
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995 623 

Holographic Reduced Representations 
Tony A. Plate 

Abstract- Associative memories are conventionally used to 
represent data with very simple structure: sets of pairs of vectors. 
This paper describes a method for representing more com- 
plex compositional structure in distributed representations. The 
method uses circular convolution to associate items, which are 
represented by vectors. Arbitrary variable bindings, short se- 
quences of various lengths, simple frame-like structures, and 
reduced representations can be represented in a fixed width 
vector. These representations are items in their own right and 
can be used in constructing compositional structures. The noisy 
reconstructions extracted from convolution memories can be 
cleaned up by using a separate associative memory that has good 
reconstructive properties. 

I. INTRODUCTION 
ISTRIBUTED representations [13] are attractive for a D number of reasons. They offer the possibility of repre- 

senting concepts in a continuous space, they degrade gracefully 
with noise, and they can be processed in a parallel network 
of simple processing elements. The problem of representing 
compositional structure’ in distributed representations, how- 
ever, has been for some time a prominent concern of both 
proponents and critics of connectionism [9], [32], [12]. 

Most work on neural-network style associative memories 
has focussed on either auto-associative or hetero-associative 
memories. Auto-associative memories, e.g., Hopfield networks 
[14], store an unordered set of items. They can be used to recall 
item given a distorted version. Hetero-associative memories, 
e.g., holographic memories and matrix memories [37], [8], 
[22], [5], [38], store a set of pairs of items. One item of a pair 
can be recalled using the other as a cue. Matrix style memories 
are the more popular class, owing to superior storage capacity 
and fewer constraints on vectors to be stored. 

For artificial intelligence tasks such as language processing 
and reasoning the need arises to represent more complex 
data structures such as sequences and trees. It is difficult 
to represent sequences or trees in distributed representations 
using associations of pairs (or even n-tuples) of items and 
retain the benefits of distributed representations. The problem 
with representing compositional structure in most associative 
memories is that items and associations are represented in 
different spaces. For example, in a Hopfield memory (a matrix 
style memory) items are represented on unit activations (a vec- 
tor) and associations are represented on connections weights 
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‘i.e., recursive, or tree-like structure. 

(a matrix). This makes it difficult to represent relationships 
with recursive structure in which an association of items may 
be the subject of another association. 

Hinton [12] discusses this problem and proposes a frame- 
work in which “reduced descriptions” are used to represent 
parts and objects in a part-whole hierarchy (a frame-like rep- 
resentation). This framework requires that a number of vectors, 
each a part and together forming a whole, be compressed 
(reduced) into a single vector of the same dimension as the 
original vectors. This reduced vector can in turn be used as a 
part in the representation of some greater whole. The reduction 
must be reversible so that one can move in both directions in 
a part-whole hierarchy, i.e., reduce a set of vectors (a whole) 
to a single vector (a potential part), and expand a single 
vector (a part) to a set of vectors (a whole). In this way, 
compositional structure is represented. An essential aspect 
of reduced descriptions is that they should be systematically 
related to their components, so that information about the 
components can be. gleaned without expansion. It is this aspect 
that distinguishes reduced descriptions from arbitrary pointers. 
Unfortunately, Hinton does not suggest any concrete way of 
performing the reduction and expansion mappings. 

Some researchers have built models or designed frame- 
works in which some compositional structure is present in 
distributed representations. For some examples see the papers 
of Touretzky [33], Pollack [27], or Smolensky [32]. 

In this paper I propose a new method for representing 
compositional structure in distributed representations. Circular 
convolutions are used to construct associations of vectors. The 
representation of an association is a vector of the same dimen- 
sionality as the vectors which are associated. This allows the 
construction of representations of objects with compositional 
structure. I call these holographic reduced representations 
(IBR’s), since convolution and correlation based memories 
are closely related to holographic storage, and they provide 
an implementation of Hinton’s [ 121 reduced descriptions. I 
describe how HRR’s and auto-associative item memories can 
be used to build distributed connectionist systems which ma- 
nipulate complex structures. The item memories are necessary 
to clean up the noisy items extracted from the convolution 
representations. 

Convolutiodcorrelation (holographic) memories have been 
generally regarded as inferior to matrix style associative mem- 
ories for associating pairs of items, for reasons concerning 
capacity and constraints (see [37] and [8]). Matrix style 
memories have a problem of expanding dimensionality when 
used for representing compositional structure, however. Con- 
volutiodcorrelation memories do not have this problem. Their 
storage capacity is sufficient to be useful and restrictions on 
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the classes of vectors can be coped with by using matrix style 
associative memories to transform unsldtlltrle vectors. 

Associative memories are reviewed in Section II. A interpre- 
tation of convolution as a compressed outer product is given. In 
Section I11 addition memories are reviewed. The need for high 
capacity error-correcting associative memories is discussed in 
Section IV. Representations of more complex structures are 
discussed in Section V; some sequence representations are 
reviewed and ways of doing variable binding and repsenting 
simple frame structures are suggested. The idea of HBR's falls 
naturally out of these representations, and is discussed in Sec- 
tion V-E. Section VI discusses h u e s  of represen- features 
and tokens with the types of vectors that convolution memories 
can work with. Two simple machines that use HRR's are 
described in Section VII. Various mathematical properties are 
discussed in Section VIII, including the relationship between 
convolution and fast Fourier tmnsforrns and the status of 
correlation as an approximate inverse to convolution. The 
capacity of convolution memories and HRR's are discussed 
in Section IX. In Section X are examples of the construction 
and decoding of HRR's. 

11. HETERO-ASSOCIATIVE MEMORIES- 
MATRIX AND CONVOLUTION IMPLEMENTATIONS 

Hetero-associative memories are used to store associations 
between pairs of vectors. The vectors are usually distributed 
representations of discrete items (e.g., images). 

Convolution-correlation memories (sometimes referred to 
as holographic-like memories) and matrix memories have 
been regarded as alternative methods for implementing hetero- 
associative memory [37], [19], [23], [30], [8]. Matrix memo- 
ries have received more interest, due to their relative simplic- 
ity, their higher capacity in terms of the dimensionality of the 
vectors being associated, and the relative lack of constraints 
on those vectors. 

A. Associative Memories 

There are three operations used in most nonadaptive asso- 
ciative memories: encoding, decoding, and trace composition. 
The encoding operation takes two item vectors and produces a 
memory trace (a vector or a matrix). The decoding operation 
takes a memory trace and a single item (the cue) and produces 
the item that was originally associated with the cue, or a 
noisy version thereof. Memory traces can be composed by 
addition or the binary-OR operation. The decoding operation 
will work with this sum of individual traces, but the retrieved 
items may be noisier. In some models the encoding and 
decoding operations are bilinear, e.g., Murdock [19], in others 
the decoding operation in nonlinear, e.g., Hopfield [14], and 
in others all the operations are nonlinear, e.g., Willshaw [37]. 

To illustrate this, let I be the space of vectors representing 
items, and T be the space of vectors or matrices representing 
memory traces. There are often constraints on the vectors, e.g., 
they should be nearly orthogonal. Let 

I X I : l x I - r T  

be the encoding operation 

p : I x T + I  

be the decoding operation, and 

EEl:TxT+T 

be the trace composition operation. Let 6, b, E ,  d, 8, and f be 
item vectors, and let Ti be memory trcces. 

The association of two items B and b is represented by the 
trace 

We can recover b from TI by using the decoding operation 
on TI and the cue 6 

gives b, or a noisy version of it. Noisy versions of H can 
also be used as cues and, depending on the properties of the 
particular s_cheme, the retrieved vector will be more or less 
similar to b. 

A trace can represent a number of associations, e.g., 

TZ = (a H b) EEI ( E  [XI d) EE (6 [XI i). 

The first item from any pa$ can be used as a cue to recover 
the other item of the pair, e.g., 

gives a noisy version of d. The noisiness of the recovered 
vector increases with the number of associations stored in a 
single memory trace. The number of associations that can be 
represented usefully in a single trace is usually referred to as 
the capacity of the memory model. 

In matrix memories the encoding operation is the outer 
product and in convolution memories the encoding operation 
is convolution. Addition and the binary-OR operation have 
both been used as the trace composition operation in matrix 
and convolution memories. 

Both matrix and convolution memories, especially the ver- 
sions with linear encoding operations, have the property that 
they preserve similjwity. That is, if items a and a' are s ie lar ,  
and ite_ms b and b' are similar, then the traces a [XI b and 
a' [XI b' will also be similar. The degree of similarity of the 
traces will be related to the degree of similarity of the items. 
This property is potentially very useful because it allows an 
estimate of the similarity of traces to be computed without 
decoding. 

Matrix memories are usually not symmetric; to use d as a cue T2 must be 
transposed. Convolution memories are symmetric, either member of the pair 
can be used as a cue. 
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CO c1 c2 B. The Problem of Complex Structure 

Pairwise associations do not suffice for the practical repre- 
sentation of more complex data structures, such as trees. The 
need to represent such data structures arises in systems which 
use higher-order predicates, e.g., predicates such as “cause,” 
“think,” and “believe,” in language processing or reasoning 
systems. 

One approach to representing more complex data structures 
in associative memory is to use three-way associations, as are 
used in LISP data structures (car, cdr, and address). Touretzky 
and Hinton [35] and Touretzky [33]  describe systems based on 
this idea. A major problem with this approach is that access 
is slow; many pointers must be followed to determine the 
constituents of a structure. This removes one of the major 
advantages of distributed representations; fast determination 
of similarity. 

Another approach is to use an associative memory operator 
that can be applied recursively. This corresponds to an operator 
that can map from I x T t TI, and I x TI + TI’, etc. A 
major problem with most implementations of this approach 
is the expanding dimensionality of the association spaces I, 
TI, T”, etc. Vectors that grow arbitrarily in dimension are 
difficult to use in practical systems. This approach has been 
used by a number of researchers, and the problem of expanding 
dimensionality has been tackled in a number of ways. Eich [ 181 
and Murdock [20] both describe methods based on aperiodic 
convolution. Eich discards outside elements of convolution 
products to avoid expanding dimensionality. Murdock uses 
infinite-dimensional vectors. Smolensky [32] proposes Tensor- 
product memories, which use a generalized outer product as 
the associative operator. In these memories the dimensionality 
of the association space is exponential in the depth of recursion 
involved. Smolensky suggests placing a hard limit on the 
depth of recursion in order to keep the size of the association 
space tractable (e.g., no structure can be more than four levels 
deep). In a later paper Legendre et al. [16] describe a scheme 
which permits a soft limit on the depth of recursion, though 
its properties as the limit is approached or exceeded are not 
clear. In Pollack’s [27] recursive auto-associative memories 
(RAAM’s) items, associations, and recursive associations are 
all represented in the same vector space. A backpropagation 
network learns the encoding and decoding mappings. This 
solves the problem of expanding dimensionality. The learning 
is slow and the generalization of the mappings to novel items 
and structures is highly variable, however. In HRR’s items and 
associations are also represented in the same vector space and 
circular convolution and its approximate inverse are used as 
the encoding and decoding operators. 

C. Convolution-Correlation Memories 

0 8  

xo -.& _ _ _ _  Q - - - - -  &- 
: : a  

j : :  

: : :  

; j i /-- 
x1 - -o _ _ _ _ _  6 _..-e-- 

# # :  

x 2  --b _ _ _ _ _  - - - -  &- 

Fig. 1. 
example location shown. 

The outer product of two vectors, Z: and X with the content of an 

t 2  

k = - ( n - 1 ) / 2  

f o r j  = -(n - 1) ton - 1 

Fig. 2. A periodic convolution represented as a compressed outer product 
for n = 3. The indices are centered on zero since vectors “grow” (at both 
ends) in dimensionality with repeated convolutions. 

Fig. 3. 
pressed outer product for n = 3. 

Metcalfe’s truncated aperiodic convolution represented as a com- 

with another vector (recursive convolution); and if that vector 
has n elements, the result has 3n - 2 elements. Thus the 
dimensionality of the resulting vectors expands with recursive 
convolution.4 

The problem of expanding dimensionality can be avoided 
entirely by the use of circular convolution, an operation well 
known in signal processing (e.g., see [lo]). The circular 
convolution of two vectors of n elements has just n elements. 

Matrix and convolution memories provide different instan- 
tiations of the abstract associative memory operators set out 
in Section 11-A. They are more closely related, however, 
than might be suggested by this. The convolution of two 
vectors (whether circular or aperiodic) can be regarded as a 
compression of the outer product of those two vectors. The 
compression is achieved by summing along the top-right to 
bottom-left diagonals of the outer product, as illustrated in 

In nearly all convolution memory models the aperiodic 
convolution operation has been used to form  association^.^ 
Traces are usually composed by addition. The aperiodic con- 

vector with 2n - 1 elements. This result can be convolved 

Figs. ’-’. 

4For the sake of mathematical elegance, many authors have considered 
the vectors to have an infinite number of elements centered on the zero’th 
element, i.e., indexed from -CG through 0 to CG. The vectors must have a 

Of two vectors each with in a 

finite number of nonzero elements in order for the convolution operation to 
be defined, and these are usually centered about the zero’th element [201, [31, 3The exception is the nonlinear correlograph of Willshaw [37], first 

published in 1969. [261. 
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t = CQDX 

t o  = cox0 + C Z X l  + C l X Z  

11 = clxo+coxl  + c z x 2  

t z  = C Z X O  + C l X l  + c0x.l 

forj  = 0 ton - 1 
(Subscripts are modulo-n) 

Y2 Y l  YO 

y = c e t  

Yo = 
Y I  = 
92 = 

cot0 + C l t l  + e222 

clto + cot1 + Cl t2  

clto + czt1 + cot2 

n -1  

& = k=O Cktk+j 

for j  = 0 t o n  - 1 
(Subscripts are modulo-n) 

Fig. 4. 
n = 3. 

Circular convolution represented as a compressed outer product for Fig. 5. circular 
n = 3. 

repsented as a Outer product for 

The outer product of two vectors is illustrated in Fig. 1, 
which is intended to help with the understanding of the four 
subsequent figures. Fig. 2 shows standard aperiodic convoy 
lution, and Fig. 3 shows the truncated aperiodic convolution 
used by Metcalfe Eich [HI. The circular convolution opera- 
tion, @, is illustrated in Fig. 4. Elements are summed along the 
indicated trans-diagonals in these figures. While the circular 
convolution operation is straightforward, what is remarkable 
is that circular correlation, @, (illustrated in Fig. 5 )  is an 
approximate inverse operation of it.5 If a pair of vectors is 
convolved together to give a memory trace, then one member 
of the pair can be correlated with the trace to produce the 
other member of the pair. Suppose we have! trace which is 
the convolution of a cue with another vector, t = 2. 0 2. Then 
correlation allows the reconstruction of a distorted version of x 
from i and 2. : y = 2.e- and y NN x. The correlation operation 
also has an aperiodic version, which is an approximate inverse 
of aperiodic convolution. 

Multiple associations can be represented by the sum of the 
individual associations. Upon decoding the contribution of the 
irrelevant terms can be ignored as distortion. For example, if 
i = 2.1 0 x 1  + 2.2 Q x 2 ,  then the result of decoding of i with 
El is el@ Cl 0 x 1  + El@ 2.2 0 5i2. If the vectors have been 
chosen randomly the second term will, with high probability, 
have low conelation with all of 2.1, 2 .2 , j i l  and k 2  and the sum 
will be recognizable as a distorted version of 21. 

D. Distributional Constraints on the Elements of Vectors 

A sufficient condition for correlation to decode convolution 
is that the elements of each vector (of dimension n) be 

5Pr0vided that the elements of the vectors satisfy certain distributional 
constraints. 

independently and identically distributed with mean zero and 
variance l/n. This results in the expected Euclidean length 
of a vector being one. Examples of suitable distributions 
for elements are the normal distribution and the discrete 
distribution with values, equiprobably kl / f i .  The reasons 
for these distributional constraints should become apparent in 
the next subsection. 

The tension between these constraints and the conventional 
use of particular elements of vectors to represent mean- 
ingful features in distributed representations is discussed in 
Section VI. 

E. Why Correlation Decodes Convolution 

It is not immediately obvious why correlation decodes 
convolution. It is not hard to see, however, if an example 
is worked through. Consider vectors with three elements, 
E = ( C O , C ~ , C ~ )  and f = ( 2 0 , 2 1 , 2 2 )  where the 2; and c; are 
independently drawn from N(0 ,  i) (i.e., a normal distribution 
with mean zero and variance l /n ,n  = 3 in this example). 
The convolution of 2. and x is 

The decoding of this trace with 2. to retrieve 17: is shown at 
the bottom of the page, where E and the can be treated 
as zero mean noise. The variances of 5 and the are 
inversely proportional to n. The distributions of the and 

are normal in the limit as n goes to infinity, but the 
approximation is good for n as small as 16. ?Lpical values 
for n in convolution associative memory systems are in the 
hundreds and thousands. 

__I 
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Using the central limit theorem, and assuming the c; and 2; 
and independent and distributed as N ( 0 ,  :), the distributions 
of < and the rl; for large n are 

I =  N 0, -  , s i n c e < = ( $ + c ~ + . . . + c ~ ) - l ,  andthe (3 
cf are independent and have mean 1/n and 
variance 2 / n 2 .  

vi = N ( 0, - “i ’), since the n(n - 1) terms like 

zjcr~cl ( I C  # 1 )  have mean zero and variance l/n3, 
and the pairwise covariances of these terms 
are zero. 

It is most useful to calculate the variance of the dot product 
x.(E @ (E: 0 x)) as this gives a measure of the similarity of the 
original and reconstructed versions of x. This requires taking 
into account the covariances of the noise terms in the different 
elements, however. Extensive tables of variances for dot 
products of various convolution products have been compiled 
by Weber [36] for aperiodic convolution. Unfortunately, these 
do not apply exactly to circular convolution. The means 
and variances for dot products of some common circular 
convolution products are given in Table I in Section VIII-A. 

F. Relationship of Convolution to Correlation 
The correlation of E and t is equivalent to the convolution 

(If t with the involution6 of E. The involution of E is the vector 
d = E* such that di = c-i, where subscripts are modulo-n. 
For example, if E: = (CO, c1, c2, cg), then E* = (CO, c3, c2, cl). 
Writing E* 0 is preferable to writing E @ i  because it 
simplifies algebra, since correlation is neither associative nor 
commutative whereas convolution is both. Furthermore, in an 
analogy with inverse matrices, it is sometimes convenient 
to refer to E:* as the approximate inverse of E. The exact 
inverse of vectors under convolution (i.e., E-’)  are discussed 
in Section VIE-C. 

G. How Much Information Is Stored in a Convolution Trace 
Since a convolution trace only has n numbers in it, it may 

seem strange that several pairs of vectors can be stored in 
it, as each of those vectors also has n numbers. The reason 
is that the vectors are stored with very poor fidelity. The 
convolution trace stores enough information to recognize the 
vectors in it, but not enough to reconstruct them accurately. 
To store a vector in a recognition memory we only need to 
store enough information to discriminate it from the other 
vectors. If M vectors are used to represent M different 
(equiprobable) items, then about 2k: log2 M bits of information 
are needed to represent k: pairs of those items for the purposes 
of re~ognition.~ The dimensionality of the vectors does not 
enter into this calculation, only the number of vectors matters. 

61nvolution has a more general meaning, but in this paper I use it to mean 

’Actually, slightly less than 2klog2 A4 bits are required since the pairs are 
a particular operation. 

unordered. 

For example, if we have 1024 items (each represented by a 
different vector), then the number of bits required to store three 
pairs of those items is slightly less than 2 x 3 x log, 1024 
= 60 bits. A convolution memory using random vectors with 
512 elements would be able to store three pairs comfortably. 
Storing 60 bits of information in 512 floating point numbers 
is not very efficient, but for the storage of complex structure 
this is not a critical issue. 

III. ADDITION MEMORIES 
One of the simplest ways to store a set of vectors is to 

add them together. Such storage does not allow for recall 
or reconstruction of the stored item, but it does allow for 
recognition, i.e., determining whether a particular items has 
been stored or not. A real-world example of this is the 
easy recognition of objects in a multiple-exposure photograph. 
Addition memories are discussed here because their properties 
determine the characteristics of storage of multiple items in 
convolution memories. 

The principle of addition memory can be stated as “adding 
together two high dimensional vectors gives a vector which is 
similar to each and not very similar to anything else.”8 This 
principle underlies both convolution and matrix memories and 
the same sort of analysis can be applied to the linear versions 
of each. 

An analysis for the capacity of addition memories is given 
in Appendix A. Note that it is not necessary for elements 
of vectors to have continuous value for addition memories 
to work. Furthermore, their capacity can be improved by 
applying a suitable nonlinear (e.g., threshold) function to 
the trace. Touretzky and Hinton [35] and Rosenfield and 
Touretzky [28] discussed binary-OR memories? which can 
be viewed as a nonlinear version of an addition memories. 
Binary-OR memories were used in the model of Touretzky 
and Hinton [35]. 

Iv .  THE NEED FOR RECONSTRUCTIVE ITEM MEMORIES 

Convolution memories share the inability of addition mem- 
ories to provide accurate reconstructions. Consequently, if a 
system using convolution representations is to do some sort of 
recall (as opposed to recognition), it must have an additional 
error-correcting auto-associative item memory. This is needed 
to clean up the noisy vectors retrieved from the convolution 
traces. This reconstructive memory must store all the items 
that the system can produce. When given as input a noisy 
version of one of those items it must either output the closest 
item or indicate that the input is not close enough to any of the 
stored items. Note that one convolution trace stores only a few 
associations or items, and the item memory stores many items. 

For example, suppose the system is to store pairs of random 
vectors a,b,...,B . The item memory must store these 26 
vectors and must be table to output the closest item for 

*This applies to the degree that the elements of the vectors are randomly 

91n a binary-OR memory binary vectors are logically OR’ed together 
and independently distributed. 

instead of being added. 



628 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 3, MAY 1995 

Input Cue 

Fig. 6. A hetero-associator machine. The "*" on the operand to the convo- 
lution indicates the approximate inverse is taken. 

any input vector (the "clean" operation). Such a system is 
shown in Fig. 6. Th_e trace is-a sum of convolved pairs, e.g., 
i = 0 b + E 0 d + 6 0 f. The system is given one item 
as an input cue, and its task is to output the item that cue 
was associated with in the trace. It should also output a scalar 
value (the strength) which is high when the input cue was 
a member of a pair, and low when the input cue was not a 
member of a pair. Wh:n given the above trace i and 1 as a 
cue it should produce b and a high strength. When given g as 
a cue it should give a low strength. The item it outputs when 
the strength is low is unimportant. 

The exact method of implementation of the item memory 
is unimportant. Hopfield networks are probably not a good 
candidate because of their low capacity in terms of the 
dimension of the vectors being stored. Kanerva networks [15] 
have sufficient capacity, but can only store binary vectors." 
For the simulations reported in Appendix B, I stored vectors 
in an array and computed all dot-products in order to find the 
closest match. 

V. REPRESENTING MORE COMPLEX STRUC~URE 
Pairs of items are easy to represent in many types of 

associative memory, but convolution memory is also suited 
to the representation of more complex structure. 

A. Sequences 
Sequences can be represented in a number of ways using 

convolution encoding. An entire sequence can be represented 
in one memory trace, with the probability of error increasing 
with the length of the stored sequence. Alternatively, chunking 
can be used to represent a sequence of any length in a number 
of memory traces. 

Murdock [19], [21], and Lewandowsky and Murdock [17] 
propose a chaining method of representing sequences in a 
single memory trace and model a large number of psycholog- 
ical phenomena with it. The technique used stores both item 
and pair information in the memory frace, for example, if the 
sequence of vectors to be stored is abE, then the trace is 

alii + p,a 0 b + 021;  + pzb 0 E + a 3 E  

where the ai and pi are weighting parameters, with ai > 
ai+l. The retrieval of the sequence begins with retrieving 
the strongest component of the trace, which will be 5. From 
there the retrieval is by chaining-correlating the trace with 
the current items to retrieve the next item. The end of the 

'OAlthough most of this paper assumes items are represented as real vectors, 
convolution memories also work with binary vectors [37]. 

sequence is detected when the correlation of the trace with the 
c m n t  item is not similar to any item in the item memory. This 
representation of sequences has the ptoperties that sequence 
is similar to all of the items in it, retrieval can start from 
any given element of the sequence, and similar sequences will 
have similar representations. It has the disadvantage that some 
sequences with repeated items cannot be properly represented. 

Another way to represent sequences is to use the entire 
previous sequence as context rather than just the previous item 
[21]. This makes it p_ossible to store sequences with repeated 
of items. To store iibE. the trace is 

a + a  0 b.+a 0 b 0 2. 

This type of sequence can be retrieved in a similar way to the 
previous, except that the retrieval cue must be built up using 
convolutions. 

The retrieval of later items in both these representations 
could be improved by subtracting prefix components as the 
items in the sequence are retrieved. 

Yet another way to represent sequences is to, use a fixed cue 
for each position of the sequence. To store abE, the trace is 

p 1  0 a+p2 0 b + p 3  0 E. 

The retrieval (and storage) cues pi  can be arbitrary or gener- 
ated in some manner from a single vector, e.g., p i  = (p)i." 

These methods for representing sequences can also be used 
to represent stacks. For example, a stack of n items, 21 - ji,, 
with X I  on top, can be represented by 

The operations for manipulating such a stack are 

push(l,f) = j7: + p 0 S 

top@) = clean - up@) . 
pop(S) = ( a  - top@)) 0 p* 

An empty stack is noticed when the clean operation finds 
nothing similar to S. 

A problem with this type of stack implementation is that pop 
(push (a,%))= 5 0 p 0 p* is only approximately equal to S. 
This is because p* is an approximate inverse. A consequence 
is that successive pushes and pops at one level lead to the 
continual degradation of the lower level items. After a pair of 
push-pop actions, the stack will be ii 0 p 0 p*, which is only 
approximately equal to H. Additional push-pop pairs further 
corrupt the remaining part of the stack. There are two possible 
solutions to this problem-use chunking (see next section) or 
restrict p to be a vector for which the exact inverse is equal 
to the approximate inverse, in which case S 0 p 0 p* = S 
(see Section VIII-C). 

"The power of a.vector is defined in Section VIII-E. When using cues of 
the form p; = (p)a care must taken since the length of (p)' can increase 
exponentially with i. 
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B. Chunking of Sequences 

All of the above methods have soft limits on the length of 
sequences that can be stored. As the sequences get longer, 
the noise in the retrieved items increases until the items are 
impossible to identify. This limit can be overcome by chunk- 
ing-creating new “nonterminal” items representing subse- 
quences [2 11. 

The second sequence representation method is the more 
suitable one to do chunkhg-with. Suppose we want to repre- 
sent the sequence abCd6fgh. We can create three new items 
representing subsequences 

gabc = a + a @ b + a @ b @ 5 
Sde = d + d  @ 6 

gfgh = f + f  @ g + f  @ g @ h. 

These new items must be added to the item memory. The 
representation for the whole sequence is 

filler). The role vectors for different frames can be frame 
specific, i.e., agt,,, can be different from agt,,,, or they can 
be the same (or just similar). 

A role filler binding such as agt,,, @ mark is uncorrelated 
with either the role or the filler, because the expected value of 
x 0 y . x is zero. If it is desired that the representation for 
a frame be somewhat similar to its fillers they can be added 
in an appropriate proportion. 

E. Recursive Frames: Holographic Reduced Representations 

The vector representation of a frame is of the same dimen- 
sion as the vector representation of a filler and can be used 
as a filler in another frame. In this way, convolution encoding 
affords the representation of hierarchical structure in a fixed 
width vector.12 

For example, we can use an instantiated frame13 from the 
previous section as a filler in another frame representing 
“Hunger caused Mark to eat the fish” 

Decoding this chunked sequence is slightly more difficult, 
requiring the use of a stack and decisions on whether an item 
in a nonterminal that should be further decoded. A machine 
to decode such representations is described in Section VII-B. 

C. Variable Binding 

It is simple to implement variable binding with convolution: 
convolve the variable representation with the value represen- 
tation. For example, the binding of the value a to the variable 
x and the value b to the variable y is 

i = x 0 a + y  @ b. 

Variables can be unbound by convolving the binding with 
the approximate inverse of the variable. This binding method 
allows multiple instances of variable in trace to be substituted 
in a single-operation (approximately). 

Nonrecursive variable binding can also be implemented 
easily in other types of associative memory, e.g., the triple- 
space of BoltzCONS [35], or the outer product of roles and 
fillers in DUCS [34]. 

D. Simple Frame (Slot/Filler) Structures 
Simple frame-like structures can be represented using con- 

volution encoding in a manner analogous to cross products 
of roles and fillers in Hinton [ l l ]  or the frames of DUCS 
[34]. A frame consists of a frame label and a set of roles, 
each represented by a vector. An instantiated frame is the 
sum of the frame label and the roles (slots) convolved with 
their respective fillers. For example, suppose we have a (very 
simplified) frame for “eating.” The vector for the frame label 
is eat and the vectors for the roles are agteat and obj,,,. This 
frame can be instantiated with the fillers mark and thefish, 
to represent “Mark ate the fish” 

51 = eat + agt,,, @ mark + obj,,, @ thefish. 

Fillers (or roles) can be retrieved from the instantiated frame 
by convolving with the approximate inverse of the role (or 

= cause + agtcause @ hunger + objCause @ eat 
+obj,,,,, @ agt,,, o mark 
+objC,,,, @ obj,, 0 thefish. 

The decoding of this and other frames is discussed in 
Section X, where simulation results are also given. 

These recursive representations can be manipulated with 
or without chunking. Without chunking, we could extract 
the agent of the object by convolving with (obj,,,,,O 
agteat)* = obj,+,,,, agt:,,. Using chunking, we could first 
extract the object, clean it up, and then extract its agent, giving 
a less noisy result. There is a tradeoff between accuracy and 
speed-if intermediate chunks are not cleaned up the retrievals 
are faster but less accurate. 

The commutativity of the circular convolution operation CZI 

cause ambiguity in some situations. This results from the fact 
that i 0 f; 0 fa = i 0 Fa 0 f;. The ambiguity is greatly 
alleviated by using frame specific role vectors rather than 
generic role vectors (e.g., a generic “agent” vector). A situation 
when ambiguity can still arise is when two instantiations of 
the same frame are nested in another instantiation of that same 
frame. In this case the agent of the object can be confused 
with the object of the agent. Whether this causes problems 
remains to be seen. In any case, there are variants of circular 
convolution that are not commutative (Section VIII-G). 

Holographic reduced representations provide a way of real- 
izing Hinton’s [12] hypothetical system that could, in the same 
physical set of units, either focus attention on constituents 
or have the whole meaning present at once. Furthermore, 
the systematic relationship between the representations for 
components and frames (i.e., reduced descriptions) means that 
frames do not need to be decoded to gain some information 
about the components (see Section X-B). 

‘*Slack [31] suggests a distributed memory representation for Fees involv- 
ing convolution products that is similar to the representation suggested here, 
except that it uses noncircular convolution, and thus does not work with fixed 
width vectors. 

‘3Normalization of Euclidean lengths of the frame becomes an issue, see 
Section X-E. 
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VI. CONSTRAINTS ON THE VECTORS 
AND hATLJRES, TYPES, AND TOKENS 

In many connectionist systems, the vectors representing 
items are analyzed in terms of “mimfeatures.” For example, 
Hinton’s family trees network [12] learned micro-features 
representing concepts such as age and nationality. The re- 
quirement of I ’ s  that elements of vectors be randomly and 
independently distributed seems at odds with th is  interpreta- 
tion. Furthermore, if every element of a vector is regarded as 
a “micro-feature” it is unclear how to use the large number of 
them that the vector of HBR’s provide. This section describes 
a way of resolving these issues. 

A. The Representation of Features, Types, and Tokens 
There is no requirement that single microfeatures be repre- 

sented by single bits in a distributed representation. Features 
also can be represented by high-dimensional distributed rep- 
resentations as wide as the representation of the whole object. 
An item having some features can be partly the s u m  of those 
features. Tokens of a type can be distinguished from each 
other by the addition of some identity-giving vector that is 
unique for each token. Features can be represented by random 
vectors. For example, the person “Mark” can be represented 
by mark = being+person+id,,k, where idmark is some 
random vector that distinguishes mark from representations 
of other people. Each component feature can be weighted 
according to its importance or salience, if necessary. 

Advantages of this scheme over a local micro-feature r e p  
resentation are: 

The representation of any, feature of an item will degrade 
gracefully as the elements of the vector representing the 
item are corrupted. 
The number of features in an item is only loosely related 
to the dimensionality of the vectors representing items. 
The vectors can be of as high a dimension as desired, 
and higher dimensionality will give better fidelity in the 
representation of features. 
The vectors representing items can be expressed as sums 
of vectors with random independently distributed ele- 
ments. 

When a set of vectors representing items is constructed from 
distributed features in this way the elements of the vectors 
will not be consistent with being drawn from independent 
distributions. If linear circular convolution is used to construct 
representations, however, all the expressions describing the 
recall and matching of vectors can be expanded to be in 
terms of the random feature vectors. Thus, the means and 
variances for the signals in a system with nonrandom vectors, 
and consequently the probabilities of correct retrieval, can be 
analytically derived. This is done for an example in Section 

This idea of distributing features over the entire vector 
representing an item is not new. It is a linear transform 
and has been suggested by other authors under the name 
“randomization” or “random maps” (e.g., [30]). 

Care must be taken that the “ownership” of features is 
not confused when using this method to represent features 

X-D. 

(or attributes) of objects. Ambiguity of feature ownership 
can arise when multiple objects are stored in an addition 
memory. For example, suppose color and shape are encoded 
as additive components. If the representations for “red circle” 
and “blue triangle” were summed, the result would be the 
same as for the sum of “red triangle” and “blue circle.” If 
the representations were convolved with distinct vectors (e.g., 
different role vectors), before they were added, however, the 
results would not be ambiguous. 

B. Constraints on Vectors 

Some authors have argued that the constraints on vectors 
necessary for holographic memories to perform well are too 
restrictive for holographic memories to be useful, e.g., [8]. 
This argument is based on the entirely valid observation that 
most vectors produced by sensory apparatus are unlikely to 
satisfy these constraints. 

This argument is made in the context ,of storing associations 
between pairs of items, however, and is not entirely applicable 
to the task of storing the types of complex and structured as- 
sociations that HRR’s are designed for. Matrix memories have 
the problem of expanding dimensionality when used for this 
latter task and thus do not provide a clearly superior alternative 
as they do in the case of storing pairwise associations. 

If it is desired to interface a system which uses HFWs 
with another system that uses vector representations which do 
not conform to the constrains (e.g., a perceptual system), a 
hetero-associative memory can be used to translate between 
representatjons. The combination of a holographic memory 
(for HRR’s) and matrix based hetero-associative memory (for 
mapping between nonconforming and conforming representa- 
tions) allows the representation of complex associations that 
are difficult to represent with matrix memories alone. 

w. SIMPLE MACHINES THAT USE HRRS 
In this section two simple machines that operate on HRR’s 

are described. Both of these machines have been successfully 
simulated on a convolution calculator using vectors with 1024 
elements. The control sequencing of the second machine was 
done manually. 

It is important to understand that HRR’s are a representation 
for small cohesive chunks. For example, HRR‘s can be used 
as a representation for the graphemic structure of words, but 
they are not a suitable representation for a long unstructured 
list of words. A long list or large set is best stored in some 
other type of associative memory. 

A. Rolefliller Selector 
To manipulate frames with roles and fillers one must be able 

to select the appropriate roles and fillers before convolving 
them. I describe here a machine which can extract the most 
appropriate role from an uninstantiated frame for a particular 
filler. The most appropriate role might be either the “first” 
role in the frame or the role that combines best with the given 
filler. Both of these selection criteria can be combined in single 
mechanism. An uninstantiated frame is stored as the sum of 
the roles and a frame label. Each role and filler also must be 
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Best 

Fig. 7. 
indicates the approximate inverse is taken. 

A role selection machine. The “*” on the operand to the convolution 

stored separately in item memory. This machine demonstrates 
one way in which high-level choices can be made in parallel 
in systems using HRR’s. 

Let the uninstantiated frame be Pi + a121 + a 2 f 2  + a3f3, 
where 1 is the frame label, the fi are role vectors, and the 
ai and P are scalar constants. The task is to select the role 
that combices best with f ,  the filler. Suppose there is some 
item f 2  0 f’ in an itcm memory containing roles and typical 
role bindings, where f’ is quite similar to f. The presence of 
a similar binding-in the item memory defines f 2  as the “best 
fitting” role for f .  

If the roles in the frame should be selected according to the 
best fit, then the ai should be approximately equal, but if 21 

should be selected first, then a1 should be greater. 
The selection of the role is done by conyolving the unin- 

stantiated frame with the potential filler, i.e., f 0 (Pi+alfl + 
a& +a@3). The closest matching vector@ the item memory 
is f 2  0 f’. This can be convolved with f“  to give a vector 
which can be written as y f 2  + i j  where y a_”d the magnitude 
of the noise ij depend on the similarity of f to I‘. 

Thizresult (yF2 + i j )  is added to the uninstantiated frame to 
give ~ l + a ~ f ~ + ( a ~ + y ) f ~ + ~ ~ f ~ + ~ ~ ~ ~ ~ ~ .  The strongest role 
can be selected by cleaning up in the item memory. Which role 
is represented most strongly in this trace will depend on which 
of a1, (a2 +y), and a3 is greaterLIf the a, were approximately 
equal and I‘ was quite similar to f then f 2  will be the strongest, 
If one of the a; was larger or if f’ was not very similar to f 
then the role with the largest ai will be selected. 

The machine that accomplishes this operation is shown in 
Fig. 7. 

It is possible to modify this technique to do approximate 
Bayesian reasoning, where the roles and fillers correspond to 
the hypothesis and evidence, respectively. This requires a more 
powerful clean-up memory that can output a blend of items, 
with the strength of each item in the blend proportional to the 
product of its strength in the input and a value associated with 
the item in the memory. The items in the blending clean-up 
memory are E 0 Hi (evidence convolved with hypothesis i), 
and the value associated with each is Pr(E1Hi). To evaluate 
the likelihoods of a set of hypotheses HI, e . . , HI, given some 
evidence E, one convolves the evidence with the sum of the 
hypothesis weighted by their prior probabilities and passes this 
vector through the blending clean-up memory. After convolv- 
ing this result with the approximate inverse of E, one will have 
the sum of hypothesis weighted by their (approximate) relative 
likelihoods. This scheme suffers from the drawback that it is 
not possible to reverse the roles of evidence and hypothesis 
(and thus compute the most appropriate filler for a given role). 
This is because circular convolution is commutative, which 

I Control obo value Gate - 1  Output signal I Coniro~ .vaiUepaTh 
Vector data pa% I 

Fig. 8. A chunked sequence readout machine. A simple controller (not 
shown but described in text) receives classifier output and provides boolean 
control values P l . P 2 , T l . N 1 ,  and K2. 

means that Pr(E1H) cannot be distinguished from Pr(H1E) 
in the blending clean-up memory. This drawback could be 
overcome by using one of the noncommutative variants of 
circular convolution (Section VIII-G). 

B. Chunked Sequence Readout Machine 
A machine that reads out the chunked sequences described 

in Section V-B can be built using two buffers, a stack, a 
classifier, a correlator, a clean up memory, and three gating 
paths. The classifier tells whether the item most prominent 
in the trace is a terminal, a nonterminal (chunk), or nothing. 
At each iteration the machine executes one of three action 
sequences depending on the output of the classifer. The stack 
could be implemented in any of a number of ways, including 
the way suggested earlier or in a simple addition memory. 
The machine is shown in Fig. 8. 

The control loop for the chunked sequence readout machine 
is as follows. 
Loop: (until stack gives END signal) 

Clean up the trace to recover most prominent item: 
x = clean (t). 
Classify x as a terminal, nonterminal, or “nothing” 
(in which case “pop” is the appropriate action) and do 
the appropriate of the following action sequences. 
Terminal: 

1 Item x is on output. 2’1 gates path to replace 
trace by its follower: t“ t x* 0 (t“ - x). 

1 Signal N1 tells stack to push the follower of the 
non terminal: S + push ( S , x *  0 (t” - x)). 

2 Signal N2 gates path to replace trace by the non- 
terminal: t“ + x, 

1 Signal P1 gates path to replace trace by top of 
stack: t + top ( S ) .  

2 Signal P2 tells stack to discard top of stack: S +- 

POP(~). Stack gives END signal if empty. 

Nonterminal: 

Pop: 
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In this machine the trace buffer contains the chunk currently 
being decoded, and the stack contains the portions of higher 
level chunks that are yet to be decoded. 

The chunked sequence readout machine is an example of 
a system that achieves Hinton’s [12] objectives of being able 
to focus attention on constituents when necessary or have the 
whole “meaning” of a chunk present at once. 

VIII. MATHEMATICAL PROPERTIES 
Circular convolution may be regarded as a multiplication 

operation over vectors: two vectors multiplied together (con- 
volved) result in another vector. A finite dimensional vector 
space over the real numbers, with circular convolution as 
multiplication and the usual definitions of scalar multiplication 
and vector addition, forms a commutative linear algebra. This 
is most easily proved using the observation that convolution 
corresponds to element-wise multiplication in a different basis, 
as described in Section VIII-B. All the rules that apply to 
scalar algebra (i.e., associativity and commutativity of addition 
and multiplication, and distributivity of multiplication over 
addition) also apply to this al8ebra. This makes it very easy 
to manipulate expressions containing additions, convolutions, 
and scalar multiplications. 

This algebra has many of the same properties as the algebra 
considered by Borsellino and Poggio [3] and Shonemann [30], 
which had aperiodic convolution as a multiplication operation 
over an infinite dimensional vector space restricted to vec- 
tors with a finite number of nonzero elements, Shonemann 
observed that representing the correlatiop of b and 6 as a 
convolution of a with an involution of b made expressions 
with convolutions and correlations easier to manipulate. 

A. Distributions of Dot Products 

The distributions of the dot products of vectors and con- 
volutions of vectors can be analytically derived. Some useful 
dot products are shown in Table I. The variances and means 
shown are-based on the assumption that the elements for the 
vectors a, b, E, and d are independently distributed as N ( 0 ,  i) 
where n is the d imens id i ty  of the vectors. It follows that 
the expected length of these vectors is one. Dot products are 
the sum of scalar products of individual vectors elements, and 
are thus normally distributed for large n, by the central limit 
the01em.l~ The variance of a dot product term depends upon 
the number of correlated scalar products in the dot product. 
The equivalent expressions in row (5) to (10) are derived from 
the following identity of convolution algebra 
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TABLE I 
MEANS AND VARIANCES OF DOT PRODUCTS OF COMMON 

CONVOLUTION EXPRESSIONS. ALL ARE NORMALLY 
DISTRIBUTED. N Is THE DIMENSIONALFIY OF THE VECTORS 

These me-ans and variances are used as follows. Suppose 
that a, b, E ,  d, and i5 are random vectors with elements drawn 
independently firom N(0,  A). Then the value of a* 0 (a 0 b+ 
E 0 d). b will have an expected value of one and a variance 
of ?(= 9 + A using rows 6 and 10 in Table I). The 
value of a* 0 (a 0 b + E 0 d). 6 will have an expected 

Expression I mean I variance 
2 (1) 8 . 8  1 1  - I n 

a - b @ c  n 

. .  

(7) a@b -a@a = a@b@a* - a  0 
(8) a a b .  a@c = a@b@a* c 0 w * (9) a@b 4 c@c = a@b@c* . c 0 

0 1 
n 

(IO) a@b.c@d =a@b@c* . d  - 

value of zero and a variance of 9 (= 9 + A using rows 
8 and 10 in Table I). 

Of some interest is the di_stribution of the elements of a 0 b. 
If the elements of 5 and b are independently distributed as 
N ( 0 ,  i) then the mean of the elements of 5 0 b is zero but the 
variance is higher than 1/n and the cov+ance of the elements 
is not zero. The expected length of 5 0 b is still one, provided 
that the elements of 5 are distributed independently of those 
of b (the expected length of 5 0 ii is d m .  Thus, 
the variance of 1 0 b 0 Z: 0 8* 0 b* . ?: is higher than that 
of 5 0 b 0 a* b. A conseque_nce of this is that some care 
must be taken when using a 0 b as a storage cue, especially 
in the case where d = b. This is particularly relevant to the 
storage capabilities of HRR’s because when recursive frames 
are stored, convolution products e.g., objCause 0 agt,,,, are 
the storage cues. 

B. Using FFT’s to Compute Convolution 
The fastest way to compute convolution is via fast Fourier 

transforms (FFT’ s) [4]. The computation involves a transform, 
an element-wise multiplication of two vectors, and an inverse 
transform. We can write 

a 0 b = T’(Z;(&> 0 f(b)) 

where # is a discrete Fourier transform, is the inverse 
discrete Fourier transform, and 0 is the element-wise mul- 
tiplication of two vectors. 

These three steps take O( n log n) time to compute, whereas 
the obvious implementation of the convolution equation ci = 
C,ajb;-j takes O(n2)  time to ~0mpute . l~  

I shall refer to the original domain as the spatial domain, and 
the domain the Fourier transform takes it to as the frequency 
domain. Both domains are n-dimensional vector spaces, and 
both the forward and inverse Fourier transforms are linear. 

I4Although there are correlations among these scalar products there is 
sufficient independence for the central limit theorem to apply. 

ISComputing convolution via FITS takes about the same time as the O(n2) 
method for n = 32. It is faster for n > 32 and slower for n < 32. 
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The discrete Fourier transform, f : Cn -+ Cn, (C is the field vectors as unitary vectors.I6 An equivalent condition is that the 
auto correlation of k is the convolutive identity vector (i.e., 
the delta function with magnitude 1). 

of complex numbers) is defined as 
n-1 

fj(q = 5 k e - i 2 M n  

k=O 

where i2 = -1 and f j (X)  is the jth element of f(x). The 
discrete Fourier transform is invertible and defines a one-to- 
one relationship between vectors in the spatial and frequency 
domains. It can be computed in O(n1ogn) time using the 
Fast Fourier Transform (FFT) algorithm. The inverse discrete 
Fourier transform is very similar 

and can also be computed in O(n log n) time using the FlT 
algorithm. 

C. Identities and Approximate and Exact 
Inverses in the Frequency Domain 

Since convolution in the spatial domain is equivalent to 
element-wise multiplication in the frequency domain we can 
easily find convolutive inverses by transforming into the 
frequency domain. By definition y is the inverse of 2 if 
2 0 9 = i and we can write y = X-l. The convolutive 
identity vector is 1 : (1,0, . . . , 0). Transforming this into the 
frequency domain gives 

f (X)  0 f(x-1) = f(1). 

f(1) = (eoi,  eoi, .  . . , eoi) = (1,1, . . + , I ) .  

This gives independent relationships between the correspond- 
ing elements of f(x) and (x-’) which can be expressed 
as 

The transform of the identity is 

fj(x-l)fj(x) = 1. 

Expressing f(x) in polar coordinates gives 

fj(2) = rjeieJ 

and we can see that the Fourier transform of the inverse of x is 

Now consider the approximate inverse. It can be seen from 
the definition of the Fourier transform that the transform of 
the involution of 2 is 

The difference in the frequency domain between the approxi- 
mate inverse and the exact inverse is that the elements of the 
approximate inverse have the same magnitudes as the original 
elements, whereas the magnitudes of the elements of the exact 
inverse are the reciprocals of the magnitudes of the original 
elements. It follows that the involution gives the exact inverse 
when rj = 1, i.e., when Ifj(x)l = 1. I refer to this class of 

D. Why the Exact Inverse is Not Always Useful 

Since a-l can be used to decode 5 0 b exactly, it 
might seem to be a better candidate for the decoding vector 
than the approximate inverse a*. Unless unitary vectors are 
used, however, using the exact inverse results in a lower 
signal-to-noise ratio in the retrieved vector when the memory 
trace is noisy or when there are other vectors added into 
it. This problem arises because, for vectors with elements 
independently distributed as N ( 0 ,  A), Ia*l always equals la[, 
but 1a-l I is usually greater than Ial, except for unitary vectors. 
This is not unexpected, as inverse filters are well known to be 
sensitive to noise [7]. 

E. The Convolutive Power of a Vector 

The convolutive power of a vector (exponentiation) is 
straightforwardly defined by exponentiation of its elements in 
the frequency domain, i.e., 

Fractional and negative exponents of vectors are defined in the 
same way as for complex numbers. Integer powers are useful 
for generating some types of encoding keys (cf. Section V- 
A) and fractional powers can be used to represent trajectories 
through continuous space [25]. 

F. Matrices Corresponding to Circular Convolution 

vector multiplication 
The convolution operation can be expressed as a matrix- 

a 0  b=M,b 

where Ma is the matrix corresponding to convolution by a. 
It has elements ma,, = ai-j (where the subscripts on 5 are 
interpreted modulo n). Such matrices are known as “circulant 
matrices” [6] .  The eigenvalues of Ma are the individual 
(complex valued) elements of the Fourier transform of a. 
The corresponding eigenvectors are the inverse transforms 
of the frequency components (i.e., (1, 0, 0,. . .), (0, 1, 0, 
...), etc., in the frequency domain). It is possible for the 
mapping computed by the connections between two layers 
in a feedforward network (i.e.. a matrix multiplication) to 
correspond to convolution by a fixed vector. 

G. Noncommutative Variants and Analogs of Convolution 

The commutativity of convolution can cause ambiguity in 
the representations of some structures. If this is a problem, 
noncommutative variants of circular convolution can be com- 
puted by permuting the elements of the argument vectors 
in either the spatial or frequency domain. The permutations 
applied to right and left vectors must be different. The resulting 
operation is neither commutative nor associative, but is bilinear 

conjugate of transpose) equal their inverses. 
I6In analogy with unitary matrices, whose Hermitian conjugates (complex 
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Object features Role features 
being food obj 
person fish agt 
state bread 
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Frame labels 
cause 
eat 
see 

TABLE Il 
SENTENCES 

s1 Mark ate the fish. 
s2 
s3 John ate. 
s4 John saw Mark. 
s5 John saw the fish. 
56 The fish saw John. 

Hunger caused Mark to eat the fish. 

E (Objective function) 

CO n "'Cn-1 

" .  Inputs ..' 

Fig. 9. A convolution operation in a back-propagation network. 

(and thus distributes over addition and preserves similarity) 
and has an easily computed approximate inverse. 

An altemative operation that is noncommutative but still 
associative is matrix multiplication. This could be used to 
associate two vectors by treating each vectors as a square ma- 
trix. The dimension of the vectors would have to be a perfect 
square. I am unaware of what the scaling and interference 
properties of such an associative memory operation would be. 
It would be similarity-preserving and vectors corresponding to 
orthogonal matrices would have simple inverses. 

H. Partial Derivatives of Convolutions 
A convolution operation can be used in a feedforward net- 

w o r k ~ ~ ~  and values can be propagated forward in O(n1ogn) 
time (on serial machines). Derivatives can also be back propa- 
gated in O(n  log n) time. Suppose we have a network in which 
the values from two groups of units are convolved together 
and sent to a third group of units. The relevant portion of such 
a feedforward network is shown in Fig. 9. Suppose we have 
the partial derivatives e, of outputs of the convolution with 
respect to an objective function E. Then the partial derivatives 
of the inputs to the convolution can be calculated as follows 

dE 
= G [ b * ] k - - i  

i 

L J k  

where aC is the vector with elements E, and [ e l k  is the kth 
element of a vector. 

This means that it is possible to incorporate a convolu- 
tion operation in a feedforward network and do the forward 
and back-propagation computations for the convolution in 
O(n1ogn) time. One reason one might want do this could 
be to use a backpropagation network to leam good vector 
representations for items for some specific task. This is pursued 
in [25]. 

"For an introduction to feedforward networks see [29]. 

TABLE In . 
BASE FEATURE V ~ R S .  VECTOR ELFMENTS ARE 
ALL INDEPENDENTLY CHOSEN FROM N(O,1/512) 

Ix. CAPACITY OF CONVOLUTION MEMORIES AND H R R S  
The number of associations that can be stored in a convo- 

lution memory is approximately linear in the dimensionality 
of the vectors. In Appendix B it is shown that the number of 
pairs of vectors that can be stored in a convolution memory 
trace is at least 

n k>- - 2  
16 In$ 

where n is the vector dimension, m is the number of candidate 
vectors, and q is the probability of one or more errors in 
decoding. It is assumed that vector elements are independently 
distributed as N ( 0 ,  k), and that any vector does not appear 
more than once in a trace. For a wide range of parameter 
values, numerical solutions of the capacity equation [(8) in 
Appendix B] are well approximated by 

m 
30q4 

n = 4.5(k + 0.7)ln-. 

If either of the assumptions are violated, that is if the vectors 
have similarity (i.e., are not independent), or if the same vector 
is stored in more than one pair, the convolution memory will 
still work, but the probability of error will increase. The effect 
of similarity among the vectors on the capacity is considered 
at greater length in [24]. 

The size of a structure that can be stored in (and successfully 
retrieved from) an HRR increases almost linearly with the 
vector dimensions, with similar constants to those above. The 
"size" is the number of terms in the expanded convolution 
expression (the sum of convolution products) for the structure. 
For example, the HRR in Sect ip  V-E has five terms. The 
probability of correctly decoding a deep structure is slightly 
less than that for correctly decoding a shallow structure with 
the same number of terms because the variance for d e c o e g  
long convolution products, e.g., the variance of (a 0 b 0 
E )  0 (b 0 E)* . a is slightly higher than that for decoding 
shorter convolution products. This drop in performance for 
deeper structures can be avoided by using unitary vectors for 
the encoding cues (cf. Section VIII-C). 
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hunger mark luke 
john t hefish thirst 

Paul the-bread 
1.07 0.78 0.76 0.73 0.01 0.02 0.01 0.02 

TABLE IV 
TOKEN AND ROLE VECTORS CONSTRUCTED FROM BASE 

FEATURE VECTORS AND RANDOM IDENTITY-GIVING VECTORS 

mark = 
john = 
Paul = 
luke = 

thefish = 
the-bread = 

hunger = 
thirst = 

W e a t  = 
0b.L = 

TABLE V 
ERR FRAME VECTORS ~PRFsENTING THE SENTENCES IN TABLE 11 

SI = (eat + agt,,,@mark + obj,,,@thefish)/6 

sz = (cause + agt,,,,,@hunger + obj,,,,,@s~)/& 
s3 = (eat + agt,,,@john)/& 
s4 = (see + agt,,,@john + obj,ee@mark)/& 
s5 = (see + agt,,,@john + obj,,,@thefish)/& 
s6 = (see + agt,,,@thefish + obj,,,@john)/fi 

X. A N  EXAMPLE OF ENCODING AND DECODING HRRS 

An example of HRR frame construction and decoding for 
the sentences in Table 11 is presented in this section. The types 
and tokens representing objects and concepts are constructed 
according to the suggestions in Section VI. Results from a 
simulation of the example using 512 dimensional vectors are 
reported. 

A. Representation and Similarity of Tokens 

The suggestion in Section VI for token vectors (representing 
an instance of a type) was that they be composed of the sum of 
features and a distinguishing vector giving individual identity. 
In this example the base vectors (representing features) have 
elements chosen independently from N(0 ,  h). The base 
vectors are listed in Table III. The token and role vectors are 
constructed by summing the relevant feature vectors and a 
distinguishing random “identity” vector that is used to give 
a distinct identity to an instance of a type. Scale factors are 
included in order to make the expected length of the vectors 
equal to one. These token vectors and a representative pair of 
role vectors are listed in Table IV. The identity vectors (e.g., 
idmark) are chosen in the same way as the base feature vectors. 
The denominators are chosen so that the expected length of a 
vector is 1.0, other roles (e.g., agt,,,) are constructed in the 
analogous fashion. 

The similarity matrix of the tokens is shown Table VI. 
Tokens with more features in common have higher similarity 
(e.g., mark and john), and tokens with no features in common 
have very low similarity (e.g., john and thefish). 

john 
Paul 
luke 
thefish 
the-brea 
hunger 
thirst 

id 

0.78 1.08 0.75 0.68 0.00 0.01 0.06 
0.76 0.75 1.08 0.74 -.02 0.06 0.05 
0.73 0.68 0.74 1.01 -.03 0.01 0.03 
0.01 0.00 -.02 -.03 1.16 0.35 0.10 
0.02 0.01 0.06 0.01 0.35 0.97 0.03 
0.01 0.06 0.05 0.03 0.10 0.03 0.93 
0.02 0.10 0.47 0.10 0.04 0.06 0.50 

TABLE VI1 
SIMILARITIES (DOT-PRODUCTS) AMONG THE FRAMES 

0.10 
0.47 
0.10 
0.04 
0.06 
0.50 
1.02 

s1 SZ s3 s4 s5 s6 
1.14 0.02 0.81 0.10 0.26 0.02 
0.02 0.98 0.01 0.08 0.02 0.10 

0.10 0.08 0.24 1.12 0.71 0.65 
0.26 0.02 0.24 0.71 1.01 0.33 

0.81 0.01 1.11 0.24 0.24 -.01 

0.02 0.10 -.01 0.65 0.33 1.21 

B. Representation and Similarity of Frames 

The six sentences listed in Table I1 are represented as HRR 
frames. The expressions for these HRR’s are listed in Table V. 
Again, scale factors are included to make the expected length 
of the vectors equal to one. 

The similarities of the HRR’s are shown in Table VII. 
Some similarities between instantiated frames can be detected 
without decoding-the HRR’s for similar sentences (e.g., 
24, S.5, and 56) are similar (i.e., they have high dot-products.) 
Note that S.5 and S.6 have the same constituents, but are distinct 
because their structures are different. In fact, S.5 has a higher 
dot-product with Sq than with S.6, because S.5 and S4 have the 
same filler in the same first role, which creates more similarity 
than having the same fillers in different roles. 

C. Extracting Fillers and Roles from Frames 
The filler of a particular role in a frame is extracted as 

follows. The frame is convolved with the approximate inverse 
of the role and the result is cleaned up by choosing the most 
similar vector in the item memory. The item memory contains 
all feature, token, role, and frame vectors (i.e., all the vectors 
listed in Tables 111-V). 

The extraction of various fillers and roles is shown in Table 
VIII. For each extraction, the three vectors in item memory 
that are most similar to the result are shown. In all cases the 
most similar object is the correct one. 

As shown in row (l), the expression to extract the agent 
of S.1 is 

x = S.1 o agt:,,. 

The three objects in item memory most similar to x (with 
their respective dot-products) are mark (.62), john (.47), and 
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TAB 
MEANS AND VARIANCES OF SIGNALS m A 

Object to extract 
(1) Agent of SI 
(2) Agent of SI 
(3) Object of SI 
(4) Agent of s2 
( 5 )  Object of s2 
(6) Agent of object of s2 
(7) Object of object of sa 
(8) Object of s3 
(9) Role of john in s4 

(10)Role of john in s5 

Expression 

5 VI11 
AD ASSOCIATES CONVOLUTION MEMORY 

Similarity scores (dot product) 
mark (0.62) john (0.47) paul (0.41) 
mark (0.40) john (0.34) person (0.30) 

food (0.39) the f i sh  (0.69) fish (0.44) 
hunger (0.50) state (0.39) thirst (0.33) 
SI (0.63) ~3 (0.46) eat (0.43) 
mark (0.27) paul (0.23) luke (0.22) 
thef i sh  (0.39) fish (0.24) food (0.23) 
food (0.07) the-bread (0.06) obj,,, (0.06) 
agtsee (0.66) agt (0.50) obj,,, (0.45) 
agtsee (0.60) agt (0.44) agtcawe (0.32) 

Constructing the  HRR Decoding the  object of t h e  HRR 

Fig. 10. Construction and decoding of a HRR for the sentence “Mark ate the fish.” (61 in Section X). The instantiated frame, labeled 51, is the sum of 
roldfiller bindings and a frame id (shown in the second column). It is the same dimensionality as all other objects and may be used a filler in another frame 
(e.g., as in 62 in Section X). A filler of the HRR can he extracted by convolving the HRR with the approximate. inverse of its role. The extraction of the 
agent role filler of this sentence is shown on the right (also see Table VIII). Of the items in clean-up memory, the actual filler, mark, is the most similar 
(shown in the dotted region). The next two most similar items are also shown, with the dot-product match value in parenthesis. In this high-dimensional 
space, these two items are significantly less similar than the actual filler. See Section X-C for discussion. 

paul (.41). The filler of the agent role in ii1 is indeed mark ,  
so the extraction has been performed correctly. 

The construction of Gl and the determination of the filler of 
its object role, on row (1) in Table Vm, is illustrated in Fig. 10. 
To enable the perception of similarities among vectors in this 
figure, the 5 12-element vectors were laid out in rectangles 
with dimensions permuted (on all vectors simultaneously) so 
as to reduce the total sum of variance between neighboring 
elements. This was done using a simulated annealing program. 
The reader should not take the visual similarities of the vectors 
too seriouslydot-product similarity is what is important and 
is difficult to judge from merely looking at a figure like this. 

Row (2) illustrates that the agent of 61 can also be extracted 
using the generic agent role (agt) rather than the agent role 
specific to the eat frame (agt,,). The results are stronger 
when the specific agent is used. 

In ii2 the object role is filled by another frame. There are 
two alternative methods for extracting the components of this 
subframe. The first method, which is slower, is to clean up 
the subframe in item memory (row 5 )  and then extract its 
components, as in rows (1) to (3). The second (faster) method, 
is to omit the clean up operation and directly convolve the 
result with the approximate inverses of the roles of 51. The 
expressions for the fast method are shown in rows (6) and 
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(7). The first method is an example of using chunking to 
clean up intermediate results, and gives stronger results at 
the expense of introducing intermediate cleanup operations. 
With the intermediate cleanup omitted the chances of error 
are higher; in row (6) the correct vector is only very slightly 
stronger than an incorrect one. The high-scoring incorrect 
responses are similar to the correct response, however, it is 
clear that the subframe object role filler is a person. 

Row (8) shows that happens when we try to extract the 
filler of an absent role. The frame G3 (“John ate.”) has no 
object. As expected, .43 0 obj:,, is not significantly similar 
to anything. Although food might seem an appropriate guess, 
it is coincidence that food is the strongest response. 

It is possible to determine which role a token is filling, as 
in rows (9) and (10). In &, on row (9), the correct role for 
john is agt,,,, but objeat also scores quite highly. This is 
because john is a person, and a person is also filling the object 
role in S4. Compare this with G5,  where the object role filler 
(thefish) is not at all similar to the agent role filler (john). 
The extracted role for john is not at all similar to the object 
role, as shown on row (10). 

D. Probabilities of Correct Decoding 
The expectation and variances of the dot-products 

.GI 0 agt,*,, . mark and 

are calculated in this section (where who is a vector for a 
person that is not mark). This allows us to calculate the 
probability that the agent of .GI will be extracted correctly, as in 
row (1) of Table VIII. It must be emphasized that the behavior 
of any particular system (i.e., set of vectors) is deterministic. 
A particular frame in a particular system always will or always 
will not be decoded correctly. The probabilities calculated in 
this section are the probabilities that a randomly chosen system 
will behave in a particular way. 

Let d = 11 0 agt;,, then 

d .  mark = d .  (being + person + idmark)/&, and 

51 0 agt;,, . who 

d .  p = d .  (being + person + idp)/&. 

The vector p is used here as a generic “incorrect person” filler. 
The extraction is judged to have been performed correctly if 
d .  mark > d . p V p E { vectors in item memory }. We can 
limit the consideration of p to people-vectors in item memory, 
because it is extremely unlikely that other vectors will be more 
similar to d than the vectors representing people. 

It is important to note that these two dot-products are 
correlated because they share the common term d . (being + 
person)/fi. To calculate the probabilities accurately it is 
necessary to take into account the value of this term when 
choosing the threshold. Let 

Xmark = d .  idmark/&, 
Yp = d . idp/&, and 

Z = d .  (being + person)/& 

that are derived from the random vectors. They are distributed 
normally. 

The calculation of the means and Variances Of Xmarkl Yp, 
and Z is presented in Appendix C. For n = 512 they are 

mean variance std dev 

YP 0 0.000867 0.0294 
2 0.385 0.00246 0.0496. 

Xmark 0.192 0.00116 0.0341 

A lower estimate’* for the probability P that Z + Xmark > 

P’ = P r ( Z  + Xmark > t) . Pr(Z + yP < t ~p # mark) 

where t is a threshold chosen to maximize this pr~bability.’~ 
In this example there are three other people, so 

P’ = Pr(X,,,k + Z > t) . Pr(Y, + z < t )3 .  

This has a maximum value of 0.996 for t = Z+ 0.0955. Thus 
the probability of correctly identifying mark as the filler of 
agent role in El is at least 0.996. If there were 100 other people 
the probability would drop to 0.984. 

The primary reason for calculating means and variances of 
signals is to estimate the vector dimension that will result 
in an acceptable probability of error. It is not necessary to 
calculate the means and variances for every possible signal 
value, only the one where the differences of means which 
must be discriminated are small and the variances large. 

E. Normalization of Vectors 

Vectors that are constructed from the sum of components 
are not likely to have a Euclidean length of one. This causes 
problems if these results are stored in memory for later 
similarity matching-a large vector can have a large dot- 
product with another vector even when the proportion of their 
shared components is relatively small. In this example this 
problem was dealt with by including constant factors designed 
to make the expected length of the result equal to one. This 
only works when the pair-wise expected similarities of the 
vectors in the sum are all zero. It is probably preferable to 
normalize all vectors so that their lengths are exactly one. This 
was not done in this example because doing so would affect 
the validity of the analysis of expectations and variances of 
dot-products. Another altemative is to use the cosine rather 
than the dot-product as a measure of similarity, but this also 
makes analysis more difficult. 

Z + Yp for all p is given by 

F, The Use of Thresholds 

Fixed thresholds are helpful in the analysis of probability 
of correct retrieval but they are not very good for determining 
the result of similarity match in practice. There two reasons 
for this: 

The best threshold varies with the composition of the 
HRR frame (e.g., the number of terms in the HRR). 
The best threshold varies with the particular objects in the 
HRR (e.g., as t varied with the 2 value in Section X-D). 

‘*P’ < P because it can be the case that Z + Xmark < t and 

I9t is chosen with knowledge of Z but not of Xmark or Yp. 
so that dmark = Xmark + 2, and d.p  = Yp + z. The values 
Xmark, ypl and 2 can be regarded as uncorrelated variables 

z + xmZk > z + yPvp # mark. 
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Consequently, no single fixed threshold will be appropriate 
for choosing the winning match in all situations. A simpler 
scheme than using variable thresholds is to choose the most 
similar match. The situation where there is no filler of a role 
can be detected with a low threshold. An alternative is to have 
a no-decision region; if the highest score is not more than some 
fixed amount greater than the next highest score the result is 
considered unclear and there is no decision. 

XI. DISCUSSION 

Circular convolution is a bilinear operation, and one conse- 
quence of the linearity is low storage efficiency. The storage 
efficiency is sufficient to be usable and scales almost linearly, 
however. Convolution is endowed with several positive fea- 
tures by virtue of its linear properties. One is that it preserves 
similarity-HRR's with s i "  fillers in similar roles are 
similar. Another is that convolution can be computed very 
quickly using FFTs. Another is that analysis of the capacity, 
scaling, and generalization properties is straightforward. Yet 
another is that there is potential for a system using HRR's to 
retain ambiguity while process@ ambiguous input. 

Convolution can be used as a fixed mapping in a connection- 
ist network to replace one or more of the usual weight-matrix 
mappings. The forward propagation of activations and the 
backward propagation of gradients both can be calculated very 
quickly using FFT's. This possibility is pursued in [25]. 

It is possible to do all the calculations of HRR's entirely 
within the frequency domain. If all vectors were represented 
in the frequency domain if would not be necessary to do 
any FFTs and all the operations of HRR's could be done 
in O(n)  time. The rest of the system, including clean-up 
memories, would have to be able to work with cotnplex 
vectors. There has been some research on creating adapting 
neural network architectures to wok with units with complex 
valued activations (e.g., [2]). 

One of the problems with convolution memories is the noisy 
results they give. The noise can be reduced if the encoding 
vectors have uniform power in the frequency domain, i.e., are 
unitary. Under this condition the approximate inverse is equal 
to the exact inverse. Whether or not the advantages afforded by 
this outweigh the disadvantages of having another constraint 
is an open question. It is possible to have a HRR system in 
which all vectors are unitary. In such a system the convolution, 
involution, and dot-product operations are all straightforward 
but the analogue of addition operation cannot be linear. The 
properties of such a system remain a subject for investigation. 

XII. CONCLUSION 
Memory models using circular convolution provide a way 

of representing compositional structure in distributed represen- 
tations. They implement Hinton's 1121 suggestion that reduced 
descriptions should have microfeatures that are systematically 
related to those of their constituents. The operations involved 
are mostly linear and the properties of the scheme are 
relatively easy to analyze, especially compared to schemes 
such Pollack's RAAMs [27]. There is no learning entailed 
and the scheme works with a wide range of vectors. Systems 

employing HRR's must have an error-correcting auto- 
associative memory to clean up the noisy results produced 
by convolution decoding. 

APPENDIX A 
A LOWER BOUND FOR THE CAPACITY OF ADDITION MEMORIES 

In addition, memory can store a small set of vectors in a 
single trace. It is easy to recognize whether or not a vector 
has been stored in a trace. In this appendix I show how 
the probability of correct recognition is related to the vector 
dimension and the number of vectors stored. Suppose we have 
an addition memory trace with the following parameters: 

k distinct items (vectors) stored in, a memory trace, 
selected from m possible vectors, a, b, E ,  d etc. 
n elements in each vector, each element (e.g., a;) inde- 
pendently drawn from a N ( 0 ,  i) distribution. 
g, the probability of making one or more errors while 
determining which items are (and are not) stored in the 
memory trace. 
s, and s,., the accept and reject signals (see below). 

To test whether some item x is in a trace t", we compute 
the dot product of x and i. The resulting signal will be from 
one of two distributions; the accept distribution Sa (if 2 is 
in the trace), or the reject distribution S, (if j i  is not in the 
trace). The means and variances of these distributions can be 
calculated_ by expanding 2. t". For example, consider the trace 
i = d + b + E, and a signal from the accept distribution 

S, = 5 * t = 5 * 5 + 5 .  b + 5 * E .  

Recall that vector elements are distributed as N ( 0 ,  i), from 
which it follows that E(a:) = and var (a:) = 5, and 
E(aibi) = 0 and var (aibi) = 3. By the central limit theorem 
the terms like 5 . 5  are distributed as N(1, E), and the terms 
like 5 b are distributed as N(0,  i). Since these terms all 
have zero covariance, we can add means and variances to get 
s a = N ( l ,  *) and sT&N(O,  i). 

If the signal kat" is greater than some threshold t we assume 
that it is from the accept distribution and thus the item is in 
the trace, and if it is less we assume it is not. This decision 
procedure is not infallible, but n can be chosen make the 
probability of error acceptably low. 

Using cumulative distribution functions, we can work out 
the probability Pr(Hit)(= Pr(s, > t)) of correctly deciding an 
item was stored in a trace, and the probability Pr(Reject)(= 
h (sT  < t)) of correctly deciding an item was not sotred 
in a trace. The threshold t can be chosen to maximize the 
probability F'r (Correct) of correctly identifying all the items 
stored (and not stored) in a particular trace 

Pr(Correct) = Pr (Hit)% (Reject)m-k. 

d 

The probability density functions (pdfs) for s, and s, 
and the optimal single threshold are shown in Fig. 11, for 
an example with n = 64, m = 100, and IC = 3 (for 
which Pr(Correct) = 0.68). Note that the optimal scheme for 
deciding whether a signal comes from the accept or the reject 
distributions involves testing whether the signal is in a region 
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Threshold 

E(s.) = 1 
sd(s,) = 0.25 sd(s,) = 0.217 

0 0.651 1 Signal strength 

Fig. 11. Distribution of accept(s,) and reject (sr) signals for recognition in 
a linear addition memory, with R = 64 and k = 3. The threshold shown 
maximizes h (Correct) for m = 100. 

around the distribution with the smaller variance. For the 
purposes here the small gains this scheme makes over a single 
threshold scheme are outweighed by its added complexity. 

It is difficult to find an analytic expression of the capacity, 
relating k to n,m, and q.  A reasonably close lower bound 
can be found as follows. First, some definitions; erfc(x) is the 
standard "error function" and tail (z) is the area under the 
(normalized) normal probability density function beyond 2 (in 
one tail) 

The following inequality from Abramowitz and Stegun [l] 
and a simplification are used 

The probability of correctly identifying all items in the trace 
can first simplified by chosing t = 0.5 and then by applying 
the binomial theorem 

(2 )  Pr(Correct) = max ~r ( U  > t ) k  P ~ ( T  < tlm-lc 

> Pr(u > 0.5)k  Pr (T < 0.5)m-k 
= (1 - Pr(a < 0.5))'(1 - Pr (T > 0.5))m-k 
> 1 - k Pr(u < 0.5) - (m - k )  Pr (T > 0.5). 

(3) 

Now consider q, the probability of one or more errors. This 
can be simplified by first using Inequality 3 to give Inequality 
4, then next replacing smaller variances with the maximum 
variance to give Inequality 5. After that we use Inequality 1 
to give Inequality 6 and finally replace the square root factor 
by one to give Inequality 7, since it is safe to assume that 
factor is less than one. 

q = 1 - Pr(Correct) 
< k Pr(u < 0.5) + (m - k )  Pr (T > 0.5) (4) 
= k tail (i/x) + (m - tail(l&) 1 n  

< k t a i l ( i / x ) + ( m - k ) t a i l  2 k + l  

2 k + l  

(adz-) - - 

= T n t a i 1 ( y x )  2 k + l  

Rearranging gives 

n<8(k+l)ln(:) if n>--- 2(k  + 1) 
n 

or 

This lower bound on the capacity ( k )  is reasonably close. 
Numerical solutions of the exact expression for Pr (Correct) 
(2) for k in the range (2.. .14), m in ( lo2.  . . lo1'), and q in 

. are reasonably well approximated by 
m 

n = 3.16(k - 0.25) In - 
q3 

The analysis here treats signal values as random variables, 
but their randomness is only a consequence of the random 
choice of the original vectors. For any particular trace with a 
particular set of vectors, the signal values are deterministic. 
This style of analysis is consistently used throughout this pa- 
per, there are no stochastic operations, only randomly chosen 
vectors. 

APPENDIX B 
A LOWER BOUND FOR THE CAPACITY 

OF CONVOLUTION MEMORIES 

In this appendix, I show how the analysis in Appendix A 
can be extended to a convolution memory that stores pairs of 
items. Instead of storing k items in a trace, we store k pairs 
of items.20 Parameters n ,m,  and q are as described at the 
beginning of Appendix A. We can check whether a cue-probe 
pair has been stored in the trace by first convolving the trace 
with the approximate inverse of the cue and then checking the 
similarity (dot-product) to the probe.21 I assume that we do 
not know what the appropriate cues are, so to find all the pairs 
in the trace we must try every combination of cue and probe. 

There are five distributions of reject signals and one dis- 
tribution of accept signals. The distribution of a reject signal 
depends on how many of the cue and probe occurred in the 
trace (0,1, or 2) and on whether the cue was equal to the probe. 
The signals are summarized in Table IX, with examples for 
the trace = a 0 b + E 0 d. The means and variances of all 
the signals are also shown, together with the number of each 
of these signals that must be tested to probe exhaustively for 
each pair in the trace. The variances were calculated by adding 

2oSome complications are avoided by not permitting repetitions or pairs of 
identical items. 

*l1 do not assume that the retrieval process avoids checking whether the 
probe and cue are equal. 
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TABLE IX 
MEANS AND VARIANCES OF SIGNALS IN A 

PAIRED-ASSOCIATES CONVOLUTION MEMORY 

the appropriate variances from Table I, ignoring the terms of 
order l /n2. The covariance between all terms in the signals 
(e.g., a 0 b 0 a* - 6 and E: 0 d, 0 a 0 -6) is zero?* 

The probability of correctly identifying all the pairs in the 
trace is23 

Using the same inequalities as in Appendix A we get 

4(k + 2) i f n > -  
7r 

or 

m2 4(k + 2) n < 1 6 ( k + 2 ) l n -  ifn>-. 
Q 7r 

Numerical solutions of the (8) for k in the range (2 .  . .14), 
are reasonably m in (lo2 . . lolo), and q in ' 

well approximated by 

m 
30q4 

n = 4.5(k + 0.7) In -. 

APPENDIX C 
MEANS AND VARIANCES OF A SIGNAL 

The detailed calculation of the mean and variance one of the 
components of one of the signals in Section X-D is presented 
in this appendix. 

221f we had-dow_ed identical pairs in the trace this would not be true for all 
signals, since b 0 b a* 6 and 2: 0 2: 0 a* . 6 have nonzero covariance. 

23This expression actually underestimates FtfCorrect) because a small 
proportion of signal values are correlated with each other. This causes 
clustering of errors-if a trace has at least one decoding error it is likely 
to have more. 

1 
Xmark = 51 0 ' -idmark 

1 
= -(eat + agt,, 0 mark 

= +obj,, 0 theflsh) 0 agt:at * -idmark 

= -(eat) 

= +agteat 0 -(being i- person + idmark) 

fi 
1 
fi 

1 
3 

1 
6 

+ obj,, 0 thefish) 0 agt;,, idmark 
1 
3 

= -eat o agt:,, . idmark 

1 -agt,,, 0 being 0 agtzat . idmark 
3 f i  

1 

1 

+ -agteat 0 person 

+ ---a!&,,, 0 idmark 0 . idmark 

+ 3objeat O thefish 0 agt;at idmark. 

agt;,, + idmark 3d3  

3d3 
1 

The expectations and variances of these terms can be found 
by consulting Table I. It is not necessary to expand the vectors 
agteat,objeat or thefish, as the components of these are 
independent of the other vectors appearing in the same terms. 
The expectation of the fourth term is (row 4 in Table I), 
and all the expectation of the remaining terms in zero. These 
five terms are independent and thus the variance of the sum is 
the sum of the variances. The variance of the first term is & 
(row 3 in Table I), the varjance of the second and third terms is 

(row 6), 
and the variance of the fifth term is & (row 10). These terms 
are uncorrelated, so their expectations and variances can be 
summed to give 

(row 8), the varianqe of the fourth term is 

16n + 8 
x 0.593/n. 

1 
E(Xmark) = si var(xmark) = ~ 27n2 

The expectations and variances of Yp and 2 can be calcu- 
lated in a similar manner. They are 

val?(Yp) = - 12n + x 0.444/n 
2 7 d  

x 1.26/n. 
34n+ 20 

V.r(Z) = - E(2) = - 2 
3ai 27n2 
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