CHAPTER

AGGREGATING SIGNALS

There are enormous differences between biological systems and the kind of
systems we find when we start digging inside a computer or looking at the
schematic for a digital microprocessor chip. The most striking contrast
between the two paradigms is the way in which signals are combined to
form other signals. In a digital system, signals are combined by logic
elements or gates. These elements take several inputs and form the
logical AND, NOR, or similar functions. Each logic function can be thought
of as making a decision about the inputs, and as reporting that decision
as a binary signal at its output. We can construct any logic function by
appropriately connecting two-input inverting gates of a single type—NOR,
for example. We can think of a complex function as a decision about many
inputs—we can always reach that decision by making partial decisions
about a few inputs separately, and then combining these partial decisions
into a more global decision. We can always subdivide the decision process
in this way without increasing the complexity of the resulting circuit by
more than a constant factor.

The nervous system combines inputs according to completely different
principles. A very large number of inputs are brought together, or ag-
gregated, in an analog manner. We can think of the simplest neuron
as forming the analog sum of the inputs from the axons and dendrites of
other neurons in a tree of passive dendritic processes, such as that shown
in Figure 7.1 (see also Figure 4.1 (p. 44)). If enough current is injected into
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FIGURE 7.1 The dendritic tree of a neuron. This structure may or may not be used to
generate action-potential outputs on an axon. Synapses on the tips of the tree provide
outputs from, as well as inputs to, the dendritic processes.

the dendritic tree to bring the potential at the axon hillock to a threshold value,
the nerve will initiate pulses (action potentials) in its axon. We can think of
each branch of the dendritic tree as computing the sum of the currents in its
two subtrees. Only when these partial sums have been fully aggregated into a
total sum can the neuron make a decision to fire a pulse down the axon. In
the aggregation process, analog information is preserved carefully. The nerve
postpones the decision process until it has performed as much local aggregation
as possible.

In addition to the analog aggregation of inputs, the nervous system differs
markedly from digital systems in the sheer number of inputs that are factored
into a given computation; this number is the fan-in of the neuron. The average
circuit in a computer has a fan-in of two, three, or four. The fan-in of an average
neuron is 1000 to 3000, or even 10,000. There are cells in the cerebellum with
several hundred thousand inputs! The corresponding measure representing the
number of distinct places to which the output of a computation goes is the fan-
out. Considered over a system, the fan-in and fan-out must be the same—every
input must be some other computation’s output, and vice versa. Biologists use
the term convergence for fan-in, and divergence for fan-out. We will use the
biology and electrical engineering terms interchangeably.

Why do neurons have so many inputs? Each input synapse requires that an
axonal process from another neuron be routed to the synaptic site. The more
synapses there are, the more wiring is required. In the brain as in silicon, wire
fills nearly the entire space. Economizing on wire is the single most important
priority for both nerves and chips. At first sight, it would seem that the brain’s
profligate use of circuits with large fan-in and fan-out is horribly inefficient. As is

usual in biological systems, however, there are a number of rensonus thinb connply
to make the high-fan-in neuron a computing device of extraordinnry power,

As an example, let us consider a population of ncurons that recogtine )
presence of specific, reasonably complex objects in the visual flold, Nourow A Wi
fire if object A is present, neuron B will fire if object B is prosont, and wo oty TH
excitatory synaptic inputs to any particular neuron represent tho features thy
identify the corresponding object. These features have been computed hy low
levels of the visual system. A crucial decision among nearly altko objects ofte
is made on the basis of a single feature. The particular feature rowponsible f
the decision is dependent on the circumstances: the viewing angle, what pars ¢
the object is obscured by intervening foliage, and so on. Each nouron tlinrefil
must have synaptic inputs representing all features that might ever bn uamd, wve
though only a subset of them will contribute to any particular decision, No o#
has measured precisely the number of features needed to charnctoriue n uomph
object; we will assume that several hundred is a reasonable estimnte,

The nervous system represents a single feature not by the ontput of 4 nln.l
neuron, but rather by that of a population of neurons. The prosence of # Kive
feature is represented by the firing of, say, 100 neurons. Not all thewe neurous A1
at the same rate—those best matched to the particular feature firo at u high ras
whereas those less well matched fire at a lower rate for this fonture, but will A
at a higher rate for a similar but slightly different feature. When a tnrget neure
requires information concerning the presence of a specific fonture, itn Mmple
strategy is to sum all or most of the 100 outputs, weighting each Input by itn ﬂl‘m
rate for the desired feature. For several hundred features, this strategy woul
seem to require several tens of thousands of inputs to a targot neuron, Been
of the partial overlap of populations representing different fontuires, howsver, 4h
number of input synapses can be reduced to perhaps a fow thounsil,

We can think of the features characterizing a particulnr objent  sepass
dimensions of the representation of the object. Any particular recoghision s
will have an essential dimensionality corresponding to the number of fenbie
that, under some circumstances, can become necessary to dintinguinh twe ONH“
A unique recognition cannot be determined if the number of Input synapses |
less than the essential dimensionality of the task.

It is intuitive that the precision with which we treat inputs to n compusabie
should be related to our confidence in those inputs. It does not pay to compus
the cost of a proposed project to the penny when our estimaton of the oosts &
several subtasks may be in error by many hundreds of dollars, The detalls @
any two similar images seen by the visual system are never exactly nlths, Kven {
familiar object is never seen twice in exactly the same way. Wo thuw linve m“l
confidence in the details of any particular input. The major tank of the nerveu
system is to make collective sense of sensory input. Under tho conditions impones
by real input data, we can improve the reliability of a decision only by fug {
large number of inputs into the computation. In other words, when faoed wibh
decision based on inputs in which it can place little confidence, the hrait wies I§
resources to increase the dimensionality of the computational spnce, rather $h
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will initiate pulses (action potentials) in its axon. We can think of
ich of the dendritic tree as computing the sum of the currents in its
ees. Only when these partial sums have been fully aggregated into a
 can the neuron make a decision to fire a pulse down the axon. In
gation process, analog information is preserved carefully. The nerve
; the decision process until it has performed as much local aggregation
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dition to the analog aggregation of inputs, the nervous system differs
from digital systems in the sheer number of inputs that are factored
en computation; this number is the fan-in of the neuron. The average
a computer has a fan-in of two, three, or four. The fan-in of an average
1000 to 3000, or even 10,000. There are cells in the cerebellum with
indred thousand inputs! The corresponding measure representing the
f distinct places to which the output of a computation goes is the fan-
sidered over a system, the fan-in and fan-out must be the same—every
st be some other computation’s output, and vice versa. Biologists use
convergence for fan-in, and divergence for fan-out. We will use the
nd electrical engineering terms interchangeably.
do neurons have so many inputs? Each input synapse requires that an
rocess from another neuron be routed to the synaptic site. The more
there are, the more wiring is required. In the brain as in silicon, wire
y the entire space. Economizing on wire is the single most important
or both nerves and chips. At first sight, it would seem that the brain’s
: use of circuits with large fan-in and fan-out is horribly inefficient. As is

usual in biological systems, however, there are a number of reasons that conspire
to make the high—fan-in neuron a computing device of extraordinary power.

As an example, let us consider a population of neurons that recognize the
presence of specific, reasonably complex objects in the visual field. Neuron A will
fire if object A is present, neuron B will fire if object B is present, and so on. The
excitatory synaptic inputs to any particular neuron represent the features that
identify the corresponding object. These features have been computed by lower
levels of the visual system. A crucial decision among nearly alike objects often
is made on the basis of a single feature. The particular feature responsible for
the decision is dependent on the circumstances: the viewing angle, what part of
the object is obscured by intervening foliage, and so on. Each neuron therefore
must have synaptic inputs representing all features that might ever be used, even
though only a subset of them will contribute to any particular decision. No one
has measured precisely the number of features needed to characterize a complex
object; we will assume that several hundred is a reasonable estimate.

The nervous system represents a single feature not by the output of a single
neuron, but rather by that of a population of neurons. The presence of a given
feature is represented by the firing of, say, 100 neurons. Not all these neurons fire
at the same rate—those best matched to the particular feature fire at a high rate,
whereas those less well matched fire at a lower rate for this feature, but will fire
at a higher rate for a similar but slightly different feature. When a target neuron
requires information concerning the presence of a specific feature, its simplest
strategy is to sum all or most of the 100 outputs, weighting each input by its firing
rate for the desired feature. For several hundred features, this strategy would
seem to require several tens of thousands of inputs to a target neuron. Because
of the partial overlap of populations representing different features, however, the
number of input synapses can be reduced to perhaps a few thousand.

We can think of the features characterizing a particular object as separate
dimensions of the representation of the object. Any particular recognition task
will have an essential dimensionality corresponding to the number of features
that, under some circumstances, can become necessary to distinguish two objects.
A unique recognition cannot be determined if the number of input synapses is
less than the essential dimensionality of the task.

It is intuitive that the precision with which we treat inputs to a computation
should be related to our confidence in those inputs. It does not pay to compute
the cost of a proposed project to the penny when our estimates of the costs of
several subtasks may be in error by many hundreds of dollars. The details of
any two similar images seen by the visual system are never exactly alike. Even a
familiar object is never seen twice in exactly the same way. We thus have little
confidence in the details of any particular input. The major task of the nervous
system is to make collective sense of sensory input. Under the conditions imposed
by real input data, we can improve the reliability of a decision only by factoring a
large number of inputs into the computation. In other words, when faced with a
decision based on inputs in which it can place little confidence, the brain uses its
resources to increase the dimensionality of the computational space, rather than
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to increase the precision with which each individual input is treated. Appendix D
provides a formal treatment of several of the points we have mentioned here.

In the balance of this chapter, we will examine examples of networks that
use large connectivity to compute interesting functions analogous to several of
those computed in the brain.

STATISTICAL COMPUTATION

One important class of computation is the extraction of statistical prop-
erties of input data. For our purposes, statistical properties are interesting reg-
ularities or features that may be made evident by suitable computation on the
input data. Statistics are imprecise for a small number of data points, so it is
essential to perform the computation over many inputs. All of us who have done
laboratory experiments are familiar with at least some rudimentary forms of
data analysis. Historically, people were taught to take the data in the labora-
tory by repeated experiments, and then to analyze the data later. There are
situations, however, in which we cannot make up for bad data by doing more
experiments. The people who study earthquakes do not get to go back and col-
lect more data. They can wait for the next earthquake, but it will be a different
earthquake—a different experiment. A number of events associated with natural
disasters cannot be replicated—the Mount St. Helen’s eruption, for example. We
can study what remains, but we do not get to do the experiment again.

Our sensory systems are perhaps the best example of sources of data that
cannot be repeated. We never see the same scene twice—even if we try. We per-
ceive familiar objects in a different position, with a different background, each
time. The same predator is jumping on us from a different tree—there is no time
to take a second look. Those animals that could extract the most information
from a fleeting glance were most likely to survive, and to pass on that processing
capability to their progeny.

Whenever we cannot replicate the conditions and collect several batches of
data, the data that we do get are sure to contain some bad data points. Perhaps
the voltmeter changed ranges and did not catch up with itself in time to take
the reading correctly. Perhaps you walked across the room and zapped the ex-
periment. Or, perhaps a cosmic ray came along. In the nervous system, neurons
are dying all the time. We get not only good inputs from our visual and hearing
systems—we get a lot of spurious inputs as well. No single input can be trusted
completely. The system is designed to compute the most useful or informative
result possible, in spite of inputs that are totally out of range.

Statisticians have various criteria by which, if a data point is sufficiently out
of line, its effect may be reduced. A common procedure is to develop some notion
of reasonable behavior. In an experiment, we often have sound theoretical reasons
to believe that the output should be some smooth function of some independent
variable (the input). The transistor curves in Chapter 3 and the amplifier transfer
curves in Chapter 5 are examples. In both cases, there is a voltage scale given
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by kT/(gk). If we change the input less than this amount, we do #
output to change abruptly. Hence, if we take seversl dats poini
kT/ (gr) voltage interval, we have a great deal of redundancy In the
distance from a single data point to a smooth curve passing throug
of other points in the neighborhood is relatively large, wo should o
out that maverick data point. Any such scheme relies on four mpep

1. We know the size of a region of smoothness within whioh, |
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4. Some method of estimating the average deviation of the da
smooth function is available
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image. It is desirable, however, to see stars in the night sky. One oy
bad datum is another computation’s exceptional event. Sousory proy
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functions are used to provide a reference for local computation. The
kn(?wn example is the center-surround organization of many visy)
retina to cortex. The signal average in a central arca is Nllht:rMM

erage over a much larger surrounding area; the resulting differeiioe
as the output. A similar organization is found, in some form, In Wl
sory pathways. In the following sections, we will disciss novera) Wi
spatial averages of an ensemble of inputs.
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The simplest circuit for computing a smooth function In shown in
It consists of n follower stages, all driving the single wire lnholed ¥, 1
reaction to this follower-aggregation circuit might woll be “\m
.to make the V,,; wire follow every input—and it obviously mr.mol A
input. It is an n-way follower, but there can be only one mm‘)ul‘ voltage
seen previously the importance of signal types. In the circult of Fig
output of each individual amplifier is a current, whereas the outpus
aggregation is a woltage; that voltage is the outcome of a colleotive
of the entire set of amplifiers.

There are n amplifiers, each responsible for the contribution of |
to the common output. Each amplifier has a transconductunon @y |
for A2, and so on to G, for An. The Gs are set by the ourrent ¢
the transconductance amplifiers. We write Kirchhoff's law for sha:
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by kT'/(gx). If we change the input less than this amount, we do not expect the
output to change abruptly. Hence, if we take several data points within each
kT/(gr) voltage interval, we have a great deal of redundancy in the input. If the
distance from a single data point to a smooth curve passing through the average
of other points in the neighborhood is relatively large, we should certainly check
out that maverick data point. Any such scheme relies on four important features:

1. We know the size of a region of smoothness within which, for some fun-
damental reason, the data cannot change abruptly

2. Many data points are available within the region of smoothness

3. A method, consistent with the nature of the expected smoothness, is avail-
able for fitting a smooth function through the data points

4. Some method of estimating the average deviation of the data from the
smooth function is available

Once we have formulated a computation with these attributes, we can use
it to identify unexpected data points. These may be “bad” points, or they may
be items of exceptional interest. Isolated points do not exist in a close-up visual
image. It is desirable, however, to see stars in the night sky. One computation’s
bad datum is another computation’s exceptional event. Sensory processing is re-
plete with examples of spatially and temporally smoothed signals. These smooth
functions are used to provide a reference for local computation. The most widely
known example is the center-surround organization of many visual areas, from
retina to cortex. The signal average in a central area is subtracted from an av-
erage over a much larger surrounding area; the resulting difference is reported
as the output. A similar organization is found, in some form, in all known sen-
sory pathways. In the following sections, we will discuss several ways to compute
spatial averages of an ensemble of inputs.

FOLLOWER AGGREGATION

The simplest circuit for computing a smooth function is shown in Figure 7.2.
It consists of n follower stages, all driving the single wire labeled V,,;. A typical
reaction to this follower-aggregation circuit might well be, “We are trying
to make the Voug wire follow every input—and it obviously cannot follow every
input. It is an n-way follower, but there can be only one output voltage.” We have
seen previously the importance of signal types. In the circuit of Figure 7.2, the
output of each individual amplifier is a current, whereas the output of the entire
aggregation is a voltage; that voltage is the outcome of a collective interaction
of the entire set of amplifiers.

There are n amplifiers, each responsible for the contribution of its V; input
to the common output. Each amplifier has a transconductance: G, for Al, G,
for A2, and so on to G, for An. The Gs are set by the current controls on
the transconductance amplifiers. We write Kirchhoff’s law for the node Vout-
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FIGURE 7.2 Schematic of the follower-aggregation circuit. Each follower supplies a
current proportional to the difference between the input voltage and the output voltage.
The contribution of each input to the output voltage is weighted by the transconductance
of the associated amplifier.

The total current is the sum of the currents out of each amplifier. The current
for the first amplifier is G1(V) — Vout); that for the second is Ga(V2 — Vout); that
for the nth is G, (Vs — Voui)- Finally, the total has to be equal to zero:

n

> GilVi— Vow) =0

=1

Transferring the Vou terms to the other side of the equation and rearranging,
we obtain

Z?:l G:Vi

E?:l G;
In other words, Vg is the average of the V; inputs, each input weighted by its
transconductance G;.

Vout =

Robustness

The follower-aggregation circuit computes the weighted average of the input
voltages V7,...,V,. Up to this point, our analysis has assumed a linear relation
between input voltage and output current. This simplification has allowed us
to write the solution, but has neglected what is probably the most charming
attribute of the circuit and its relatives: The follower implementation of a neural
network has great robustness against bad data points.

Transconductance amplifiers have a strictly limited current output. This
limit is evident in their tanh transfer characteristics. The robustness of collective
networks made with these circuits is a direct result of this current limitation. If
any one input voltage is way off scale, it does not matter—the off-scale voltage
will not pull any harder on the wire than would a voltage a few kT'/(gx) different
from the intended voltage of the wire. As long as all inputs are close to the average
value, Vout will assume an average, with the inputs weighted by the current in
their amplifier. The voltage Vou: will not follow a few pathological inputs way
off into left field.
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Signals get stuck all the time, and biological wetware is even less relia
silicon hardware. We have 1000 to 10,000 inputs to a neuron—we can be s
some of them are going to be stuck on and some of them are going to |
off. If we have that many amplifiers with that kind of a fan-in, whether in
chip or in a neuron, some signals always will be stuck. There are just tc
wires and too many amplifiers for all the components to be 100-percent

The follower-aggregation circuit shares with neural systems an exc
level of reliability in the face of failure of individual components. In bot
the robustness is a result of two factors: a large number of redundant
and a limited current that can result from any given input.

From a statistical viewpoint, the tanh characteristic changes the
tation done by the network. It implements what statisticians call a re
transformation: The weighting assigned to outlying data points is 1
For all signals close to V,yt, we have seen that the circuit computes a v
average, or mean. Signal values that are scattered by many kT'/(gk) are
as inputs to a weighted median calculation. In both cases, the data are v
by the transconductances of their respective amplifiers. To ensure that
gle amplifier contributes more than its share to the output, we use wic
amplifiers to avoid the Vi, problem described in Chapter 5.

RESISTIVE NETWORKS

The follower-aggregation circuit does a great job of computing an
that can be used as a reference against which to measure exceptional
There is a problem, however, with this kind of average. The average is repr
by the voltage on a single wire, and that wire is a single electrical no
average, therefore, will be a global average: It will extend physically to t!
remote location at which any input to it can originate. There are appl
for which this kind of global average is desirable. In most systems, howe
will need a much more local average, one in which the contribution of s
distant inputs is less than that of inputs in close proximity to the point
the average is used.

An excellent example of local spatial averaging is found in the vis
tems of all higher animals. The illumination level within a visual scer
varies from one point to another by several orders of magnitude. If th
system used a global average as a reference, details in very bright and ve
areas would be invisible. A predator need only leap from the shadows —a
an arrangement would not make it into the next generation. For this
& locally weighted average signal level, from which local differences can |

. sured, is computed by a layer of horizontal cells in the retina. These ¢
linked together by high-resistance connections called gap junctions, a
¥ An electrically continuous resistive network just below the photorecepto
¢ horizontal network is by no means the only place in the nervous systen
I this kind of a computation is used. As we mentioned in Chapter 4, the d
- troes of all neurons are used to spread signals spatially, and the potentia
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al current is the sum of the currents out of each amplifier. The current
irst amplifier is G1 (V1 — V,u); that for the second is Go(Va — Vout); that
nth is Gn(Vy — Voue). Finally, the total has to be equal to zero:

Y Gi(Vi— Vou) =0
i=1

ring the Voyy terms to the other side of the equation and rearranging,
in

V. _ Ezl:l Gz‘/z
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~words, V,yu; is the average of the V; inputs, each input weighted by its
\ductance Gj.

yustness

follower-aggregation circuit computes the weighted average of the input
W1,...,Va. Up to this point, our analysis has assumed a linear relation
input voltage and output current. This simplification has allowed us
the solution, but has neglected what is probably the most charming
> of the circuit and its relatives: The follower implementation of a neural
has great robustness against bad data points.
isconductance amplifiers have a strictly limited current output. This
vident in their tanh transfer characteristics. The robustness of collective
s made with these circuits is a direct result of this current limitation. If
input voltage is way off scale, it does not matter—the off-scale voltage
pull any harder on the wire than would a voltage a few kT/(gx) different
intended voltage of the wire. As long as all inputs are close to the average
wut Will assume an average, with the inputs weighted by the current in
plifier. The voltage V,,; will not follow a few pathological inputs way
eft field.

CRAFITER 7 AGGREGATING SIGNALS 107

Signals get stuck all the time, and biological wetware is even less reliable than
silicon hardware. We have 1000 to 10,000 inputs to a neuron—we can be sure that
some of them are going to be stuck on and some of them are going to be stuck
off. If we have that many amplifiers with that kind of a fan-in, whether in a VLSI
chip or in a neuron, some signals always will be stuck. There are just too many
wires and too many amplifiers for all the components to be 100-percent reliable.

The follower-aggregation circuit shares with neural systems an exceptional
level of reliability in the face of failure of individual components. In both cases,
the robustness is a result of two factors: a large number of redundant inputs,
and a limited current that can result from any given input.

From a statistical viewpoint, the tanh characteristic changes the compu-
tation done by the network. It implements what statisticians call a resistant
transformation: The weighting assigned to outlying data points is reduced.
For all signals close to Vg, we have seen that the circuit computes a weighted
average, or mean. Signal values that are scattered by many kT/(gk) are treated
as inputs to a weighted median calculation. In both cases, the data are weighted
by the transconductances of their respective amplifiers. To ensure that no sin-
gle amplifier contributes more than its share to the output, we use wide-range
amplifiers to avoid the Vi, problem described in Chapter 5.

RESISTIVE NETWORKS

The follower-aggregation circuit does a great job of computing an average
that can be used as a reference against which to measure exceptional events.
There is a problem, however, with this kind of average. The average is represented
by the voltage on a single wire, and that wire is a single electrical node. The
average, therefore, will be a global average: It will extend physically to the most
remote location at which any input to it can originate. There are applications
for which this kind of global average is desirable. In most systems, however, we
will need a much more local average, one in which the contribution of spatially
distant inputs is less than that of inputs in close proximity to the point at which
the average is used.

An excellent example of local spatial averaging is found in the visual sys-
tems of all higher animals. The illumination level within a visual scene often
varies from one point to another by several orders of magnitude. If the visual
system used a global average as a reference, details in very bright and very dark
areas would be invisible. A predator need only leap from the shadows"—and such
an arrangement would not make it into the next generation. For this reason,
a locally weighted average signal level, from which local differences can be mea-
sured, is computed by a layer of horizontal cells in the retina. These cells are
linked together by high-resistance connections called gap junctions, and form
an electrically continuous resistive network just below the photoreceptors. The
horizontal network is by no means the only place in the nervous system where
this kind of a computation is used. As we mentioned in Chapter 4, the dendritic
trees of all neurons are used to spread signals spatially, and the potential at any
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FIGURE 7.3 Resistive model of passive electrotonic spread in a neural process. The
distance scale over which a signal dissipates is determined by the product AG.

given leaf of the tree is more affected by inputs in the immediate proximity than
by those farther away. Propagation of signals in resistive networks is generically
referred to as electrotonic spread.

Electrotonic Spread

The simplest example of electrotonic spread occurs in a long, straight, passive
neural process of constant diameter. We can model the process as a resistive-
ladder network, as shown in Figure 7.3. The R resistances correspond to the axial
resistance per unit length of the cytoplasm, and the G conductances represent the
Jeakage conductance per unit length through the membrane to the extracellular
fluid. A potential V; is generated by an input at the left end of the process
(z = 0). The voltage V(z) generated by the input decreases with distance z
from the input, because some of the current injected by the input is shunted to
ground by the G conductances. We present a detailed analysis of continuous and
discrete networks in one and two dimensions in Appendix C.

An important result, derived in Appendix C, is the rate at which signals
die out with distance from the source. Intuitively, if the membrane-leakage con-
ductance G is small compared with the conductance 1/R of the cytoplasm, the
signal should propagate a large distance before it dies out. The greater the mem-
brane conductance, the shorter the distance. For uniform, continuous networks,
the voltage has the form

V = Voe~@ll = VpeTlal (7.1)

where a is the space constant and L is the characteristic length or diffusion
length of the process:

a=1=VEG S @2)
A signal injected into a linear resistive ladder network decays exponentially with
distance from the source. If a signal is injected into a node in the middle of a very
long process, the influence of that input spreads out in both directions, not just in
the +z direction. For a one-dimensional model, the solution in the —z direction
is just the mirror image of the solution for the +z direction. This observation is
responsible for the absolute-value dependence on z in Equation 7.1.
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FIGURE 7.4 The exponent  as a function of L, as computed from Equation 7.4.

For discrete networks, the decay also is exponential. For a node n sections
away from the source, the voltage will be

Vo = ")'nVO (73)
where
Vi 1 1 1
_— = I 1 — — — —
v toam Vit iz (7.4)

where 1/L is equal to VRG as before, but in the discrete case the values of R
and G are given per section rather than per unit length.

A plot of v as a function of L is shown in Figure 7.4. For large values of L,
~ approaches 1, and the continuous approximation of Equation 7.1 is valid. For
values of L less than about 10, the magnitude of the decrement per stage given
by the discrete solution differs markedly from that obtained from the continuous
approximation. Later in this chapter, we will compare data from an experimental
one-dimensional network with Equations 7.3 and 7.4.

A second important result derived in Appendix C is the effective conduc-
tance Gy of the network. A voltage source Vj driving one end of a semi-infinite
network must supply a current I = GV} into the network. From the point of
view of a signal source, the network acts just like a single conductance Gy. For
a continuous network, the effective conductance is given by

|G
G0= ﬁ

For discrete networks, the value of Gy is somewhat different from that for con-

tinuous ones:
G 1
Go =1/ =1/14 —
o=VrRVITiz

The Gy values given here are for a terminated semi-infinite network. The effective
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FIGURE 7.5 Electrotonic network in which input signals are supplied by voltage
sources. This form of the network is equivalent to a current source in parallel with
each G.

conductance at the center of a network that extends in both directions is 2Gy,
because a current V5Go must be supplied for each direction.

Multiple Inputs

Multiple signal inputs to a network can be provided in the form of either
voltage- or current-type signals. If we inject currents at many places, the network
performs an automatic weighted average: the farther away the inputs are, the
less weight they are given, in accordance with Equation 7.3. The voltage at any
given point k£ due to a number of inputs is just

1
— E (n—klp
Ve =36, Y

In other words, the voltage at any point due to a number of inputs is just the sum
of the voltages that would have been measured at that point had each input been
presented individually, with all other inputs held at zero. This great simplifica-
tion is a result of the principle of linear superposition mentioned in Chapter 2.
The superposition result is true for any linear system, and is not dependent on
the one-dimensional nature of the network, or on the fact that G and R were
constant, independent of z. We will use it for two-dimensional networks, such as
the horizontal network in the retina, and for our treatment of electrotonic spread
in the dendritic tree. In these cases, the weighting function is more complex than
the simple 4" form of the one-dimensional network.

A convenient way to generate inputs to the network is to connect voltage
sources in series with the conductances, as shown in Figure 7.5. Because the
principle of superposition will hold for this arrangement as well, we need compute
only the node voltage due to a single input. In Appendix C, we will derive the
node voltage V; generated by a voltage source v; in the middle of a very long,
uniform, discrete, one-dimensional network:

Vi 1

vi  V4L?2 +1
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As the effective length over which the network averages increases, the effect of
any given input decreases. For large characteristic lengths, the voltage due to
any particular input is proportional to 1/L. The total effect of a set of uniformly
spaced inputs included in one characteristic length is therefore constant, inde-
pendent of the value of L, because the number of inputs is proportional to L.
This conclusion is clear if we observe that, when the voltage at all inputs is the
same, the output voltage anywhere in the network is equal to the input voltage.
We will make extensive use of both one- and two-d'mensiona] networks with
many inputs to derive local averages.

DENDRITIC TREES

Inputs to one neuron from the axons and dendrites of other neurons are ag-
gregated by a tree of passive dendritic processes. For many years, scientists be-
lieved that the primary function of the dendrites was to collect input current into
the main body, or soma, of the cell from which an action potential was generated.
It is certainly true that neurons with axons do generate action potentials, or nerve
pulses, as a result of current collected by their dendrites. Researchers have discov-
ered in recent years, however, that the role of the dendritic tree is considerably
more complex than was previously supposed [Shepherd, 1972; Shepherd, 1978].

Many types of neurons have no axon whatsoever, so their primary role can-
not be to produce action potentials. Many types of neurons—those with axons
and those without-—have been shown to have synaptic outputs as well as inputs
on their dendrites. This remarkable finding implies that much of the lateral com-
munication in the nervous system is extremely local, and is mediated by graded
analog (electrotonic) potentials rather than by the more digital nerve pulses. The
dendrites convey two-way information rather than merely collecting current into
the soma. Sorting out the far-reaching implications of these findings will require
many years.

Synaptic Inputs

If enough current is injected into the dendritic tree, then the neuron will
release neurotransmitter from any output synapses it has on its dendrites. If the
current into the cell as a whole reaches a high enough level, the nerve can initiate
pulses in its axon (if it has one). Depolarizing inputs cause the release of neu-
rotransmitter from dendritic synapses and, if sufficiently intense and prolonged,
can cause the axon to fire as well. These inputs are called excitatory. Inputs that
hyperpolarize the neuron act to cancel out the effect of excitatory inputs; they
are therefore called inhibitory.

If the entire path from the leaves of the dendrites to the axon hillock is
less than L in length, the neuron is said to be electrically compact. Such a
cell can be assumed to be equipotential throughout its dendrites, and therefore
can be modeled as a wire. A neuron with dendritic processes much longer than
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L can have very different potentials at different locations in its dendritic tree.
The dendrites of such a neuron can be modeled as linear resistive networks. We
will derive the voltage—current relationships at branches in a tree network in
Appendix C.

Shunting Inhibition

We have used the voltage sources of Figure 7.5 to model excitatory and
inhibitory input synapses to the network. Inputs also may be injected as currents,
of course, one sign of current being excitatory and the other inhibitory. There is a
third class of inputs, often called veto synapses, that neither hyperpolarize nor
depolarize the neuron, but instead partially short-circuit to ground any activity
present in the process. This kind of inhibition is called shunting inhibition.

The simplest realization of shunting inhibition is implemented directly by
the network of Figure 7.5; we merely make one conductance, Gshunt, very large
compared with the others. This arrangement will attenuate a signal traveling
in either direction in the process. We will derive the attenuation suffered by a
signal as it passes such a shunt in Appendix C. The result is

Vo

- Gshunt
1+ 2Gy

‘/out

where Vj is the voltage that would have been present without the shunt. As Gshunt
becomes large compared with the network effective conductance Gy, the opera-
tion performed by such a synapse resembles a division by Gshunt-

Shunting is one of those wonderful biological tricks by which an input can
inhibit activity, but not create any activity of its own. In a complex biological
system, it often is difficult to distinguish shunting inhibition from inhibitory
synapses that contribute a net negative current to the tree. The same basic
synaptic mechanisms are used in both cases. Release of neurotransmitter causes
channels to open in the postsynaptic membrane. An inhibitory synapse causes an
increase in conductance for an ion with a negative reversal potential. A shunting
synapse causes an increase in conductance for an ion with a reversal potential
near the resting potential of the membrane. From a system perspective, however,
it makes a world of difference whether the operation is a subtraction or a division.
For this reason, we must exercise care when we use the biological literature as a
basis for electronic models. Biological distinctions that seem insignificant at the
descriptive level may have profound effects on the performance characteristics of
the neurobiological system.

TWO-DIMENSIONAL NETWORKS

The horizontal network in the retina is a flat mesh of dense processes that
are highly interconnected by resistive gap junctions. These interconnections are
somewhat random in number and direction. Any given cell is connected with
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FIGURE7.6 Topology of a hexagonal network. Because of its high degree of symmetry
and redundancy, this network is the preferred form for two-dimensional applications.

many others, and there is a great deal of overlap among interconnected cells.
In silicon, discrete two-dimensional networks are very useful, and generally are
implemented in a regular array by interconnection of nearest neighbors. We have
mentioned that this kind of network computes an average that is a nearly ideal
way to derive a reference with which local signals can be compared. In Chap-
ter 15, we describe a retina containing a hexagonal two-dimensional network,
with six resistors coming into each node, as shown in Figure 7.6. A resistance R
is connected between neighboring nodes, and a conductance G (not shown) is con-
nected from each node to ground (as in Figure 7.3; in Figure 7.5, it is connected
to a voltage source). ‘

This network is particularly attractive, because it has the highest symmetry
and connectivity of any regular, two-dimensional structure. If we inject a current
into a node of the network (which we will call node 0), the resulting voltage de-
cays exponentially with distance from that node. We can derive an approximate
solution for the decay law in the following manner. As we progress outward from
node 0 following a row of resistors, we encounter nodes that are vertices of larger
and larger hexagons centered on node 0. The index of hexagon n (its “radius”)
is just the number of resistors we must pass through on the direct path from
node 0 to a vertex. Our circular approximation assumes that all nodes on the
perimeter of a given hexagon have the same voltage. Under this approximation,
we can write a finite-difference equation for the current into hexagon n in terms
of the voltage relative to that of hexagon n — 1 and to that of hexagon n + 1.
We notice that there are 6n nodes on the perimeter of hexagon n, and that there
are 12n — 6 resistors from hexagon n — 1 to hexagon n, and 12n + 6 resistors
from hexagon n to hexagon n + 1. The current I into hexagon n is therefore

(12n— 6)(Vao1 —Vn) = (120 +6)(Va = Var1) _ g oy,

- (7.5)

I=
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A PPENDTIX

RESISTIVE NETWORKS

Resistive networks play a central role in level normalization in a Kront
many neural systems; an example of such a network was presentod In
Chapter 15. Analyses of such networks are scattered throughout the
literature, often couched in a terminology that is specific to anothar clise
cipline. For this reason, it is desirable to gather the relevant matorinl i
a single place, using a consistent notation.

ONE-DIMENSIONAL CONTINUOUS NETWORKS

The simplest resistive network is shown in Figure 7.3 (p. 108). It haw
a longitudinal resistance R per unit length, and a conductance to ground
G per unit length. A potential V} is applied to the left end of the process
(z = 0). The network is assumed to be semi-infinite, and R and G nre
assumed to be independent of z. We can determine how the input affects
the voltage V(z) on a node of the network at some value of z by writing
the relations between the voltage and the current I (z) flowing through
the resistance R at that value of z, and of the same variables slightly
farther along the line at z + dz:

V(z) =V(z +dz) + I(z + dx)Rdx (C.1)
I(z) = I(z + dz) + V(z)G dx (C.9)
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In the limit where dz becomes very small, I and V become continuous func-
tlons of z. Equation C.1 then becomes

Vv _ _IR (C.3)
dz

and Fquation C.2 becomes
a_ _ye (C.4)
dzr

Differentiating Equation C.3 with respect to z, and substituting Equation C4
in the right-hand side, we obtain a second-order differential equation for V:
d*v dI
- =-R— =RGV (C.5)
dx? dx
R and G are constant, so the solution to Equation C.5 has the form
V = Voe o = Voe I (C.6)
Wo have ignored the e** solution because it diverges for large z. Tha.t.solution
will be appropriate, of course, for a network running in the —z dlrecthn. The
constant a is the space constant and L is the characteristic length or diffusion
length of the network:

—=VRG (C.7)

o =

St

As we noted in Chapter 6, a signal can be represented either by a voltage or
by a current. If the signal is a current, it cah be injected directly into a n.ode of
the network. We can determine the magnitude of the injected current required at
¢ = 0 to produce the voltage V, by substituting Equation C.6 into Equation C.3:

G

The value Go = /G/R is the effective conductance of the semi-infinite
network. From the point of view of a signal source, the network acts just like a
gingle conductance Go.

If a signal is injected into a node in the middle of a very long process, the
influence of that current spreads out in both directions, not just in the +z direc-
tion. For a one-dimensional model, the solution for the —z direction is just the
mirror image of the solution for the +z direction. For that reason, the effec-

tive conductance at a node of a network that extends in both directions is 2Go,

because a current VoGo must be supplied for each direction:

DISCRETE NETWORKS

The results of the previous section are valid for only continuous or Vvery

nearly continuous networks—those for which RG is much less than 1. For most
i e e 1 o d we must treat the general
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Vo

FIGURE C.1 Schematic showing relations
between the voltages and currents in one
= section of a semi-infinite resistive network.

case where R and G can take on any values. We will begin by deriving a finite-
difference equation for the voltage V;, on the nth node of the discrete line of
Figure 7.3 (p. 108). The situation at one section of the line is shown in Figure C.1.
We can derive the exact behavior of the discrete network by writing the circuit
relations for two adjacent sections.

First, we express the current through the resistance R, connected between
node n and node n + 1, in terms of the voltages on those two nodes:

ILLR=V, = Von1 (C.9)
The same relation holds for the second section:
I-,H_lR = Vn+1 - Vn+2 (Cl())

The current through the conductance G is just the difference between I,
and Ip41:

GVir1 = In — Ins1 (C.11)

Equation C.11 assumes that no current is injected directly into the node from an
external source; in other words, we are looking for the natural spatial response
of the network when current is injected into a single node. The effects of this

excitation die out as we move away from the point n = 0 where the current is
injected.

Substituting Equations C.9 and C.10 into Equation C.11, we obtain
GRVn+1 = Vn - Vn+1 - Vn+1 + Vn+2

Simplifying, we obtain the second-order finite-difference equation that the volt-
ages of the nodes must satisfy:

Vorz = (2+ RG)Vos1 + Vo =0 (C.12)

We expect a solution that dies out exponentially as we move away from the
source. We construct a trial solution of the form

Vi, = 4™V (C.13)
Substituting this form for V,, in Equation C.12, and assuming n > 0, we obtain
Voy™+? — (2+ RG)Voy™ ™ + Voy" =0
Dividing by Vpy™, we obtain
¥ —(2+RG)y+1=0 (C.A4)



