical
role bindings, where f’ is quite similar to f. The presence of
a similar binding-in the item memory defines f 2 as the “best
fitting” role for f .

If the roles in the frame should be selected according to the
best fit, then the ai should be approximately equal, but if 21

should be selected first, then a1 should be greater.
The selection of the role is done by conyolving the unin-

stantiated frame with the potential filler, i.e., f 0 (Pi+alfl +
a& +a@3). The closest matching vector@ the item memory
is f 2 0 f’. This can be convolved with f“ to give a vector
which can be written as y f 2 + i j where y a_”d the magnitude
of the noise ij depend on the similarity of f to I‘.

Thizresult (yF2 + i j) is added to the uninstantiated frame to
give ~ l + a ~ f ~ + (a ~ + y) f ~ + ~ ~ f ~ + ~ ~ ~ ~ ~ ~ . The strongest role
can be selected by cleaning up in the item memory. Which role
is represented most strongly in this trace will depend on which
of a1, (a2 +y), and a3 is greaterLIf the a, were approximately
equal and I‘ was quite similar to f then f 2 will be the strongest,
If one of the a; was larger or if f’ was not very similar to f
then the role with the largest ai will be selected.

The machine that accomplishes this operation is shown in
Fig. 7.

It is possible to modify this technique to do approximate
Bayesian reasoning, where the roles and fillers correspond to
the hypothesis and evidence, respectively. This requires a more
powerful clean-up memory that can output a blend of items,
with the strength of each item in the blend proportional to the
product of its strength in the input and a value associated with
the item in the memory. The items in the blending clean-up
memory are E 0 Hi (evidence convolved with hypothesis i),
and the value associated with each is Pr(E1Hi). To evaluate
the likelihoods of a set of hypotheses HI, e . . , HI, given some
evidence E, one convolves the evidence with the sum of the
hypothesis weighted by their prior probabilities and passes this
vector through the blending clean-up memory. After convolv-
ing this result with the approximate inverse of E, one will have
the sum of hypothesis weighted by their (approximate) relative
likelihoods. This scheme suffers from the drawback that it is
not possible to reverse the roles of evidence and hypothesis
(and thus compute the most appropriate filler for a given role).
This is because circular convolution is commutative, which

I Control obo value Gate - 1 Output signal I Coniro~ .vaiUepaTh
Vector data pa% I

Fig. 8. A chunked sequence readout machine. A simple controller (not
shown but described in text) receives classifier output and provides boolean
control values P l . P 2 , T l . N 1 , and K2.

means that Pr(E1H) cannot be distinguished from Pr(H1E)
in the blending clean-up memory. This drawback could be
overcome by using one of the noncommutative variants of
circular convolution (Section VIII-G).

B. Chunked Sequence Readout Machine
A machine that reads out the chunked sequences described

in Section V-B can be built using two buffers, a stack, a
classifier, a correlator, a clean up memory, and three gating
paths. The classifier tells whether the item most prominent
in the trace is a terminal, a nonterminal (chunk), or nothing.
At each iteration the machine executes one of three action
sequences depending on the output of the classifer. The stack
could be implemented in any of a number of ways, including
the way suggested earlier or in a simple addition memory.
The machine is shown in Fig. 8.

The control loop for the chunked sequence readout machine
is as follows.
Loop: (until stack gives END signal)

Clean up the trace to recover most prominent item:
x = clean (t).
Classify x as a terminal, nonterminal, or “nothing”
(in which case “pop” is the appropriate action) and do
the appropriate of the following action sequences.
Terminal:

1 Item x is on output. 2’1 gates path to replace
trace by its follower: t“ t x* 0 (t“ - x).

1 Signal N1 tells stack to push the follower of the
non terminal: S + push (S , x * 0 (t” - x)).

2 Signal N2 gates path to replace trace by the non-
terminal: t“ + x,

1 Signal P1 gates path to replace trace by top of
stack: t + top (S) .

2 Signal P2 tells stack to discard top of stack: S +-

POP(~). Stack gives END signal if empty.

Nonterminal:

Pop:

632

In this machine the trace buffer contains the chunk currently
being decoded, and the stack contains the portions of higher
level chunks that are yet to be decoded.

The chunked sequence readout machine is an example of
a system that achieves Hinton’s [12] objectives of being able
to focus attention on constituents when necessary or have the
whole “meaning” of a chunk present at once.

VIII. MATHEMATICAL PROPERTIES
Circular convolution may be regarded as a multiplication

operation over vectors: two vectors multiplied together (con-
volved) result in another vector. A finite dimensional vector
space over the real numbers, with circular convolution as
multiplication and the usual definitions of scalar multiplication
and vector addition, forms a commutative linear algebra. This
is most easily proved using the observation that convolution
corresponds to element-wise multiplication in a different basis,
as described in Section VIII-B. All the rules that apply to
scalar algebra (i.e., associativity and commutativity of addition
and multiplication, and distributivity of multiplication over
addition) also apply to this al8ebra. This makes it very easy
to manipulate expressions containing additions, convolutions,
and scalar multiplications.

This algebra has many of the same properties as the algebra
considered by Borsellino and Poggio [3] and Shonemann [30],
which had aperiodic convolution as a multiplication operation
over an infinite dimensional vector space restricted to vec-
tors with a finite number of nonzero elements, Shonemann
observed that representing the correlatiop of b and 6 as a
convolution of a with an involution of b made expressions
with convolutions and correlations easier to manipulate.

A. Distributions of Dot Products

The distributions of the dot products of vectors and con-
volutions of vectors can be analytically derived. Some useful
dot products are shown in Table I. The variances and means
shown are-based on the assumption that the elements for the
vectors a, b, E, and d are independently distributed as N (0 , i)
where n is the d imens id i ty of the vectors. It follows that
the expected length of these vectors is one. Dot products are
the sum of scalar products of individual vectors elements, and
are thus normally distributed for large n, by the central limit
the01em.l~ The variance of a dot product term depends upon
the number of correlated scalar products in the dot product.
The equivalent expressions in row (5) to (10) are derived from
the following identity of convolution algebra

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

TABLE I
MEANS AND VARIANCES OF DOT PRODUCTS OF COMMON

CONVOLUTION EXPRESSIONS. ALL ARE NORMALLY
DISTRIBUTED. N Is THE DIMENSIONALFIY OF THE VECTORS

These me-ans and variances are used as follows. Suppose
that a, b, E , d, and i5 are random vectors with elements drawn
independently firom N(0, A). Then the value of a* 0 (a 0 b+
E 0 d). b will have an expected value of one and a variance
of ?(= 9 + A using rows 6 and 10 in Table I). The
value of a* 0 (a 0 b + E 0 d). 6 will have an expected

Expression I mean I variance
2 (1) 8 . 8 1 1 - I n

a - b @ c n

. .

(7) a@b -a@a = a@b@a* - a 0
(8) a a b . a@c = a@b@a* c 0 w * (9) a@b 4 c@c = a@b@c* . c 0

0 1
n

(IO) a@b.c@d =a@b@c* . d -

value of zero and a variance of 9 (= 9 + A using rows
8 and 10 in Table I).

Of some interest is the di_stribution of the elements of a 0 b.
If the elements of 5 and b are independently distributed as
N (0 , i) then the mean of the elements of 5 0 b is zero but the
variance is higher than 1/n and the cov+ance of the elements
is not zero. The expected length of 5 0 b is still one, provided
that the elements of 5 are distributed independently of those
of b (the expected length of 5 0 ii is d m . Thus,
the variance of 1 0 b 0 Z: 0 8* 0 b* . ?: is higher than that
of 5 0 b 0 a* b. A conseque_nce of this is that some care
must be taken when using a 0 b as a storage cue, especially
in the case where d = b. This is particularly relevant to the
storage capabilities of HRR’s because when recursive frames
are stored, convolution products e.g., objCause 0 agt,,,, are
the storage cues.

B. Using FFT’s to Compute Convolution
The fastest way to compute convolution is via fast Fourier

transforms (FFT’ s) [4]. The computation involves a transform,
an element-wise multiplication of two vectors, and an inverse
transform. We can write

a 0 b = T’(Z;(&> 0 f(b))

where # is a discrete Fourier transform, is the inverse
discrete Fourier transform, and 0 is the element-wise mul-
tiplication of two vectors.

These three steps take O(n log n) time to compute, whereas
the obvious implementation of the convolution equation ci =
C,ajb;-j takes O(n2) time to ~0mpute . l~

I shall refer to the original domain as the spatial domain, and
the domain the Fourier transform takes it to as the frequency
domain. Both domains are n-dimensional vector spaces, and
both the forward and inverse Fourier transforms are linear.

I4Although there are correlations among these scalar products there is
sufficient independence for the central limit theorem to apply.

ISComputing convolution via FITS takes about the same time as the O(n2)
method for n = 32. It is faster for n > 32 and slower for n < 32.

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 633

The discrete Fourier transform, f : Cn -+ Cn, (C is the field vectors as unitary vectors.I6 An equivalent condition is that the
auto correlation of k is the convolutive identity vector (i.e.,
the delta function with magnitude 1).

of complex numbers) is defined as
n-1

fj(q = 5 k e - i 2 M n

k=O

where i2 = -1 and f j (X) is the jth element of f(x). The
discrete Fourier transform is invertible and defines a one-to-
one relationship between vectors in the spatial and frequency
domains. It can be computed in O(n1ogn) time using the
Fast Fourier Transform (FFT) algorithm. The inverse discrete
Fourier transform is very similar

and can also be computed in O(n log n) time using the FlT
algorithm.

C. Identities and Approximate and Exact
Inverses in the Frequency Domain

Since convolution in the spatial domain is equivalent to
element-wise multiplication in the frequency domain we can
easily find convolutive inverses by transforming into the
frequency domain. By definition y is the inverse of 2 if
2 0 9 = i and we can write y = X-l. The convolutive
identity vector is 1 : (1,0, . . . , 0). Transforming this into the
frequency domain gives

f (X) 0 f(x-1) = f(1).

f(1) = (eoi, eoi, . . . , eoi) = (1,1, . . + , I) .

This gives independent relationships between the correspond-
ing elements of f(x) and (x-’) which can be expressed
as

The transform of the identity is

fj(x-l)fj(x) = 1.

Expressing f(x) in polar coordinates gives

fj(2) = rjeieJ

and we can see that the Fourier transform of the inverse of x is

Now consider the approximate inverse. It can be seen from
the definition of the Fourier transform that the transform of
the involution of 2 is

The difference in the frequency domain between the approxi-
mate inverse and the exact inverse is that the elements of the
approximate inverse have the same magnitudes as the original
elements, whereas the magnitudes of the elements of the exact
inverse are the reciprocals of the magnitudes of the original
elements. It follows that the involution gives the exact inverse
when rj = 1, i.e., when Ifj(x)l = 1. I refer to this class of

D. Why the Exact Inverse is Not Always Useful

Since a-l can be used to decode 5 0 b exactly, it
might seem to be a better candidate for the decoding vector
than the approximate inverse a*. Unless unitary vectors are
used, however, using the exact inverse results in a lower
signal-to-noise ratio in the retrieved vector when the memory
trace is noisy or when there are other vectors added into
it. This problem arises because, for vectors with elements
independently distributed as N (0 , A), Ia*l always equals la[,
but 1a-l I is usually greater than Ial, except for unitary vectors.
This is not unexpected, as inverse filters are well known to be
sensitive to noise [7].

E. The Convolutive Power of a Vector

The convolutive power of a vector (exponentiation) is
straightforwardly defined by exponentiation of its elements in
the frequency domain, i.e.,

Fractional and negative exponents of vectors are defined in the
same way as for complex numbers. Integer powers are useful
for generating some types of encoding keys (cf. Section V-
A) and fractional powers can be used to represent trajectories
through continuous space [25].

F. Matrices Corresponding to Circular Convolution

vector multiplication
The convolution operation can be expressed as a matrix-

a 0 b=M,b

where Ma is the matrix corresponding to convolution by a.
It has elements ma,, = ai-j (where the subscripts on 5 are
interpreted modulo n). Such matrices are known as “circulant
matrices” [6] . The eigenvalues of Ma are the individual
(complex valued) elements of the Fourier transform of a.
The corresponding eigenvectors are the inverse transforms
of the frequency components (i.e., (1, 0, 0,. . .), (0, 1, 0,
...), etc., in the frequency domain). It is possible for the
mapping computed by the connections between two layers
in a feedforward network (i.e.. a matrix multiplication) to
correspond to convolution by a fixed vector.

G. Noncommutative Variants and Analogs of Convolution

The commutativity of convolution can cause ambiguity in
the representations of some structures. If this is a problem,
noncommutative variants of circular convolution can be com-
puted by permuting the elements of the argument vectors
in either the spatial or frequency domain. The permutations
applied to right and left vectors must be different. The resulting
operation is neither commutative nor associative, but is bilinear

conjugate of transpose) equal their inverses.
I6In analogy with unitary matrices, whose Hermitian conjugates (complex

634

Object features Role features
being food obj
person fish agt
state bread

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995

Frame labels
cause
eat
see

TABLE Il
SENTENCES

s1 Mark ate the fish.
s2
s3 John ate.
s4 John saw Mark.
s5 John saw the fish.
56 The fish saw John.

Hunger caused Mark to eat the fish.

E (Objective function)

CO n "'Cn-1

" . Inputs ..'

Fig. 9. A convolution operation in a back-propagation network.

(and thus distributes over addition and preserves similarity)
and has an easily computed approximate inverse.

An altemative operation that is noncommutative but still
associative is matrix multiplication. This could be used to
associate two vectors by treating each vectors as a square ma-
trix. The dimension of the vectors would have to be a perfect
square. I am unaware of what the scaling and interference
properties of such an associative memory operation would be.
It would be similarity-preserving and vectors corresponding to
orthogonal matrices would have simple inverses.

H. Partial Derivatives of Convolutions
A convolution operation can be used in a feedforward net-

w o r k ~ ~ ~ and values can be propagated forward in O(n1ogn)
time (on serial machines). Derivatives can also be back propa-
gated in O(n log n) time. Suppose we have a network in which
the values from two groups of units are convolved together
and sent to a third group of units. The relevant portion of such
a feedforward network is shown in Fig. 9. Suppose we have
the partial derivatives e, of outputs of the convolution with
respect to an objective function E. Then the partial derivatives
of the inputs to the convolution can be calculated as follows

dE
= G [b *] k - - i

i

L J k

where aC is the vector with elements E, and [e l k is the kth
element of a vector.

This means that it is possible to incorporate a convolu-
tion operation in a feedforward network and do the forward
and back-propagation computations for the convolution in
O(n1ogn) time. One reason one might want do this could
be to use a backpropagation network to leam good vector
representations for items for some specific task. This is pursued
in [25].

"For an introduction to feedforward networks see [29].

TABLE In .
BASE FEATURE V ~ R S . VECTOR ELFMENTS ARE
ALL INDEPENDENTLY CHOSEN FROM N(O,1/512)

Ix. CAPACITY OF CONVOLUTION MEMORIES AND H R R S
The number of associations that can be stored in a convo-

lution memory is approximately linear in the dimensionality
of the vectors. In Appendix B it is shown that the number of
pairs of vectors that can be stored in a convolution memory
trace is at least

n k>- - 2
16 In$

where n is the vector dimension, m is the number of candidate
vectors, and q is the probability of one or more errors in
decoding. It is assumed that vector elements are independently
distributed as N (0 , k), and that any vector does not appear
more than once in a trace. For a wide range of parameter
values, numerical solutions of the capacity equation [(8) in
Appendix B] are well approximated by

m
30q4

n = 4.5(k + 0.7)ln-.

If either of the assumptions are violated, that is if the vectors
have similarity (i.e., are not independent), or if the same vector
is stored in more than one pair, the convolution memory will
still work, but the probability of error will increase. The effect
of similarity among the vectors on the capacity is considered
at greater length in [24].

The size of a structure that can be stored in (and successfully
retrieved from) an HRR increases almost linearly with the
vector dimensions, with similar constants to those above. The
"size" is the number of terms in the expanded convolution
expression (the sum of convolution products) for the structure.
For example, the HRR in Sect ip V-E has five terms. The
probability of correctly decoding a deep structure is slightly
less than that for correctly decoding a shallow structure with
the same number of terms because the variance for d e c o e g
long convolution products, e.g., the variance of (a 0 b 0
E) 0 (b 0 E)* . a is slightly higher than that for decoding
shorter convolution products. This drop in performance for
deeper structures can be avoided by using unitary vectors for
the encoding cues (cf. Section VIII-C).

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS

mark

635

hunger mark luke
john t hefish thirst

Paul the-bread
1.07 0.78 0.76 0.73 0.01 0.02 0.01 0.02

TABLE IV
TOKEN AND ROLE VECTORS CONSTRUCTED FROM BASE

FEATURE VECTORS AND RANDOM IDENTITY-GIVING VECTORS

mark =
john =
Paul =
luke =

thefish =
the-bread =

hunger =
thirst =

W e a t =
0b.L =

TABLE V
ERR FRAME VECTORS ~PRFsENTING THE SENTENCES IN TABLE 11

SI = (eat + agt,,,@mark + obj,,,@thefish)/6

sz = (cause + agt,,,,,@hunger + obj,,,,,@s~)/&
s3 = (eat + agt,,,@john)/&
s4 = (see + agt,,,@john + obj,ee@mark)/&
s5 = (see + agt,,,@john + obj,,,@thefish)/&
s6 = (see + agt,,,@thefish + obj,,,@john)/fi

X. A N EXAMPLE OF ENCODING AND DECODING HRRS

An example of HRR frame construction and decoding for
the sentences in Table 11 is presented in this section. The types
and tokens representing objects and concepts are constructed
according to the suggestions in Section VI. Results from a
simulation of the example using 512 dimensional vectors are
reported.

A. Representation and Similarity of Tokens

The suggestion in Section VI for token vectors (representing
an instance of a type) was that they be composed of the sum of
features and a distinguishing vector giving individual identity.
In this example the base vectors (representing features) have
elements chosen independently from N(0 , h). The base
vectors are listed in Table III. The token and role vectors are
constructed by summing the relevant feature vectors and a
distinguishing random “identity” vector that is used to give
a distinct identity to an instance of a type. Scale factors are
included in order to make the expected length of the vectors
equal to one. These token vectors and a representative pair of
role vectors are listed in Table IV. The identity vectors (e.g.,
idmark) are chosen in the same way as the base feature vectors.
The denominators are chosen so that the expected length of a
vector is 1.0, other roles (e.g., agt,,,) are constructed in the
analogous fashion.

The similarity matrix of the tokens is shown Table VI.
Tokens with more features in common have higher similarity
(e.g., mark and john), and tokens with no features in common
have very low similarity (e.g., john and thefish).

john
Paul
luke
thefish
the-brea
hunger
thirst

id

0.78 1.08 0.75 0.68 0.00 0.01 0.06
0.76 0.75 1.08 0.74 -.02 0.06 0.05
0.73 0.68 0.74 1.01 -.03 0.01 0.03
0.01 0.00 -.02 -.03 1.16 0.35 0.10
0.02 0.01 0.06 0.01 0.35 0.97 0.03
0.01 0.06 0.05 0.03 0.10 0.03 0.93
0.02 0.10 0.47 0.10 0.04 0.06 0.50

TABLE VI1
SIMILARITIES (DOT-PRODUCTS) AMONG THE FRAMES

0.10
0.47
0.10
0.04
0.06
0.50
1.02

s1 SZ s3 s4 s5 s6
1.14 0.02 0.81 0.10 0.26 0.02
0.02 0.98 0.01 0.08 0.02 0.10

0.10 0.08 0.24 1.12 0.71 0.65
0.26 0.02 0.24 0.71 1.01 0.33

0.81 0.01 1.11 0.24 0.24 -.01

0.02 0.10 -.01 0.65 0.33 1.21

B. Representation and Similarity of Frames

The six sentences listed in Table I1 are represented as HRR
frames. The expressions for these HRR’s are listed in Table V.
Again, scale factors are included to make the expected length
of the vectors equal to one.

The similarities of the HRR’s are shown in Table VII.
Some similarities between instantiated frames can be detected
without decoding-the HRR’s for similar sentences (e.g.,
24, S.5, and 56) are similar (i.e., they have high dot-products.)
Note that S.5 and S.6 have the same constituents, but are distinct
because their structures are different. In fact, S.5 has a higher
dot-product with Sq than with S.6, because S.5 and S4 have the
same filler in the same first role, which creates more similarity
than having the same fillers in different roles.

C. Extracting Fillers and Roles from Frames
The filler of a particular role in a frame is extracted as

follows. The frame is convolved with the approximate inverse
of the role and the result is cleaned up by choosing the most
similar vector in the item memory. The item memory contains
all feature, token, role, and frame vectors (i.e., all the vectors
listed in Tables 111-V).

The extraction of various fillers and roles is shown in Table
VIII. For each extraction, the three vectors in item memory
that are most similar to the result are shown. In all cases the
most similar object is the correct one.

As shown in row (l), the expression to extract the agent
of S.1 is

x = S.1 o agt:,,.

The three objects in item memory most similar to x (with
their respective dot-products) are mark (.62), john (.47), and

636 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY I995

TAB
MEANS AND VARIANCES OF SIGNALS m A

Object to extract
(1) Agent of SI
(2) Agent of SI
(3) Object of SI
(4) Agent of s2
(5) Object of s2
(6) Agent of object of s2
(7) Object of object of sa
(8) Object of s3
(9) Role of john in s4

(10)Role of john in s5

Expression

5 VI11
AD ASSOCIATES CONVOLUTION MEMORY

Similarity scores (dot product)
mark (0.62) john (0.47) paul (0.41)
mark (0.40) john (0.34) person (0.30)

food (0.39) the f i sh (0.69) fish (0.44)
hunger (0.50) state (0.39) thirst (0.33)
SI (0.63) ~3 (0.46) eat (0.43)
mark (0.27) paul (0.23) luke (0.22)
thef i sh (0.39) fish (0.24) food (0.23)
food (0.07) the-bread (0.06) obj,,, (0.06)
agtsee (0.66) agt (0.50) obj,,, (0.45)
agtsee (0.60) agt (0.44) agtcawe (0.32)

Constructing the HRR Decoding the object of t h e HRR

Fig. 10. Construction and decoding of a HRR for the sentence “Mark ate the fish.” (61 in Section X). The instantiated frame, labeled 51, is the sum of
roldfiller bindings and a frame id (shown in the second column). It is the same dimensionality as all other objects and may be used a filler in another frame
(e.g., as in 62 in Section X). A filler of the HRR can he extracted by convolving the HRR with the approximate. inverse of its role. The extraction of the
agent role filler of this sentence is shown on the right (also see Table VIII). Of the items in clean-up memory, the actual filler, mark, is the most similar
(shown in the dotted region). The next two most similar items are also shown, with the dot-product match value in parenthesis. In this high-dimensional
space, these two items are significantly less similar than the actual filler. See Section X-C for discussion.

paul (.41). The filler of the agent role in ii1 is indeed mark ,
so the extraction has been performed correctly.

The construction of Gl and the determination of the filler of
its object role, on row (1) in Table Vm, is illustrated in Fig. 10.
To enable the perception of similarities among vectors in this
figure, the 5 12-element vectors were laid out in rectangles
with dimensions permuted (on all vectors simultaneously) so
as to reduce the total sum of variance between neighboring
elements. This was done using a simulated annealing program.
The reader should not take the visual similarities of the vectors
too seriouslydot-product similarity is what is important and
is difficult to judge from merely looking at a figure like this.

Row (2) illustrates that the agent of 61 can also be extracted
using the generic agent role (agt) rather than the agent role
specific to the eat frame (agt,,). The results are stronger
when the specific agent is used.

In ii2 the object role is filled by another frame. There are
two alternative methods for extracting the components of this
subframe. The first method, which is slower, is to clean up
the subframe in item memory (row 5) and then extract its
components, as in rows (1) to (3). The second (faster) method,
is to omit the clean up operation and directly convolve the
result with the approximate inverses of the roles of 51. The
expressions for the fast method are shown in rows (6) and

PLATE HOLOGRAPHIC REDUCED REPRESENTATIONS 631

(7). The first method is an example of using chunking to
clean up intermediate results, and gives stronger results at
the expense of introducing intermediate cleanup operations.
With the intermediate cleanup omitted the chances of error
are higher; in row (6) the correct vector is only very slightly
stronger than an incorrect one. The high-scoring incorrect
responses are similar to the correct response, however, it is
clear that the subframe object role filler is a person.

Row (8) shows that happens when we try to extract the
filler of an absent role. The frame G3 (“John ate.”) has no
object. As expected, .43 0 obj:,, is not significantly similar
to anything. Although food might seem an appropriate guess,
it is coincidence that food is the strongest response.

It is possible to determine which role a token is filling, as
in rows (9) and (10). In &, on row (9), the correct role for
john is agt,,,, but objeat also scores quite highly. This is
because john is a person, and a person is also filling the object
role in S4. Compare this with G5, where the object role filler
(thefish) is not at all similar to the agent role filler (john).
The extracted role for john is not at all similar to the object
role, as shown on row (10).

D. Probabilities of Correct Decoding
The expectation and variances of the dot-products

.GI 0 agt,*,, . mark and

are calculated in this section (where who is a vector for a
person that is not mark). This allows us to calculate the
probability that the agent of .GI will be extracted correctly, as in
row (1) of Table VIII. It must be emphasized that the behavior
of any particular system (i.e., set of vectors) is deterministic.
A particular frame in a particular system always will or always
will not be decoded correctly. The probabilities calculated in
this section are the probabilities that a randomly chosen system
will behave in a particular way.

Let d = 11 0 agt;,, then

d . mark = d . (being + person + idmark)/&, and

51 0 agt;,, . who

d . p = d . (being + person + idp)/&.

The vector p is used here as a generic “incorrect person” filler.
The extraction is judged to have been performed correctly if
d . mark > d . p V p E { vectors in item memory }. We can
limit the consideration of p to people-vectors in item memory,
because it is extremely unlikely that other vectors will be more
similar to d than the vectors representing people.

It is important to note that these two dot-products are
correlated because they share the common term d . (being +
person)/fi. To calculate the probabilities accurately it is
necessary to take into account the value of this term when
choosing the threshold. Let

Xmark = d . idmark/&,
Yp = d . idp/&, and

Z = d . (being + person)/&

that are derived from the random vectors. They are distributed
normally.

The calculation of the means and Variances Of Xmarkl Yp,
and Z is presented in Appendix C. For n = 512 they are

mean variance std dev

YP 0 0.000867 0.0294
2 0.385 0.00246 0.0496.

Xmark 0.192 0.00116 0.0341

A lower estimate’* for the probability P that Z + Xmark >

P’ = P r (Z + Xmark > t) . Pr(Z + yP < t ~p # mark)

where t is a threshold chosen to maximize this pr~bability.’~
In this example there are three other people, so

P’ = Pr(X,,,k + Z > t) . Pr(Y, + z < t)3 .

This has a maximum value of 0.996 for t = Z+ 0.0955. Thus
the probability of correctly identifying mark as the filler of
agent role in El is at least 0.996. If there were 100 other people
the probability would drop to 0.984.

The primary reason for calculating means and variances of
signals is to estimate the vector dimension that will result
in an acceptable probability of error. It is not necessary to
calculate the means and variances for every possible signal
value, only the one where the differences of means which
must be discriminated are small and the variances large.

E. Normalization of Vectors

Vectors that are constructed from the sum of components
are not likely to have a Euclidean length of one. This causes
problems if these results are stored in memory for later
similarity matching-a large vector can have a large dot-
product with another vector even when the proportion of their
shared components is relatively small. In this example this
problem was dealt with by including constant factors designed
to make the expected length of the result equal to one. This
only works when the pair-wise expected similarities of the
vectors in the sum are all zero. It is probably preferable to
normalize all vectors so that their lengths are exactly one. This
was not done in this example because doing so would affect
the validity of the analysis of expectations and variances of
dot-products. Another altemative is to use the cosine rather
than the dot-product as a measure of similarity, but this also
makes analysis more difficult.

Z + Yp for all p is given by

F, The Use of Thresholds

Fixed thresholds are helpful in the analysis of probability
of correct retrieval but they are not very good for determining
the result of similarity match in practice. There two reasons
for this:

The best threshold varies with the composition of the
HRR frame (e.g., the number of terms in the HRR).
The best threshold varies with the particular objects in the
HRR (e.g., as t varied with the 2 value in Section X-D).

‘*P’ < P because it can be the case that Z + Xmark < t and

I9t is chosen with knowledge of Z but not of Xmark or Yp.
so that dmark = Xmark + 2, and d.p = Yp + z. The values
Xmark, ypl and 2 can be regarded as uncorrelated variables

z + xmZk > z + yPvp # mark.

638 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6, NO. 3, MAY 1995

Consequently, no single fixed threshold will be appropriate
for choosing the winning match in all situations. A simpler
scheme than using variable thresholds is to choose the most
similar match. The situation where there is no filler of a role
can be detected with a low threshold. An alternative is to have
a no-decision region; if the highest score is not more than some
fixed amount greater than the next highest score the result is
considered unclear and there is no decision.

XI. DISCUSSION

Circular convolution is a bilinear operation, and one conse-
quence of the linearity is low storage efficiency. The storage
efficiency is sufficient to be usable and scales almost linearly,
however. Convolution is endowed with several positive fea-
tures by virtue of its linear properties. One is that it preserves
similarity-HRR's with s i " fillers in similar roles are
similar. Another is that convolution can be computed very
quickly using FFTs. Another is that analysis of the capacity,
scaling, and generalization properties is straightforward. Yet
another is that there is potential for a system using HRR's to
retain ambiguity while process@ ambiguous input.

Convolution can be used as a fixed mapping in a connection-
ist network to replace one or more of the usual weight-matrix
mappings. The forward propagation of activations and the
backward propagation of gradients both can be calculated very
quickly using FFT's. This possibility is pursued in [25].

It is possible to do all the calculations of HRR's entirely
within the frequency domain. If all vectors were represented
in the frequency domain if would not be necessary to do
any FFTs and all the operations of HRR's could be done
in O(n) time. The rest of the system, including clean-up
memories, would have to be able to work with cotnplex
vectors. There has been some research on creating adapting
neural network architectures to wok with units with complex
valued activations (e.g., [2]).

One of the problems with convolution memories is the noisy
results they give. The noise can be reduced if the encoding
vectors have uniform power in the frequency domain, i.e., are
unitary. Under this condition the approximate inverse is equal
to the exact inverse. Whether or not the advantages afforded by
this outweigh the disadvantages of having another constraint
is an open question. It is possible to have a HRR system in
which all vectors are unitary. In such a system the convolution,
involution, and dot-product operations are all straightforward
but the analogue of addition operation cannot be linear. The
properties of such a system remain a subject for investigation.

XII. CONCLUSION
Memory models using circular convolution provide a way

of representing compositional structure in distributed represen-
tations. They implement Hinton's 1121 suggestion that reduced
descriptions should have microfeatures that are systematically
related to those of their constituents. The operations involved
are mostly linear and the properties of the scheme are
relatively easy to analyze, especially compared to schemes
such Pollack's RAAMs [27]. There is no learning entailed
and the scheme works with a wide range of vectors. Systems

employing HRR's must have an error-correcting auto-
associative memory to clean up the noisy results produced
by convolution decoding.

APPENDIX A
A LOWER BOUND FOR THE CAPACITY OF ADDITION MEMORIES

In addition, memory can store a small set of vectors in a
single trace. It is easy to recognize whether or not a vector
has been stored in a trace. In this appendix I show how
the probability of correct recognition is related to the vector
dimension and the number of vectors stored. Suppose we have
an addition memory trace with the following parameters:

k distinct items (vectors) stored in, a memory trace,
selected from m possible vectors, a, b, E , d etc.
n elements in each vector, each element (e.g., a;) inde-
pendently drawn from a N (0 , i) distribution.
g, the probability of making one or more errors while
determining which items are (and are not) stored in the
memory trace.
s, and s,., the accept and reject signals (see below).

To test whether some item x is in a trace t", we compute
the dot product of x and i. The resulting signal will be from
one of two distributions; the accept distribution Sa (if 2 is
in the trace), or the reject distribution S, (if j i is not in the
trace). The means and variances of these distributions can be
calculated_ by expanding 2. t". For example, consider the trace
i = d + b + E, and a signal from the accept distribution

S, = 5 * t = 5 * 5 + 5 . b + 5 * E .

Recall that vector elements are distributed as N (0 , i), from
which it follows that E(a:) = and var (a:) = 5, and
E(aibi) = 0 and var (aibi) = 3. By the central limit theorem
the terms like 5 . 5 are distributed as N(1, E), and the terms
like 5 b are distributed as N(0, i). Since these terms all
have zero covariance, we can add means and variances to get
s a = N (l , *) and sT&N(O, i).

If the signal kat" is greater than some threshold t we assume
that it is from the accept distribution and thus the item is in
the trace, and if it is less we assume it is not. This decision
procedure is not infallible, but n can be chosen make the
probability of error acceptably low.

Using cumulative distribution functions, we can work out
the probability Pr(Hit)(= Pr(s, > t)) of correctly deciding an
item was stored in a trace, and the probability Pr(Reject)(=
h (sT < t)) of correctly deciding an item was not sotred
in a trace. The threshold t can be chosen to maximize the
probability F'r (Correct) of correctly identifying all the items
stored (and not stored) in a particular trace

Pr(Correct) = Pr (Hit)% (Reject)m-k.

d

The probability density functions (pdfs) for s, and s,
and the optimal single threshold are shown in Fig. 11, for
an example with n = 64, m = 100, and IC = 3 (for
which Pr(Correct) = 0.68). Note that the optimal scheme for
deciding whether a signal comes from the accept or the reject
distributions involves testing whether the signal is in a region

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 639

Threshold

E(s.) = 1
sd(s,) = 0.25 sd(s,) = 0.217

0 0.651 1 Signal strength

Fig. 11. Distribution of accept(s,) and reject (sr) signals for recognition in
a linear addition memory, with R = 64 and k = 3. The threshold shown
maximizes h (Correct) for m = 100.

around the distribution with the smaller variance. For the
purposes here the small gains this scheme makes over a single
threshold scheme are outweighed by its added complexity.

It is difficult to find an analytic expression of the capacity,
relating k to n,m, and q. A reasonably close lower bound
can be found as follows. First, some definitions; erfc(x) is the
standard "error function" and tail (z) is the area under the
(normalized) normal probability density function beyond 2 (in
one tail)

The following inequality from Abramowitz and Stegun [l]
and a simplification are used

The probability of correctly identifying all items in the trace
can first simplified by chosing t = 0.5 and then by applying
the binomial theorem

(2) Pr(Correct) = max ~r (U > t) k P ~ (T < tlm-lc

> Pr(u > 0.5)k Pr (T < 0.5)m-k
= (1 - Pr(a < 0.5))'(1 - Pr (T > 0.5))m-k
> 1 - k Pr(u < 0.5) - (m - k) Pr (T > 0.5).

(3)

Now consider q, the probability of one or more errors. This
can be simplified by first using Inequality 3 to give Inequality
4, then next replacing smaller variances with the maximum
variance to give Inequality 5. After that we use Inequality 1
to give Inequality 6 and finally replace the square root factor
by one to give Inequality 7, since it is safe to assume that
factor is less than one.

q = 1 - Pr(Correct)
< k Pr(u < 0.5) + (m - k) Pr (T > 0.5) (4)
= k tail (i/x) + (m - tail(l&) 1 n

< k t a i l (i / x) + (m - k) t a i l 2 k + l

2 k + l

(adz-) - -

= T n t a i 1 (y x) 2 k + l

Rearranging gives

n<8(k+l)ln(:) if n>--- 2(k + 1)
n

or

This lower bound on the capacity (k) is reasonably close.
Numerical solutions of the exact expression for Pr (Correct)
(2) for k in the range (2.. .14), m in (lo2. . . lo1'), and q in

. are reasonably well approximated by
m

n = 3.16(k - 0.25) In -
q3

The analysis here treats signal values as random variables,
but their randomness is only a consequence of the random
choice of the original vectors. For any particular trace with a
particular set of vectors, the signal values are deterministic.
This style of analysis is consistently used throughout this pa-
per, there are no stochastic operations, only randomly chosen
vectors.

APPENDIX B
A LOWER BOUND FOR THE CAPACITY

OF CONVOLUTION MEMORIES

In this appendix, I show how the analysis in Appendix A
can be extended to a convolution memory that stores pairs of
items. Instead of storing k items in a trace, we store k pairs
of items.20 Parameters n ,m, and q are as described at the
beginning of Appendix A. We can check whether a cue-probe
pair has been stored in the trace by first convolving the trace
with the approximate inverse of the cue and then checking the
similarity (dot-product) to the probe.21 I assume that we do
not know what the appropriate cues are, so to find all the pairs
in the trace we must try every combination of cue and probe.

There are five distributions of reject signals and one dis-
tribution of accept signals. The distribution of a reject signal
depends on how many of the cue and probe occurred in the
trace (0,1, or 2) and on whether the cue was equal to the probe.
The signals are summarized in Table IX, with examples for
the trace = a 0 b + E 0 d. The means and variances of all
the signals are also shown, together with the number of each
of these signals that must be tested to probe exhaustively for
each pair in the trace. The variances were calculated by adding

2oSome complications are avoided by not permitting repetitions or pairs of
identical items.

*l1 do not assume that the retrieval process avoids checking whether the
probe and cue are equal.

IEEE TRANSACTIONS ON NEURAL "IWORKS, VOL. 6, NO. 3, MAY 1995

TABLE IX
MEANS AND VARIANCES OF SIGNALS IN A

PAIRED-ASSOCIATES CONVOLUTION MEMORY

the appropriate variances from Table I, ignoring the terms of
order l /n2. The covariance between all terms in the signals
(e.g., a 0 b 0 a* - 6 and E: 0 d, 0 a 0 -6) is zero?*

The probability of correctly identifying all the pairs in the
trace is23

Using the same inequalities as in Appendix A we get

4(k + 2) i f n > -
7r

or

m2 4(k + 2) n < 1 6 (k + 2) l n - ifn>-.
Q 7r

Numerical solutions of the (8) for k in the range (2 . . .14),
are reasonably m in (lo2 . . lolo), and q in '

well approximated by

m
30q4

n = 4.5(k + 0.7) In -.

APPENDIX C
MEANS AND VARIANCES OF A SIGNAL

The detailed calculation of the mean and variance one of the
components of one of the signals in Section X-D is presented
in this appendix.

221f we had-dow_ed identical pairs in the trace this would not be true for all
signals, since b 0 b a* 6 and 2: 0 2: 0 a* . 6 have nonzero covariance.

23This expression actually underestimates FtfCorrect) because a small
proportion of signal values are correlated with each other. This causes
clustering of errors-if a trace has at least one decoding error it is likely
to have more.

1
Xmark = 51 0 ' -idmark

1
= -(eat + agt,, 0 mark

= +obj,, 0 theflsh) 0 agt:at * -idmark

= -(eat)

= +agteat 0 -(being i- person + idmark)

fi
1
fi

1
3

1
6

+ obj,, 0 thefish) 0 agt;,, idmark
1
3

= -eat o agt:,, . idmark

1 -agt,,, 0 being 0 agtzat . idmark
3 f i

1

1

+ -agteat 0 person

+ ---a!&,,, 0 idmark 0 . idmark

+ 3objeat O thefish 0 agt;at idmark.

agt;,, + idmark 3d3

3d3
1

The expectations and variances of these terms can be found
by consulting Table I. It is not necessary to expand the vectors
agteat,objeat or thefish, as the components of these are
independent of the other vectors appearing in the same terms.
The expectation of the fourth term is (row 4 in Table I),
and all the expectation of the remaining terms in zero. These
five terms are independent and thus the variance of the sum is
the sum of the variances. The variance of the first term is &
(row 3 in Table I), the varjance of the second and third terms is

(row 6),
and the variance of the fifth term is & (row 10). These terms
are uncorrelated, so their expectations and variances can be
summed to give

(row 8), the varianqe of the fourth term is

16n + 8
x 0.593/n.

1
E(Xmark) = si var(xmark) = ~ 27n2

The expectations and variances of Yp and 2 can be calcu-
lated in a similar manner. They are

val?(Yp) = - 12n + x 0.444/n
2 7 d

x 1.26/n.
34n+ 20

V.r(Z) = - E(2) = - 2
3ai 27n2

ACKNOWLEDGMENT
Conversations with J. Pollack, J. Metcalfe and G. Hinton

were essential to the development of the ideas expressed in
this paper. Comments from C. Williams and two anonymous
reviewers have helped to greatly improve the exposition in
this paper.

REFERENCES

[l] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical
New Functions with Formulas, Graphs, and Mathematical Tables.

York Dover, 1965.

PLATE: HOLOGRAPHIC REDUCED REPRESENTATIONS 641

[2] N. Benvenuto and F. Piazza. “On the complex backpropagation algo-
rithm,” IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 967-969,
1992.

[3] A. Borsellino and T. Poggio, “Convolution and correlation algebras,” in
Kybemetik, vol. 13, 1973, pp. 113-122.

[4] E. 0. Brigham, The Fast Fourier Transform. Englewocd Cliffs, NJ:
Prentice-Hall, 1974.

[5] D. Casasent and B. Telfer. “Key and recollection vector effects on
heteroassociative memory performance,” Applied Optics, vol. 28, no.
2, pp. 272-283, 1989.

[6] P. J. Davis. Circulant Matrices. New York: Wiley, 1979.
[7] D. F. Elliot. Handbook of Digital Signal Processing Engineering Appli-

cations. San Diego, CA: Academic, 1986.
[8] A. D. Fisher, W. L. Lippincott, and J. N. Lee. “Optical implementations

of associative networks with versatile adaptive learning capabilities,”
Applied Optics, vol. 26, no. 23, pp. 5039-5054, 1987.

[9] J. A. Fodor and Z. W. Pylshyn. “Connectionism and cognitive architec-
ture: A critical analysis,” Cognition, col. 28, pp. 3-71, 1988.

[lo] R. A. Gabel and R. A. Roberts, Signals and Linear Systems. New
York: Wiley, 1973.

[111 G. E. Hinton, “Implementing semantic networks in parallel hardware,”
G. E. Hinton and J. A. Anderson, Eds., Parallel Models of Associative
Memory. Hillsdale, NJ: Erlbaum, 1981.

[121 - “Mapping part-Whole hierarchies into connectionist networks,”
in Artificial Intelligence, vol. 46, nos. 1-2, pp. 47-76, 1990.

[13] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. “Distributed
representations,” J. L. McClelland, D. E. Rumelhart, and the PDP
Research Group, Eds., Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, vol. I. Cambridge, MA: MIT Press,

[14] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” in Proc. Nat. Acad. Sei. U.S.,
79:2554-2558, 1982.

[151 P. Kanerva. Sparse Distributed Memory. Cambridge, MA: MIT Press,
1988.

[161 G. Legendre, Y. Miyata, and P. Smolensky. “Principles for an integrated
connectionisthymbolic theory of higher cognition,” Univ. of Colorado
at Boulder, Tech. Rep. CU-CS-600-92, 1992.

[17] S. Lewandowsky and B. B. Murdock. “Memory for serial order,”
Psychological Review, vol. 96, no. 1, pp. 25-57, 1989.

[181 J. Metcaffe-Eich, “A composite holographic associative recall model.”
Psychological Review, vol. 89, pp. 627461, 1982.

[19] B. B. Murdock, “A distributed memory model for serial-order informa-
tion.” Psychological Review, vol. 90, no. 4, pp. 316338, 1983.

[20] -, “A theory for the storage and retrieval of item and associative
information.” Psychological Review, vol. 89, no. 6, pp. 316338, 1982.

[2 11 -, “Serial-order effects in a distributed-memory model,” in Memory
and Learning: The Ebbinghaus Centennial Conference, D. S. Gorfein
and R. R. Hoffman, Eds. Hillsdale, NJ: Erlbaum, 1987, pp. 277-310..

[22] E. G. Paek and D. Psaltis, “Optical associative memory using Fourier
transform holograms.” Optical Engineering, vol. 26, no. 5, pp. 428-433,
1987.

[23] R. Pike, “Comparison of convolution and matrix distributed memory
systems for associative recall and recognition.” Psychological Review,
vol. 91, no. 3, pp. 281-294, 1984.

1986, pp. 77-109.

[24] T. A. Plate, “Holographic Reduced Representations,” Tech. Rep. CRG-
TR-91-1, Dept. Comp. Sci., Univ. of Toronto, 1991.

[25] -, “Holographic recurrent networks,” in C. L. Giles, S. J. Hanson,
and J. D. Cowan, Eds., Advances in Neural Information Processing
Systems 5 (NIPS*92), pp. 34-41, San Mateo, CA, 1992.

[26] T. Poggio, “On holographic models of memory,” Kybemetik, vol. 12,
pp. 237-238, 1973.

[27] J. B. Pollack, “Recursive distributed representations,” Artificial Intelli-
gence, vol. 46, no. 1-2, pp. 77-105, 1990.

[28] R. Rosenfeld and D. S. Touretzky, “Coarse-coded symbol memories and
their properties,” Complex Systems, vol. 2, no. 4, pp. 463-484, 1988.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
temal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. I, J.
.L. McClelland D. E. Rumelhart, and the PDP Research Group, Eds.
Cambridge, MA: Broadford, 1986.

[30] P. H. Schonemann, “Some algebraic relations between involutions, con-
volutions and correlations, with applications to holographic memories,”
Biological Cybernetics, vol. 56, pp. 367-374, 1987.

[31] J. N. Slack, “A parsing architecture based on distributed memory
machines,” in Proc. COLING-86, pp. 476-481, Assoc. Computational
Linguistics, 1986.

[32] P. Smolensky, ‘Tensor product variable binding and the representation
of symbolic structures in connectionist systems,” Artificial Intell., vol.
46, no. 1-2, pp. 159-216, 1990.

[33] D. S. Touretzky, “Dynamic symbol structures in a connectionist net-
work,” Artificial Intell., vol. 42, no. 1-2, pp. 5-46, 1990.

[34] D. S. Touretzky and S. Geva, “A distributed connectionist representation
for concept structures,” in Proc. 9th Ann. Cognitive Sci. Soc. Con$
Hillsdale, NJ: Erlbaum, 1987.

[35] D. S. Touretzky and G. E. Hinton, “A distributed connectionist produc-
tion system,’’ Cognitive Science, vol. 12, no. 3, pp. 423466, 1988.

[36] E. U. Weber, “Expectation and variance of item resemblance distri-
butions in a convolution-correlation model of distributed memory,” J.
Math. Psychology, vol. 32, pp. 1 4 3 , 1988.

[37] D. Willshaw, “Holography, associative memory and inductive general-
ization,” in Parallel Models of Associative Memory, G. E. Hinton and
J. E. Anderson, Eds.

[38] D. Willshaw and P. Dayan, “Optimal plasticity from matrix memories:
What goes up must come down,” Neural Computation, vol. 2, pp. 85-93,
1990.

Hillsdale, NJ: Erlbaum, 1981.

Tony Plate received the B.Sc. degree from the University of Melbourne in
1985, the M.Sc. degree from New Mexico State University in 1988, and the
Ph.D. degree from the University of Toronto in 1994, all in computer science.

Dr. Plate is currenly with the British Columbia Cander Agency, Canada. His
current research interests include the implementation of higher-level cognitive
processes in neural networks, and applications of neural networks to data
analysis.

