Physics successfully implements Lagrange multiplier optimization

Sri Krishna Vadlamani1,2, Tianyao Patrick Xiao3, and Eli Yablonovitch1,4

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; and 2Sandia National Laboratories, Albuquerque, NM 87185-1084

Contributed by Eli Yablonovitch, August 25, 2020 (sent for review July 27, 2020; reviewed by Thomas Kailath and Stanley Osher)

Optimization is a major part of human effort. While being mathematical, optimization is also built into physics. For example, physics has the Principle of Least Action; the Principle of Minimum Power Dissipation, also called Minimum Entropy Generation; and the Variational Principle. Physics also has Physical Annealing, which, of course, preceded computational Simulated Annealing. Physics has the Adiabatic Principle, which, in its quantum form, is called Quantum Annealing. Thus, physical machines can solve the mathematical problem of optimization, including constraints. Binary constraints can be built into the physical optimization. In that case, the machines are digital in the same sense that a flip–flop is digital. A wide variety of machines have had recent success at optimizing the Ising magnetic energy. We demonstrate in this paper that almost all of these machines perform optimization according to the Principle of Minimum Power Dissipation as put forth by Onsager. Further, we show that this optimization is in fact equivalent to Lagrange multiplier optimization for constrained problems. We find that the physical gain coefficients that drive those systems actually play the role of the corresponding Lagrange multipliers.

hardware accelerators | physical optimization | Ising solvers

Optimization is ubiquitous in today’s world. Everyday applications of optimization range from aerodynamic design of vehicles and physical stress optimization of bridges to airline crew scheduling and delivery truck routing. Furthermore, optimization is also indispensable in machine learning, reinforcement learning, computer vision, and speech processing. Given the preponderance of massive datasets and computations today, there has been a surge of activity in the design of hardware accelerators for neural-network training and inference (1).

We ask whether physics can address optimization? There are a number of physical principles that drive dynamical systems toward an extremum. These are the Principle of Least Action; the Principle of Minimum Power Dissipation (also called Minimum Entropy Generation); the Variational Principle; Physical Annealing, which preceded computational Simulated Annealing; and the Adiabatic Principle (which, in its quantum form, is called Quantum Annealing).

In due course, we may learn how to use each of these principles to perform optimization. Let us consider the Principle of Minimum Power Dissipation in dissipative physical systems, such as resistive electrical circuits. It was shown by Onsager (2) that the equations of linear systems, like resistor networks, can be reexpressed as the minimization principle of a power dissipation function $f(i_1, i_2, \ldots, i_n)$ for currents i_i in various branches of the resistor network. By reexpressing a merit function in terms of power dissipation, the circuit itself will find the minimum of the merit function, or minimum power dissipation. Optimization is generally accompanied by constraints. For example, perhaps the constraint is that the final answers must be restricted to be ± 1. Such a digitally constrained optimization produces answers compatible with any digital computer.

A series of physics-based Ising solvers have been created in the physics and engineering community. The Ising challenge is to find the minimum energy configuration of a large set of magnets. This is very hard even when the magnets are restricted to only two orientations, North Pole up or down (3). Our main insights in this paper are that most of these Ising solvers use hardware based on the Principle of Minimum Power Dissipation and that almost all of them implement the well-known Lagrange multipliers method for constrained optimization.

An early work was by Yamamoto and coworkers in ref. 4, and this was followed by further work from their group (5–8) and other groups (9–15). These entropy-generating machines range from coupled optical parametric oscillators to resistor–inductor–capacitor electrical circuits, coupled exciton–polaritons, and silicon photonic coupler arrays. These types of machines have the advantage that they solve digital problems orders of magnitude faster, and in a more energy-efficient manner, than conventional digital chips that are limited by latency and the energy cost (8).

Within the framework of these dissipative machines, constraints can be readily included. In effect, these machines perform constrained optimization equivalent to the technique of Lagrange multipliers. We illustrate this connection by surveying seven published physically distinct machines and showing that each minimizes power dissipation in its own way, subject to constraints; in fact, they perform Lagrange multiplier optimization.

In effect, physical machines perform local steepest descent in the power-dissipation rate. They can become stuck in local minima, and for some of the machines, in some cases, these local minima can be identical to the global minimum. The search for the true global minimum is the most useful, since it can be readily implemented in electrical or optical circuits.

Significance

All through human civilization, optimization has played a major role, from aerodynamics to airline scheduling, delivery routing, and telecommunications decoding. Optimization is receiving increasing attention, since it is central to today’s artificial intelligence. All of these optimization problems are among the hardest for human or machine to solve. It has been overlooked that physics itself does optimization in the normal evolution of dynamical systems, such as seeking out the minimum energy state. We show that among such physics principles, the idea of minimum power dissipation, also called the Principle of Minimum Entropy Generation, appears to be the most useful, since it can be readily implemented in electrical or optical circuits.

Author contributions: S.K.V., T.P.X., and E.Y. designed research; S.K.V., T.P.X., and E.Y. performed research; S.K.V., T.P.X., and E.Y. analyzed data; and S.K.V. and E.Y. wrote the paper.

Reviewers: T.K., Stanford University; and S.O., University of California, Los Angeles. The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: srkv@berkeley.edu or eliy@eecs.berkeley.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015192117/-/DCSupplemental.
optima. At the very least, they perform a rapid search for local optima, thus reducing the search space for the global optimum. These machines are also adaptable toward advanced techniques for approaching a global optimum.

At this point, we note that there are several other streams of work on physical optimization in the literature that we shall not be dealing with in this paper. These works include a variety of Lagrange-like continuous-time solvers (16, 17), Memcomputing methods (18), Reservoir Computing (19, 20), adiabatic solvers using Kerr nonlinear oscillators (21), and probabilistic bit logic (22). A brief discussion of adiabatic Kerr oscillator systems (21) is presented in SI Appendix, section 4.

The paper is organized as follows. In Section 1, we recognize that physics performs optimization through its various principles. Then, we concentrate on the Principle of Minimum Power Dissipation. In Section 2, we give an overview of the minimum power-dissipation optimization solvers in the literature and show how they incorporate constraints. Section 3 has a quick tutorial on the method of Lagrange multipliers. Section 4 studies five published solvers in detail and shows that they all follow some form of Lagrange multiplier dynamics. In Section 5, we look at those published physics-based solvers that are less obviously connected to Lagrange multipliers. Section 6 presents the applications of these solvers to perform linear regression in statistics. Finally, in Section 7, we conclude and discuss the consequences of this ability to implement physics-based Lagrange multiplier optimization for areas such as machine learning.

1. Optimization in Physics

We survey the minimization principles of physics and the important optimization algorithms derived from them. The aim is to design physical optimization machines that converge to the global optimum, or a good local optimum, irrespective of the initial point for the search.

1.A. The Principle of Least Action. The Principle of Least Action is the most fundamental principle in physics. Newton's Laws of Mechanics, Maxwell's Equations of Electromagnetism, Schrödinger's Equation in Quantum Mechanics, and Quantum Field Theory can all be interpreted as minimizing a quantity called Action. For the special case of light propagation, this reduces to the Principle of Least Time, as shown in Fig. 1.

A conservative system without friction or losses evolves according to the Principle of Least Action. The fundamental equations of physics are reversible. A consequence of this reversibility is the Liouville Theorem, which states that volumes in phase space are left unchanged as the system evolves.

Contrary-wise, in both a computer and an optimization solver, the goal is to have a specific solution that occupies a smaller zone in the search space than the initial state, incurring an entropy cost first specified by Landauer and Bennett. Thus, some degree of irreversibility, or energy cost, is needed, specified by the number of digits in the answer in the Landauer–Bennett analysis. An algorithm has to be designed and programmed into the reversible system to effect the reduction in entropy needed to solve the optimization problem.

The reduction in entropy implies an energy cost but not necessarily a requirement for continuous power dissipation. We look forward to computer science breakthroughs that would allow the Principle of Least Action to address unsolved problems. An alternative approach to computing would involve physical systems that continuously dissipate power, aiding in the contraction of phase space toward a final solution. This brings us to the Principle of Least Power Dissipation.

1.B. The Principle of Least Power Dissipation. If we consider systems that continuously dissipate power, we are led to a second optimization principle in physics, the Principle of Least Entropy Generation or Least Power Dissipation. This principle states that any physical system will evolve into a steady-state configuration that minimizes the rate of power dissipation given the constraints (such as fixed thermodynamic forces, voltage sources, or input power) that are imposed on the system. An early version of this statement is provided by Onsager in his celebrated papers on the reciprocal relations (2). This was followed by further foundational work on this principle by Prigogine (23) and de Groot (24). This principle is readily seen in action in electrical circuits and is illustrated in Fig. 2. We shall frequently use this principle, as formulated by Onsager, in the rest of the paper.

1.C. Physical Annealing: Energy Minimization. This technique is widely used in materials science and metallurgy and involves the slow cooling of a system starting from a high temperature. As the cooling proceeds, the system tries to maintain thermodynamic equilibrium by reorganizing itself into the lowest energy minimum in its phase space. Energy fluctuations due to finite temperatures help the system escape from local optima as shown in Fig. 3. This procedure leads to global optima when the temperature reaches zero in theory, but the temperature has to be lowered prohibitively slowly for this to happen.

1.D. Adiabatic Method. The Adiabatic Method, illustrated in Fig. 4, involves the slow transformation of a system from initial conditions that are easily constructed to final conditions that capture the difficult problem at hand.

More specifically, to solve the Ising problem, one initializes the system of spins in the ground state of a simple Hamiltonian and then transforms this Hamiltonian into the Ising problem by slowly varying some system parameters. If the parameters are varied slowly enough, the system stays in the instantaneous ground state throughout and the problem gets solved. In a quantum mechanical system, this is sometimes called “quantum annealing.” Several proposals and demonstrations, including the well-known D-Wave machine (25), utilize this algorithm.

The slow rate of variation of the Hamiltonian parameters is determined by the minimum energy spacing between the instantaneous ground state and first excited state that occurs as we move from the initial Hamiltonian to the final one. The smaller the gap is, the slower the rate at which we need to perform the variation to successfully solve the problem. It has been shown that the gap can become exponentially small in the worst case, implying that this algorithm takes exponential time in the worst case for nondeterministic polynomial time (NP)-hard problems.
1. E. Minimum Power Dissipation in Multioscillator Arrays. Multioscillator Arrays subject to Parametric Gain were introduced in refs. 4 and 5 for solving Ising problems. This can be regarded as a subset of the Principle of Minimum Power Dissipation, which always requires an input power constraint to avoid the null solution. In this case, gain acts as a constraint for minimum power dissipation, and the oscillator array must arrange itself to dissipate the least power subject to that constraint. If the oscillator array is bistable, this problem becomes analogous to the magnetic Ising problem. This mechanism will be the main point of Section 2.

2. Coupled Multioscillator Array Ising Solvers

The motivation for “Coupled Multioscillator Array Ising Solvers” is best explained using concepts from laser physics. As a laser is slowly turned on, spontaneous emission from the laser-gain medium couples into the various cavity modes and begins to become amplified. The different cavity modes have different loss coefficients due to their differing spatial profiles. As the laser pump/gain increases, the least-loss cavity mode grows faster than the others, and the gain is clamped by saturation. This picture can be incomplete since further nonlinear evolution among all of the modes can occur.

Coupled Multioscillator Array Ising machines try to map the power losses of the optimization machine to the magnetic energies of the Ising problem. If the mapping is correct, the lowest power configuration will match the energetic ground state of the Ising problem. This is illustrated in Fig. 5. The system evolves toward a state of minimum power dissipation, or minimum entropy generation, subject to the constraint of gain being present.

The archetypal solver in this class consists of a network of interconnected oscillators driven by phase-dependent parametric gain. Parametric gain amplifies only the cosine quadrature and causes the electric field to lie along the ±Real Axis in the complex plane. The phase of the electric field (0 or π) can be used to represent ±spin in the Ising problem. The resistive interconnections between the oscillators are designed to favor ferromagnetic or antiferromagnetic “spin–spin” interactions by the Principle of Minimum Power Dissipation, subject to parametric (phase-dependent) gain as the power input.

The gain input is very important to the Principle of Minimum Power Dissipation. If there were no power input, all of the currents and voltages would be zero, and the minimum power dissipated would be zero. In the case of the Coupled Multioscillator circuit, the power input is produced through a gain mechanism, or a gain module. The constraint could be the voltage input to the gain module. However, if the gain were to be too small, it might not exceed the corresponding circuit losses, and the current and voltage would remain near zero. If the pump gain is then gradually ramped up, the oscillatory mode requiring the least threshold gain begins oscillating. Upon reaching the threshold gain, a nontrivial current distribution of the Coupled Multioscillator circuit will emerge. As the gain exceeds the required threshold, there will be further nonlinear evolution among the modes so as to minimize power dissipation. The final-state “spin” configuration, dissipating the lowest power, is reported as the desired optimum.

With Minimum Power Dissipation, as with most optimization schemes, it is difficult to guarantee a global optimum.

In optimization, each constraint contributes a Lagrange multiplier. We will show that the gains of the oscillators are the Lagrange multipliers of the constrained system. In Section 3, we provide a brief tutorial on Lagrange multiplier optimization.

3. Lagrange Multiplier Optimization Tutorial

The method of Lagrange multipliers is a very well-known procedure for solving constrained optimization problems in which the optimal point x∗ = (x, y) in multidimensional space locally optimizes the merit function f(x) subject to the constraint g(x) = 0. The optimal point has the property that the slope of the merit function is zero as infinitesimal steps are taken away from x∗, as taught in calculus. However, these deviations are restricted to the constraint curve, as shown in Fig. 6. The isocontours of the function f(x) increase until they are limited by, and just touch, the constraint curve g(x) = 0 at the point x∗.

At the point of touching, x∗, the gradients of f and g are parallel to each other:

∇f(x∗) = λ∗∇g(x∗). \[1\]

The proportionality constant λ∗ is called the Lagrange multiplier corresponding to the constraint g(x) = 0.

When we have multiple constraints g1, . . . , gp, we expand Eq. 1 as follows:

∇f(x∗) = ∑p
i=1
λ∗ i
∇g i (x∗), \[2\]

where the gradient vector ∇ represents n equations, accompanied by the p constraint equations gi(x) = 0, resulting in n + p equations. These equations solve for the n components in the vector x∗ and the p unknown Lagrange multipliers λ∗ i. That would be n + p equations for n + p unknowns.
Motivated by Eq. 2, we introduce a Lagrange function \(L(x, \lambda) \) defined as follows:

\[
L(x, \lambda) = f(x) + \sum_{i=1}^{p} \lambda_i g_i(x),
\]

which can be optimized by gradient descent or other methods to solve for \(x^* \) and \(\lambda^* \). The theory of Lagrange multipliers, and the popular “Augmented Lagrange Method of Multipliers” algorithm used to solve for locally optimal \((x^*, \lambda^*)\), are discussed in great detail in refs. 26 and 27. A gist of the main points is presented in SI Appendix, sections 1–3.

For the case of the Ising problem, the objective function is given by \(f(\mu) = \sum_{i,j} J_{ij} \mu_i \cdot \mu_j \), where \(f(\mu) \) is the magnetic Ising Energy and \(\mu_i \) is the \(i \)th magnetic moment vector. For the optimization method represented in this paper, we need a circuit or other physical system whose power dissipation is also \(f(x) = \sum_{i,j} J_{ij} x_i x_j \), but now \(f(x) \) is power dissipation, not energy; \(x_i \) is a variable that represents voltage, or current or electric field; and the \(J_{ij} \) are not magnetic energy but rather dissipative coupling elements. The correspondence is between magnetic spins quantized along the \(z \) axis, \(\mu_{zis} = \pm 1 \) and the circuit variable \(x_i = \pm 1 \).

While “energy” and “power dissipation” are represented by different units, we nonetheless need to establish a correspondence between them. For every optimization problem, there is a challenge of finding a physical system whose power-dissipation function represents the desired equivalent optimization function.

If the Ising problem has \(n \) spins, there are also \(p = n \) constraints, one for each of the spins. A sufficient constraint is \(g_i(x) = 1 - x_i^2 = 0 \). More complicated nonlinear constraints can be envisioned, but \((1 - x_i^2)\) could represent the first two terms in a more complicated constraint Taylor expansion.

Therefore, a sufficient Lagrange function for the Ising problem, with digital constraints, is given by

\[
L(x, \lambda) = \sum_{i=1}^{n} \sum_{j=1,j \neq i}^{n} J_{ij} x_i x_j + \sum_{i=1}^{n} \lambda_i (1 - x_i^2)
\]

where \(\lambda_i \) is the Lagrange multiplier associated with the corresponding constraint. We shall see in Section 4 that most analog algorithms that have been proposed for the Ising problem in the literature actually tend to optimize some version of the above Lagrange function.

4. The Physical Ising Solvers

We now discuss some physical methods proposed in the literature and show how each scheme implements the method of Lagrange multipliers. They all obtain good performance on the Gset benchmark problem set (28), and many of them demonstrate better performance than the heuristic algorithm, Breakout Local Search (29). The main result of our work is the realization that the gains used in all these physical methods are in fact Lagrange multipliers.

The available physical solvers in the literature, we entitle as follows: Optical Parametric Oscillators [4.A], Coupled Radio Oscillators on the Real Axis [4.B], Coupled Laser Cavities Using Multicore Fibers [4.C], Coupled Radio Oscillators on the Unit Circle [4.D], and Coupled Polariton Condensates [4.E]. In Section 4, we discuss schemes that might be variants of minimum power dissipation: Iterative Analog Matrix Multipliers [5.A] and Leleu Mathematical Ising Solver [5.B]. In SI Appendix, section 4, we discuss “Adiabatic Coupled Radio Oscillators” (21), which seems unconnected with minimum power dissipation.

Optical Parametric Oscillators, Coupled Radio Oscillators on the Real Axis, and Coupled Radio Oscillators on the Unit Circle use only one gain for all of the oscillators, which is equivalent to imposing only one constraint, while Coupled Laser Cavities Using Multicore Fibers, Coupled Polariton Condensates, and Iterative Analog Matrix Multipliers use different gains for each spin and correctly capture the \(n \) constraints of the Ising problem.

4.A.1. Overview. An early optical machine for solving the Ising problem was presented by Yamamoto and coworkers (4, 30). Their system consists of several pulses of light circulating in an optical-fiber loop, with the phase of each light pulse representing an Ising spin. In parametric oscillators, gain occurs at half the pump frequency. If the gain overcomes the intrinsic losses of the fiber, the optical pulse builds up. Parametric amplification provides phase-dependent gain. It restricts the oscillatory phase to the Real Axis of the complex plane. This leads to bistability along the positive or negative real axis, allowing the optical pulse to mimic the bistability of magnets.
where the electric field cosine amplitudes c_i are rendered dimensionless. If we minimize the power dissipation $h(e)$ without invoking any constraints, that is, with $\gamma_i = 0$, the amplitudes c_i simply go to zero.

If the gain γ_i is large enough, some of the amplitudes might go to infinity. To avoid this, we employ the n constraint functions $g_i(c_i) = 1 - c_i^2 = 0$, which enforce a digital $c_i = \pm 1$ outcome. Adding the constraint function to the power dissipation yields the Lagrange function, L (in units of watts divided by one joule), which includes the constraint functions times the respective Lagrange multipliers:

$$L(c, \gamma) = \sum_{i=1}^{n} c_i^2 - \sum_{i=1}^{n} \gamma_i (c_i^2 - 1) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j$$

The unconstrained Eq. 5 and the constrained Eq. 6 differ only in the (-1) added to the γ_i term, which effectively constrains the amplitudes and prevents them from diverging to $\pm \infty$. Eq. 6 is the Lagrange function given at the end of Section 3. Surprisingly, the gains γ_i emerge to play the role of Lagrange multipliers. This means that each mode, represented by the subscripts in c_i, must adjust to a particular gain γ_i such that power dissipation is minimized. Minimization of the Lagrange function (Eq. 6) provides the final steady state of the system dynamics. In fact, the right-hand side of Eq. 4 is the gradient of Eq. 6, demonstrating that the dynamical system performs gradient descent on the Lagrange function. If the circuit or optical system is designed to dissipate power in a mathematical form that matches the Ising magnetic energy, then the system will seek out a local optimum of the Ising energy.

Such a physical system, constrained to $c_i = \pm 1$, is digital in the same sense as a flip-flop circuit, but unlike the von Neumann computer, the inputs are resistor weights for power dissipation. Nonetheless, a physical system can evolve directly, without the need for shuttling information back and forth as in a von Neumann computer, providing faster answers. Without the communications overhead but with the higher operation speed, the energy dissipated to arrive at the final answer will be less, despite the circuit being required to generate entropy during its evolution toward the final state.

To achieve minimum power dissipation, the amplitudes c_i and the Lagrange multipliers γ_i must all be simultaneously optimized using the Lagrange function as discussed in Section 4.E. While a circuit will evolve toward optimal amplitudes c_i, the gains γ_i must arise from a separate active circuit. Ideally, the active circuit that controls the Lagrange multiplier gains γ_i would have its power dissipation included with the main circuit. A more common method is to provide gain that follows a heuristic rule. For example, Yamamoto and coworkers (5) follow the heuristic rule $\gamma_i = a + bt$. It is not yet clear whether the heuristic-based approach toward gain evolution will be equally effective as using the complete Lagrange method in Section 4.E and lumping together all main circuit and feedback components and minimizing the total power dissipation.

We conclude this subsection by noting that the Lagrange function, Eq. 6, corresponds to the following merit function, the normalized power dissipation, f (in watts divided by one joule), and constraints:

$$f = \sum_{i=1}^{n} c_i^2 - \sum_{i=1}^{n} \gamma_i (c_i^2 - 1) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j$$
\[f(c) = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j + \sum_{i=1}^{n} \alpha c_i^2 \]
\[g_i(c_i) = (1 - c_i^2) = 0, \quad \text{for } i = 1, 2, \ldots, n. \]

4.B. Coupled Radio Oscillators on the Real Axis.

A coupled inductor–capacitor (LC) oscillator system with parametric amplification was analyzed in the circuit simulator, SPICE, by Xiao (9). This is analogous to the optical Yamamoto system, but this system consists of a network of radio frequency LC oscillators coupled to one another through resistive connections. The LC oscillators contain linear inductors but nonlinear capacitors, which provide the parametric gain. The parallel or cross-connect resistive connections between the oscillators are designed to implement the ferromagnetic or antiferromagnetic couplings \(J_{ij} \) between magnetic dipole moments \(\mu_i \), as shown in Fig. 7. The corresponding phase of the voltage amplitude \(V_i \), 0 or \(\pi \), determines the sign of magnetic dipole moment \(\mu_i \).

The nonlinear capacitors are pumped by voltage \(V/(2\omega_0) \) at frequency \(2\omega_0 \), where the LC oscillator natural frequency is \(\omega_0 \). Second harmonic pumping leads to parametric amplification in the oscillators. As in the optical case, parametric amplification induces gain \(\gamma \) in the Real Axis quadrature and imposes phase bistability on the oscillators.

Ideally, an active circuit would control the Lagrange multiplier gains \(\gamma_i \), and the gain control circuit would have its power dissipation included with the main circuit. A more common approach is to provide gain that follows a heuristic rule. Xiao (9) linearly ramps up the gain as in Optical Parametric Oscillators. Again, as in the previous case, a mechanism is needed to prevent the parametric gain from producing infinite amplitude signals. Zener diodes are used to restrict the amplitudes to finite saturation values.

4.B.2. Lagrange function and Lagrange multipliers.

The evolution of the oscillator capacitor voltages was derived from Kirchhoff’s laws by Xiao (9). The slowly varying amplitude approximation on the cosine component of these voltages, \(c_i \), produces the following equation for the \(i \)th oscillator:

\[
\frac{dc_i}{dt} = \left(\sum_{j=1, j \neq i}^{n} J_{ij} c_j \right) - \alpha c_i + \gamma c_i \tag{7}
\]

where the \(c_i \) are the peak voltage amplitudes; \(R_c \) is the resistance of the coupling resistors; the cross-couplings \(J_{ij} \) are assigned values \(J_{ij} = J_0/|4R_c C_0| \); \(C_0 \) is the linear part of the capacitance in each oscillator; \(n \) is the number of oscillators; \(\omega_0 \) is the natural frequency of the oscillators; the parametric gain constant \(\gamma = \omega_0|\Delta C|/4C_0 \), where \(|\Delta C| \) is the capacitance modulation at the second harmonic; and the decay constant \(\alpha = (n-1)/(4R_c C_0) \).

In this simplified model, all decay constants \(\alpha \) are taken as equal, and, moreover, each oscillator experiences exactly the same parametric gain \(\gamma \), conditions that can be relaxed if needed.

We note that Eq. 7 performs gradient descent on the net power-dissipation function:

\[
h(c, \gamma) = -\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j + \sum_{i=1}^{n} \alpha c_i^2 - \sum_{i=1}^{n} \gamma c_i^2 \tag{8}
\]

where \(h, L, f \) are the power-dissipation functions in watts divided by one joule. This is very similar to Section 4.A. The first two terms on the right-hand side together represent the dissipative losses in the coupling resistors, while the third term is the negative of the gain provided to the system of oscillators.

Next, we obtain the following Lagrange function through the same replacement of \((-c_i^2)\) with \((1-c_i^2)\) that we performed in Section 4.A:

\[
L(c, \gamma) = -\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j + \sum_{i=1}^{n} \alpha c_i^2 - \sum_{i=1}^{n} (\gamma c_i^2 - 1) \tag{9}
\]

where the \(c_i \) are normalized to the voltage that produces an energy of 1/2 joule on the capacitor \(C_0 \). The above Lagrange function corresponds to Lagrange multiplier optimization using the following merit function and constraints:

\[
f(c) = -\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} c_i c_j + \sum_{i=1}^{n} \alpha c_i^2, \quad g(c) = \sum_{i=1}^{n} (1 - c_i^2) = 0
\]

Again, we see that the gain coefficient \(\gamma \) is the Lagrange multiplier of the constraint \(g = 0 \).

4.B.3. Time dynamics and iterative optimization of the Lagrange function.

Although the extremum of Eq. 9 represents the final evolved state of the physical system and represents an optimization outcome, it would be interesting to examine the time evolution toward the optimal state. We shall show in this subsection that iterative optimization of the Lagrange function in time reproduces the slowly varying time dynamics of the circuit. Each iteration is assumed to take time \(\Delta t \). In each iteration, the voltage amplitude \(c_i \) takes a step antiparallel to the gradient of the Lagrange function:

\[
c_i(t + \Delta t) = c_i(t) - \kappa \Delta t \frac{\partial}{\partial c_i} L(c, \gamma), \tag{10}
\]

where the minus sign on the right-hand side drives the system toward minimum power dissipation. The proportionality constant \(\kappa \) controls the size of each iterative step; it also calibrates the dimensional units between power dissipation and voltage amplitude. (Since \(c_i \) is voltage amplitude, \(\kappa \) has units of reciprocal capacitance.) Converting Eq. 10 to continuous time,

\[
\frac{dc_i}{dt} = -\kappa \frac{\partial}{\partial c_i} L(c, \gamma), \tag{11}
\]

where the \(\gamma_i \) play the role of Lagrange multipliers, and the \(g_j = 0 \) are the constraints. Substituting \(L(c, \gamma) \) from Eq. 9 into Eq. 11, we get

\[
\frac{dc_i}{dt} = 2\kappa \left(\sum_{j=1, j \neq i}^{n} J_{ij} c_j - \alpha c_i + \gamma c_i \right) \tag{12}
\]
Once again, the gains \(\gamma_i \) play the role of Lagrange multipliers. Thus, a minimization of the power dissipation, subject to the optical gain \(\gamma_i \), solves the Ising problem defined by the same \(J_{ij} \) couplings. In fact, the right-hand side of Eq. 13 is the gradient of Eq. 14, demonstrating that the dynamical system performs gradient descent on the Lagrange function.

The merit and constraint functions in the Lagrange function above are

\[
 f(\mu) = \sum_{i=1}^{n} \alpha_i \mu_i^2 + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} \mu_i \mu_j \\
 g_i(\mu_i) = (1 - \mu_i^2) = 0, \text{ for } i = 1, 2, \ldots, n.
\]

4.D. Coupled Electrical Oscillators on the Unit Circle.

4.D.1. Overview. We now consider a network of nonlinear, amplitude-stable electrical oscillators designed by Wang and Roychowdhury (11) to represent an Ising system for which we seek a digital solution with each dipole \(\mu_i = \pm 1 \) along the z axis in the magnetic dipole space. Wang and Roychowdhury provide a dissipative system of LC oscillators with oscillation amplitude clamped and oscillation phase \(\phi_i = 0 \) or \(\pi \) revealing the preferred magnetic dipole orientation \(\mu_i = \pm 1 \). It is noteworthy that Roychowdhury goes beyond Ising machines and constructs general digital logic gates using these amplitude-stable oscillators in ref. 31.

In their construction, Wang and Roychowdhury (11) use nonlinear elements that behave like negative resistors at low-voltage amplitudes but as saturating resistance at high-voltage amplitudes. This produces amplitude-stable oscillators. In addition, Wang and Roychowdhury (11) provide a second harmonic pump and use a form of parametric amplification (referred to as subharmonic injection locking in ref. 11) to obtain bistability with respect to phase.

With the amplitudes being essentially clamped, it is the readout of these phase shifts, 0 or \(\pi \), that provides the magnetic dipole orientation \(\mu_{1z} = \pm 1 \). One key difference between this system and Yamamoto’s system is that the latter had fast phase dynamics and slow amplitude dynamics, while Roychowdhury’s system has the reverse.

4.D.2. Equations and comparison with Lagrange multipliers. Wang and Roychowdhury (11) derived the dynamics of their amplitude-stable oscillator network using perturbation concepts developed in ref. 32. While a circuit diagram is not shown, ref. 11 invokes the following dynamical equation for the phases of their electrical oscillators:

\[
 \frac{d\phi_i}{dt} = -\left(\sum_{j=1, j \neq i}^{n} J_{ij} \sin(\phi_i(t) - \phi_j(t)) \right) - \lambda_i \sin(2\phi_i(t)),
\]

where \(R_c \) is a coupling resistance in their system, \(\phi_i \) is the phase of the \(i \)th oscillator, and the \(\lambda_i \) are decay parameters that dictate how fast the phase angles settle toward their steady-state values. We now show that Eq. 15 can be reproduced by iteratively minimizing the power dissipation in their system. Power dissipation across a resistor \(R_c = (V_1 - V_2)^2 / R_c \), where \((V_1 - V_2) \) is the voltage difference. Since \(V_1 \) and \(V_2 \) are sinusoidal, the power dissipation consists of constant terms and a cross-term of the form

\[
 f(\phi_1, \phi_2) = \frac{|V|^2 \cos(\phi_1 - \phi_2)}{R_c},
\]

where \(f(\phi_1, \phi_2) \) is the power dissipated in the resistors. Magnetic dipole orientation parallel or antiparallel is represented by whether \(\phi_1 - \phi_2 = 0 \) or \(\pi \), respectively. We may choose an origin for angle space at \(\phi = 0 \), which implies \(\phi_1 = 0 \) or \(\pi \). This can be implemented as

\[
 L(\mu, \gamma) = \sum_{i=1}^{n} \alpha_i \mu_i^2 + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} \mu_i \mu_j - \sum_{i=1}^{n} \gamma_i (\mu_i^2 - 1).
\]
where λ_i is the Lagrange multiplier corresponding to the phase-angle constraint, and J_{ij} are resistive coupling rate constants. The right-hand side of Eq. 15 is the gradient of Eq. 16, demonstrating that the dynamical system performs gradient descent on the Lagrange function.

The Lagrange function above is isomorphic with the general form in Section 3. The effective merit function f and constraints g_i in this correspondence are

$$f(\phi) = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} \cos(\phi_i - \phi_j)$$

$$g_i(\phi_i) = (\cos(2\phi_i) - 1) = 0, \text{ for } i = 1, 2, \ldots, n.$$
into the second iterative equation and take the limit $\Delta t \to 0$. We obtain the following dynamical equation for the gains γ_i:

$$\frac{d\gamma_i}{dt} = \kappa_i^t \left(1 - |E_i|^2 \right). \tag{21}$$

This iterative evolution of the Lagrange multipliers is indeed what Kalinin and Berloff (12) employ in their coupled polariton system. To Eq. 21, we must add the iterative evolution of the field variables x_i:

$$\frac{dx_i}{dt} = -\kappa_i \frac{\partial}{\partial x_i} L(x, \lambda). \tag{22}$$

Eqs. 21 and 22 represent the full iterative evolution, but in some of the earlier subsections, $\gamma_i(t)$ was assigned a heuristic time dependence.

We conclude this subsection by splitting the Lagrange function into the effective merit function f and the constraint function g_i. The extra “phase rotation” U is not captured by this interpretation:

$$f(E_1, \ldots, E_n) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j, j \neq i} J_{ij} (E_i^* E_j + E_i E_j^*) + \sum_{i=1}^{n} \beta |E_i|^4 + \sum_{i=1}^{n} \alpha_i |E_i|^2$$

$$g_i(E_i) = (1 - |E_i|^2) = 0, \text{for } i = 1, 2, \ldots, n.$$

4.F. General Conclusions from Coupled Multioscillator Array Ising Solvers. 1) Physical systems minimize the power-dissipation rate subject to input constraints of voltage, amplitude, gain, etc. 2) These systems actually perform Lagrange multiplier optimization with the gain γ_i playing the role of multiplier for the ith digital constraint. 3) Under the digital constraint, amplitudes $c_j = \pm 1$ or phases $\phi_i = 0$ or π, power-dissipation minimization schemes are actually binary, similar to a flip-flop. 4) In many of the studied cases, the system time dependence follows gradient descent on the power-dissipation function as the system approaches a power-dissipation minimum. In one of the cases (Section 4.E), there was a rotation superimposed on this gradient descent.

5. Other Methods in the Literature

We now look at other methods in the literature that do not explicitly implement the method of Lagrange multipliers but nevertheless end up with dynamics that resemble it to varying extents. All of these methods offer operation regimes where the dynamics is not analogous to Lagrange multiplier optimization, and we believe it is an interesting avenue of future work to study the capabilities of these regimes.

5.A. Iterative Analog Matrix Multipliers. Soljacic and coworkers (13) developed an iterative procedure consisting of repeated matrix multiplication to solve the Ising problem. Their algorithm was implemented on a photonic circuit that utilized on-chip optical matrix multiplication units composed of Mach–Zehnder interferometers that were first introduced for matrix algebra by Zeilinger and coworkers in ref. 33. Soljacic and coworkers (13) showed that their algorithm performed optimization on an effective merit function that is demonstrated to be a Lagrange function in SI Appendix, section 5.

We use our insights from the previous sections to implement a simplified iterative optimization using an optical matrix multiplier. A block diagram of such a scheme is shown in Fig. 8. Let the multiple magnetic moment configuration of the Ising problem be represented as a vector of electric-field amplitudes, E_i,

\[E_i(t+1) - E_i(t) = -\kappa \Delta t \frac{\partial}{\partial E_i} \left(\sum_{i=1}^{n} \alpha_i |E_i(t)|^2 \right) + \sum_{i=1}^{n} \gamma_i (1 - |E_i(t)|^2) + \left(\sum_{i=1}^{n} \sum_{j=1, j \neq i} J_{ij} (E_i^* (t) E_j (t)) + (E_i(t) E_j^* (t)) \right) \]

where κ is a constant step size with the appropriate units, and each iteration involves taking steps in E_i proportional to the gradient $\partial / \partial E_i$ of the Lagrange function. $\partial / \partial E_i$ represents differentiation with respect to the two quadratures. Simplifying...
and sending all of the terms involving time step \(t \) to one side, we get

\[
E_i(t + 1) = \sum_{j=1}^{n} \left[\left(1 + 2\kappa \Delta t \gamma_i - 2\kappa \Delta t \alpha_i \right) \delta_{ij} - 2\kappa \Delta t J_{ij} \right] (1 - \delta_{ij}) E_j(t)
\]

where \(\delta_{ij} \) is the Kronecker delta (1 only if \(i = j \)). The Mach–Zehnder interferometers should be tuned to the matrix \(\{ (1 + 2\kappa \Delta t \gamma_i - 2\kappa \Delta t \alpha_i) \delta_{ij} - 2\kappa \Delta t J_{ij} (1 - \delta_{ij}) \} \). Thus, we have an iterative matrix multiplier scheme that minimizes the Lagrange function of the Ising problem. In effect, a lump of dissipative optical circuitry, compensated by optical gain, will, in a series of iterations, settle into a solution of the Ising problem.

The simple system above differs from that of Soljacic and coworkers (13) in that their method has added noise and nonlinear thresholding in each iteration. A detailed description of their approach is presented in SI Appendix, section 5.

5.B. Leleu Mathematical Ising Solver

Leleu et al. (8) proposed a modified version of the Yamamoto’s Ising machine (5) that significantly resembles the Lagrange method while incorporating important new features. To understand the similarities and differences between Leleu’s method and that of Lagrange multipliers, we recall the Lagrange function for the Ising problem that we encountered in Section 4:

\[
L(x, \gamma) = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} J_{ij} x_i x_j + \sum_{i=1}^{n} \alpha_i x_i^2 + \sum_{i=1}^{n} \gamma_i (1 - x_i^2)
\]

In the above, \(x_i \) are the optimization variables, \(J_{ij} \) is the interaction matrix, \(\gamma_i \) is the gain provided to the \(i \)th variable, and \(\alpha_i \) is the loss experienced by the \(i \)th variable. To find a local optimum \((x^*, \gamma^*)\) that satisfies the constraints, one performs gradient descent on the Lagrange function in the \(x \) variables and gradient ascent in the \(\gamma \) variables, as discussed in Section 4.E.

Eqs. 19 and 20. Substituting Eq. 25 into them and taking the limit of \(\Delta t \to 0 \), we get

\[
\frac{dx_i}{dt} = 2\kappa \left(-\alpha_i + \gamma_i \right) x_i - \sum_{j=1, j \neq i}^{n} J_{ij} x_j
\]

\[
\frac{d\gamma_i}{dt} = \kappa' (1 - x_i^2).
\]

On the other hand, Leleu et al. (8) propose the following system:

\[
\frac{dx_i}{dt} = (-\alpha + \gamma) x_i + e_i \sum_{j=1, j \neq i}^{n} J_{ij} x_j
\]

\[
\frac{de_i}{dt} = \beta (1 - x_i^2) e_i,
\]

where the \(x_i \) are the optimization variables, \(\alpha \) is the loss experienced by each variable, \(\gamma \) is a common gain supplied to each variable, \(\beta \) is a positive parameter, and the \(e_i \) are error coefficients that capture how far away each \(x_i \) is from its saturation amplitude. Leleu et al. also had cubic terms in \(x_i \) in ref. 8, and a discussion of these terms is given in SI Appendix, section 3.

It is clear that there are significant similarities between Leleu’s system and the Lagrange multiplier system. The optimization variables in both systems experience linear losses and gains and have interaction terms that capture the Ising interaction. Both systems have auxiliary variables that are varied according to how far away each degree of freedom is from its preferred saturation amplitude. However, the similarities end here.

A major differentiation in Leleu’s system is that \(e_i \) multiplies the Ising interaction felt by the \(i \)th variable, resulting in \(e_i J_{ij} \). The complementary coefficient is \(\gamma J_{ij} \). Consequently, Leleu’s equations implement asymmetric interactions \(e_i J_{ij} \neq \gamma J_{ij} \) between vector components \(x_i \) and \(x_j \). The inclusion of asymmetry seems to be important because Leleu’s system achieves excellent performance on the Gset problem set, as demonstrated in ref. 8.

We obtain some intuition about this system by splitting the asymmetric term \(e_i J_{ij} \) into a symmetric and antisymmetric part. This follows from the fact that any matrix \(A \) can be written as the sum of a symmetric matrix, \((A + A^T)/2\), and an antisymmetric matrix, \((A - A^T)/2\). The symmetric part leads to gradient descent dynamics similar to all of the systems in The Physical Ising Solvers. The antisymmetric part causes a energy-conserving “rotary” motion in the vector space of \(x_i \).

The secret of Leleu et al.’s (8) improved performance seems to lie in this antisymmetric part. The dynamical freedom associated with asymmetry might provide a fruitful future research direction in optimization and deserves further study to ascertain its power.

6. Applications in Linear Algebra and Statistics

We have seen that minimum power-dissipation solvers can address the Ising problem and similar problems like the traveling salesman problem. In this section, we provide yet another application of minimum power-dissipation solvers to an optimization problem that appears frequently in statistics, namely curve fitting. In particular, we note that the problem of linear least-squares regression, linear curve fitting with a quadratic merit function, resembles the Ising problem. In fact, the electrical circuit example we presented in Section 4.B can be applied to linear regression. We present such a circuit in this section. Our circuit provides a digital answer but requires a series of binary resistance values, that is, \(R_0, R_0, 0.5R_0, \ldots \), to represent arbitrary binary statistical input observations.

The objective of linear least-squares regression is to find a linear function to a given set of data \((x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\). The \(x \) are input vectors of dimension \(d \), while the \(y \) are the observed outputs that we want our regression to capture. The linear function that is being fit is of the form \(y(a) = \sum_{i=1}^{d} w_i a_i \), where \(a \) is a feature vector of length \(d \), and \(w \) is a vector of unknown weights. The vector \(w \) is calculated by minimizing the
We conclude by noting that this same procedure can be adopted corresponding best weight vector w where matrix X computes. This performance advantage can be utilized for optimization orders of magnitude faster and with lower power than conventional digital computers. These physical solvers can be used to perform Lagrange multiplier optimization in physics. In this article, we made the observation that computation costs substantial entropy reduction. This led to Landauer’s admonition that computation costs $kn \log 2$ of entropy decrease and $kn \log 2$ of energy, for a final answer with n binary digits.

By the Second Law of Thermodynamics, such an entropy reduction must be accompanied by an entropy increase elsewhere. In Landauer’s viewpoint, the energy and entropy limit of computing was associated with the final actual act of writing out the answer in n bits, assuming the rest of the computer was reversible. In practice, technology consumes $\sim 10^4$ times more than the Landauer limit, owing to the insensitivity of the transistors operating at ~ 1 V, when they could be operating at ~ 10 mV.

In the continuously dissipative circuits we have described here, the energy consumed would be infinite if we waited long enough for the system to reach the final optimal state. If we terminate the powering of our optimizer systems after they reach the desired final-state answer, the energy consumed becomes finite. By operating at voltage < 1 V and by powering off after the desired answer is achieved, our continuously dissipating Lagrange optimizers could actually be closer to the Landauer limit than a conventional computer.

A controversial point relates to the quality of solutions that are obtained for NP-hard problems. The physical systems we are proposing evolve by steepest descent toward a local optimum, not a global optimum. Nonetheless, many of the authors of the seven physical systems presented here have claimed to find better answers than a typical optimizer. Nonetheless, many of the authors of the seven physical systems presented here have claimed to find better answers than a typical optimizer. Nonetheless, many of the authors of the seven physical systems presented here have claimed to find better answers than a typical optimizer. Nonetheless, many of the authors of the seven physical systems presented here have claimed to find better answers than a typical optimizer.
physical optimization machines that are much faster and possibly more energy-efficient than conventional computers.

Data Availability. All study data are included in the article and SI Appendix.

23. I. Prigogine, Etude Thermodynamique des Phénomènes irréversibles (Editions Desoer, Liège, 1947), chap. V.