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• Cortex is not doing PCA
- PCA only captures pairwise correlations in data.
- PCA assumes Gaussianity and orthogonal 

components.
- Principal components do not resemble simple-cell RFs.

• Cortex is not doing compression
- expands dimensionality of representation.
- goal is to interpret image data, not to simply encode or 

compress it.

• Cortex seems to be something akin to sparse coding
- …and probably much more.



y

x

x̂

W

M

min
W,M

|x − x̂|2

Autoencoder networks



PCA
(Principal Components Analysis)

x1

x2 y2
y1

ET

E =

2

4
| |
e1 e2
| |

3

5 e1 · e2 = 0

|e1| = |e2| = 1

y1 = e1 · x
y2 = e2 · x

hx1 x2i = c12

6= 0
hy1 y2i = hy1i hy2i

= 0



x1

x2 e1
e2

a.

x1

x2 e1
e2

b.

PCA
(Principal Components Analysis)



Hebbian learning
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Principal components of natural image patches
(8 x 8 pixels)

• Not localized

• Not oriented

PCA is incapable of
learning about 
localized, oriented 
structure in images.

W = ET
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1/f noise 
(what the world looks like if all you care about are pairwise correlations)



Higher-order image statistics
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Bottleneck may also be in the form of limited capacity units.  
Optimal strategy in this case is to whiten.
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Objective function:

Efficient coding model of retina
(Karklin & Simoncelli 2012)
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Sparse codes impose a different type of bottleneck
by limiting the number of active units
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Evidence for grandmother cells?
(Quiroga, Reddy, Kreiman, Koch & Fried, Nature 2005)

Figure 1a shows the responses of a single unit in the left posterior
hippocampus to a selection of 30 out of the 87 pictures presented to
the patient. None of the other pictures elicited a statistically signifi-
cant response. This unit fired to all pictures of the actress Jennifer
Aniston alone, but not (or only very weakly) to other famous and
non-famous faces, landmarks, animals or objects. Interestingly, the
unit did not respond to pictures of Jennifer Aniston together with the
actor Brad Pitt (but see Supplementary Fig. 2). Pictures of Jennifer
Aniston elicited an average of 4.85 spikes (s.d. ¼ 3.59) between 300
and 600ms after stimulus onset. Notably, this unit was nearly silent

during baseline (average of 0.02 spikes in a 700-ms pre-stimulus time
window) and during the presentation of most other pictures
(Fig. 1b). Figure 1b plots the median number of spikes (across trials)
in the 300–1,000-ms post-stimulus interval for all 87 pictures shown
to the patient. The histogram shows amarked differential response to
pictures of Jennifer Aniston (red bars).
Next, we quantified the degree of invariance using a receiver

operating characteristic (ROC) framework15. We considered as the
hit rate (y axis) the relative number of responses to pictures of a
specific individual, object, animal or landmark building, and as

Figure 1 | A single unit in the left posterior hippocampus activated
exclusively by different views of the actress Jennifer Aniston.
a, Responses to 30 of the 87 images are shown. There were no statistically
significant responses to the other 57 pictures. For each picture, the
corresponding raster plots (the order of trial number is from top to bottom)
and post-stimulus time histograms are given. Vertical dashed lines indicate
image onset and offset (1 s apart). Note that owing to insurmountable
copyright problems, all original images were replaced in this and all
subsequent figures by very similar ones (same subject, animal or building,
similar pose, similar colour, line drawing, and so on). b, The median

responses to all pictures. The image numbers correspond to those in a. The
two horizontal lines show the mean baseline activity (0.02 spikes) and the
mean plus 5 s.d. (0.82 spikes). Pictures of Jennifer Aniston are denoted by
red bars. c, The associated ROC curve (red trace) testing the hypothesis that
the cell responded in an invariant manner to all seven photographs of
Jennifer Aniston (hits) but not to other images (including photographs of
Jennifer Aniston and Brad Pitt together; false positives). The grey lines
correspond to the same ROC analysis for 99 surrogate sets of 7 randomly
chosen pictures (P , 0.01). The area under the red curve is 1.00.

NATURE|Vol 435|23 June 2005 LETTERS

1103
© 2005 Nature Publishing Group 

 



Evidence for grandmother cells?
(Quiroga, Reddy, Kreiman, Koch & Fried, Nature 2005)

the false positive rate (x axis) the relative number of responses to
other pictures. The ROC curve corresponds to the performance of a
linear binary classifier for different values of a response threshold.
Decreasing the threshold increases the probability of hits but also of
false alarms. A cell responding to a large set of pictures of different
individuals will have a ROC curve close to the diagonal (with an area
under the curve of 0.5), whereas a cell that responds to all pictures of
an individual but not to others will have a convex ROC curve far from
the diagonal, with an area close to 1. In Fig. 1c we show the ROC
curve for all seven pictures of Jennifer Aniston (red trace, with an area
equal to 1). The grey lines show 99 ROC surrogate curves, testing
invariance to randomly selected groups of pictures (see Methods). As
expected, these curves are close to the diagonal, having an area of
about 0.5. None of the 99 surrogate curves had an area equal or larger
than the original ROC curve, implying that it is unlikely (P , 0.01)

that the responses to Jennifer Aniston were obtained by chance. A
responsive unit was defined to have an invariant representation if the
area under the ROC curve was larger than the area of the 99 surrogate
curves.
Figure 2 shows another single unit located in the right anterior

hippocampus of a different patient. This unit was selectively acti-
vated by pictures of the actress Halle Berry as well as by a drawing of
her (but not by other drawings; for example, picture no. 87). This
unit was also activated by several pictures of Halle Berry dressed as
Catwoman, her character in a recent film, but not by other images of
Catwoman that were not her (data not shown). Notably, the unit was
selectively activated by the letter string ‘Halle Berry’. Such an
invariant pattern of activation goes beyond common visual features
of the different stimuli. As with the previous unit, the responses were
mainly localized between 300 and 600ms after stimulus onset.

Figure 2 | A single unit in the right anterior hippocampus that responds to
pictures of the actress Halle Berry (conventions as in Fig. 1).
a–c, Strikingly, this cell also responds to a drawing of her, to herself dressed
as Catwoman (a recent movie in which she played the lead role) and to the

letter string ‘Halle Berry’ (picture no. 96). Such an invariant response cannot
be attributed to common visual features of the stimuli. This unit also had a
very low baseline firing rate (0.06 spikes). The area under the red curve in c is
0.99.
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Figure 2c shows the ROC curve for the pictures of Halle Berry (red
trace) and for 99 surrogates (grey lines). The area under the ROC
curve was 0.99, larger than that of the surrogates.
Figure 3 illustrates a multi-unit in the left anterior hippocampus

responding to pictures of the Sydney Opera House and the Baha’i
Temple. Because the patient identified both landmark buildings as
the SydneyOperaHouse, all these pictures were considered as a single
landmark building for the ROC analysis. This unit also responded to
the letter string ‘Sydney Opera’ (pictures no. 2 and 8) but not to other
letter strings, such as ‘Eiffel Tower’ (picture no. 1). More examples of
invariant responses are shown in the Supplementary Figs 2–11.
Out of the 132 responsive units, 51 (38.6%; 30 single units and 21

multi-units) showed invariance to a particular individual (38 units
responding to Jennifer Aniston, Halle Berry, Julia Roberts, Kobe

Bryant, and so on), landmark building (6 units responding to the
Tower of Pisa, the Baha’i Temple and the Sydney Opera House),
animal (5 units responding to spiders, seals and horses) or object (2
units responding to specific food items), with P , 0.01 as defined
above by means of the surrogate tests. A one-way analysis of variance
(ANOVA) yielded similar results (see Methods). Eight of these units
(two single units and six multi-units) responded to two different
individuals (or to an individual and an object). Figure 4 presents the
distribution of the areas under the ROC curves for all 51 units that
showed an invariant representation to individuals or objects. The
areas ranged from 0.76 to 1.00, with a median of 0.94. These units
were located in the hippocampus (27 out of 60 responsive units;
45%), parahippocampal gyrus (11 out of 20 responsive units; 55%),
amygdala (8 out of 30 responsive units; 27%) and entorhinal cortex

Figure 3 | A multi-unit in the left anterior hippocampus that responds to
photographs of the Sydney Opera House and the Baha’i Temple
(conventions as in Fig. 1). a–c, The patient identified all pictures of both of
these buildings as the Sydney Opera, and we therefore considered them as a
single landmark. This unit also responded to the presentation of the letter

string ‘Sydney Opera’ (pictures no. 2 and 8), but not to other strings, such as
‘Eiffel Tower’ (picture no. 1). In contrast to the previous two figures, this unit
had a higher baseline firing rate (2.64 spikes). The area under the red curve
in c is 0.97.
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significantly correlated, the above scheme could learn to 
code colour and type on separate sets of units, and to 
represent a particular car as a combination of activity in 
those units (a 'yellow' and a 'Volkswagen' unit). Gener- 
alization may then occur specifically along one feature or 
aspect of the input. An output correlated only with 
'Volkswagen' would get connected to the unit in the 
'type' group, and it could generalise to other colours 
even when it has a large Hamming distance from the 
original. 

7 Combination of  Hebbian and anti-Hebbian 
mechanisms 

In the following network, the detection of suspicious 
coincidences is performed by conventional Hebbian 
feed-forward weights, but units are connected by anti- 
Hebbian inhibitory feedback connections (Fig. 1). For 
linear units, this arrangement has been shown to per- 
form principal component analysis by projecting into the 
subspace of the eigenvectors corresponding to the n 
largest eigenvalues of the covariance matrix of the input 
(Frldifik 1989).' The model discussed here has similar 
architecture, but units here are nonlinear, so it can learn 
not only about the second-order statistics, i.e. pairwise 
correlations between input elements, but also about 
higher-order dependencies and features of the input. 

In order to achieve sparse coding, an additional 
mechanism is assumed: each unit tries to keep its prob- 
ability of firing close to a fixed value by adjusting its 
own threshold. A unit that has been inactive for a long 
time gradually lowers its threshold (i.e~ decreases its 
selectivity), while a frequently active unit gradually 
becomes more selective by raising its threshold. 

The network has m inputs: xy,j = 1 . . .  m, and n 
representation units: Yi, i = 1 . . .  n. Because of the feed- 
back and the nonlinearity of the units, the output 
cannot be calculated in a single step as in the case of 
one unit, because the final output here is influenced by 
the feedback from the other units. Provided that the 
feedback is symmetric (wij = wji), the network is guar- 
anteed to settle into a stable state after an initial 
transient (Hopfield 1982). This transient was simulated 
by numerically solving the following differential equa- 
tion for each input pattern: 

dY*dt = f ~ i  qiyxj+ j=~l w~y* - t i ) -  y* 

where q,j is the weight of the connection from xy to 
y~, w U is the connection between units y, and yj and the 
nonlinearity of the units is represented by the function 
f(u) = 1/(1 +exp(-Au)) .  The outputs are then calcu- 
lated by rounding the values of y* in the stable state to 
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor- 
ward weights are initially random, 2 and the feedback 
weights are 0. 

' A similar but asymmetrically connected network has also been 
proposed for this purpose by Rubner and Sehulten (1990) 
2 Selected from a uniform distribution on [0, 1] and normalised to 
unit length (Y-jq~ = 1) 
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Fig. 1. The architecture of the proposed network. Empty circles 
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory 
connections 

On each learning trial, after the output has been 
calculated, the connections and thresholds are modified 
according to the following rules: 

anti-Hebbian rule-  
Aw iy = - ot( yiyj - p2) 
(if i = j  or w;j > 0 then w # : = 0 )  

Hebbian rule-  

Aq# = flYi (xj - qij) 
threshold modification- 

Ati = Y( Yi - P) . 
Here ct, fl and T are small positive constants and p is 

the specified bit probability. The Hebbian rule contains 
a weight decay term in order to keep the feed-forward 
weight vectors bounded. The anti-Hebbian rule is inher- 
ently stable so no such normalizing term is necessary. 
Note that these rules only contain terms related to the 
units that the weight connect, so all the information 
necessary for the modification is available locally at the 
site of the connection. 

In the next two sections some aspects of the model 
will be demonstrated on two simple, artificially gener- 
ated distributions. 

8 Example  1: learning fines 

Patterns consisting of random horizontal and vertical 
lines were presented to the network. This example was 
chosen for comparison with that given by Rumelhart 
and Zipser (1985) to demonstrate competitive learning. 

momon  m mo 
Fig. 2. A random sample of the patterns presented to the network in 
Example 1 
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Compute coefficients via gradient descent

Where bi =
∑

x,y

φi(x, y) I(x, y)

Gij =
∑

x,y

φi(x, y) φj(x, y)



Alternative formulation (the Hopfield trick)

Let

Thus



Relation between the thresholding function g and cost function C

!5 0 5
!5

0

5

g

u

a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

5

10

C

a

!5 0 5
!5

0

5

g

u
a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

2

4

C

a

!5 0 5
!5

0

5

g

u

a

!5 0 5
!5

0

5

u

f
!

!5 0 5
!5

0

5

C
"

!5 0 5
0

0.5

1

C

a

L1 L0-like



Sparse inference via lateral inhibition and 
thresholding

(Rozell, Johnson, Baraniuk & Olshausen, 2008)
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be a “ostrich, Struthio
camelus”, which is fast-running African flightless bird with two-toed feet, largest living bird. Average distortion
based on 64 examples is 0.006508.

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by lossf :
Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:

1. f(x+ r) = l

2. x+ r 2 [0, 1]m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ lossf (x+ r, l) subject to x+ r 2 [0, 1]m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:
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Szegedy et al. (2013)

Deep convnets are easily fooled by imperceptible 
perturbations (adversarial examples)
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Figure 5: Adversarial attacks are orthogonal to iso-response contours. The left and middle plots show adversarial attacks following

equation (8) for low dimensional models with straight and bent iso-response contours, respectively. Here, contours were computed

using Euler’s method. The large black arrows indicate weight vectors, the small arrows indicate gradient directions, and the colored

arrow indicates the trajectory of an iterative adversarial attack against a single neuron, where color corresponds to the target neuron’s

activation. Note that both the attack and the gradient field are orthogonal to the iso-response contours. The right plot shows the trajectory

of a projected gradient descent adversarial attack on the LCA network with 768 latent units and a linear classifier trained on the MNIST

dataset (the leftmost network in Figure 6). The neuron’s weight vectors are displayed as images along with the input image, a 1, and the

final attack output, which resembles the final classification output, a 3. The original and interim attack image positions are computed by

projecting the image data onto the plane spanned by the two weight vectors.

approximately orthogonal to the iso-response contour in this plane indicating that, for the early phase of the attack, the single-neuron228

attack approximation is good. In the following section, we demonstrate that attacks against this same network also require increased229

perturbation magnitudes for equal adversarial confidence than attacks against a more typical pointwise nonlinear network. We find that230

this result holds for both the MNIST and grayscale CIFAR-10 classification datasets.231

Sparse coding provides defense against adversarial attacks232

To test how population nonlinearities affect more typical adversarial attacks, we trained fully-connected, leaky ReLU (Maas et al.,233

2013) discriminative models on the MNIST and grayscale, cropped CIFAR-10 datasets (with preprocessing detailed in appendix section234

) as our control (denoted “w/o LCA”). Our comparison model is an LCA layer trained without supervision and a classifier trained on235

LCA activations (denoted “w/ LCA”). The LCA network was trained using the unsupervised learning rule defined in section , and the236

supervised classifier weights were trained by minimizing the cross-entropy between the one-hot ground-truth labels and the softmax237

Sparse inference protects against adversarial attack
(Paiton, Frye, Lundquist, Bowen, Zarcone & Olshausen 2020)

linear
projection sparsified

iso-response contours
Dylan Paiton

Joel Bowen



Relationship between Sparse Coding and ICA



• No noise

• Invertible A matrix



Thus



Pre-multiplying by A AT (natural gradient) yields:

∆A ∝
∂

∂A
〈log p(x)〉

=
∂

∂A

[

−
∑

i

C(si) − log detA

]

= 〈[AT ]−1
z(s) sT − [AT ]−1〉

Its the ICA
learning rule!
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The "Independent Components" of 
Scenes are Edge Filters 
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Natural 

It has previously been suggested that neurons with line and edge selectivities found in primary 
visual cortex of cats and monkeys  form a sparse, distributed representation of natural scenes, and it 
has been reasoned that such responses should emerge from an unsupervised learning algorithm that 
attempts to find a factorial code of  independent visual features. We show here that a new 
unsupervised learning algorithm based on information maximization,  a nonlinear "infomax" 
network,  when applied to an ensemble of natural scenes produces sets of  visual filters that are 
localized and oriented. Some of  these filters are Gabor-like and resemble those produced by the 
sparseness-maximization network.  In addition, the outputs of  these filters are as independent as 
possible, since this infomax network performs Independent Components  Analysis or ICA, for 
sparse (super-gaussian) component  distributions. We compare the resulting ICA filters and their 
associated basis functions, with other decorrelating filters produced by Principal Components  
Analysis (PCA) and zero-phase whitening filters (ZCA). The ICA filters have more sparsely 
distributed (kurtotic) outputs on natural scenes. They also resemble the receptive fields of  simple 
cells in visual cortex, which suggests that these neurons form a natural, information-theoretic 
coordinate system for natural images. © 1997 Elsevier Science Ltd 

Information theory Independent components Neural network learning 

INTRODUCTION 

Both the classic experiments of Hubel & Wiesel (1968) 
on neurons in visual cortex, and several decades of 
theorizing about feature detection in vision (Marr & 
Hildreth, 1980), have left open the question most 
succinctly phrased by Barlow & Tolhurst (1992) "Why 
do we have edge detectors?" 

That is: are there any coding principles which would 
predict the formation of localized, oriented receptive 
fields? Barlow's answer was that edges are suspicious 
coincidences in an image. Since the mathematical 
framework for analysing such "coincidences" is Informa- 
tion Theory (Cover & Thomas, 1991), Barlow was thus 
led to propose that our visual cortical feature detectors 
might be the end result of a "redundancy reduction" 
process (Barlow, 1989; Atick, 1992), in which the 
activation of each feature detector is supposed to be as 
"statistically independent" from the others as possible. 
Such a "factorial code" potentially involves dependen- 
cies of all orders, but most studies have used only the 
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second-order statistics required for "decorrelating" the 
outputs of a set of feature detectors. 

A variety of Hebbian feature-learning algorithms for 
decorrelation have been proposed (Linsker, 1992; Miller, 
1988; Oja, 1989; Sanger, 1989; Frldi~ik, 1990; Atick & 
Redlich, 1993), but in the absence of particular external 
constraints the solutions to the decorrelation problem are 
non-unique (see: Decorrelation and Independence). One 
popular decorrelating solution is Principal Components 
Analysis (PCA) but the principal components of natural 
scenes amount to a global spatial frequency analysis 
(Hancock et al., 1992). Therefore, second-order statistics 
alone do not suffice to predict the formation of localized 
edge detectors. 

Additional constraints are required. Field (1987, 1994) 
has argued for the importance of sparse, or "minimum 
entropy", coding (Barlow, 1994), in which each feature 
detector is activated as rarely as possible. This has led to 
feature-learning algorithms (Intrator, 1992) with a 
"projection pursuit" (Huber, 1985) flavour, the most 
successful of which has been the Olshausen & Field 
(1996) demonstration of the self-organization of local, 
oriented receptive fields using a sparseness criterion. 

Here we present results similar to those of Olshausen 
and Field, using a direct information-theoretic criterion 
which maximizes the joint entropy of a nonlinearly 
transformed output feature vector. We have previously 
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FIGURE 4. The matrix of  144 filters obtained by training on ZCA-whitened natural images. Each filter is a row of  the matrix W. 
The ICA basis functions on ZCA-whitened data are visually the same as the ICA filters. 

The full ICA transform from the raw image was 
calculated as the product of the sphering (ZCA) matrix 
and the learnt matrix: W, = WWz.  The basis function 
matrix, A, was calculated as W~ ~. A PCA matrix, Wp, 
was calculated from equation (7). The original (un- 
sphered) data were then transformed by all three 
decorrelating transforms, and for each the kurtosis of 
each of the 144 filters was calculated, according to the 
formula: 

K i - -  { ( l ' ~ i -  {bti))4) 3 ( 1 9 )  

Then the mean kurtosis for each filter type (ICA, PCA, 
ZCA) was calculated, averaging over all filters and input 
data. This quantity is used to quantify the sparseness of 
the filters, as will be explained in the Discussion. 

RESULTS 

The filters and basis functions resulting from training 
on natural scenes are displayed in Figs 3 and 4. Figure 3 

displays example filters and basis functions of each type. 
The PCA filters, Fig. 3(a), are spatially global and 
ordered in frequency. The ZCA filters and basis functions 
are spatially local and ordered in phase. The ICA filters, 
whether trained on the ZCA-whitened images, Fig. 3(c), 
or the original images, Fig. 3(d), are semi-local filters, 
most with a specific orientation preference. The basis 
functions, Fig. 3(e), calculated from the Fig. 3(d) ICA 
filters, are not local, and look like the edges that might 
occur in image patches of this size. Basis functions in the 
column Fig. 3(d) (as with PCA filters) are the same as the 
corresponding filters, since the matrix W (as with Wp) is 
orthogonal. This is the ICA-matrix for ZCA-whitened 
images. 

In order to show the full variety of ICA filters, Fig. 4 
shows, with lower resolution, all 144 filters in the matrix 
W. The general result is that ICA filters are localized and 
mostly oriented. Unlike the basis functions displayed in 
Olshausen & Field (1996), they do not cover a broad 
range of spatial frequencies. However, the appropriate 
comparison to make is between the ICA basis functions, 
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AV cx (I + V)(I  + guT). (16) 

In terms of an individual feedback weight, vii, this rule 
is: 

~Vij (X ~iJ -~- Vij -{- UJ( ~i + Z Vik~k (17) 

where g0 = 1 when i = j,  0 otherwise. Thus, the feedback 
rule is also non-local, this time involving a backwards 
pass through the (recurrent) weights, of quantities, yk, 
calculated from the nonlinear output vector, y. Such a 
recurrent ICA system has been further developed for 
recovering sources which have been linearly convolved 
with temporal filters by Torkkola (1996) and Lee et  al. 
(1997). 

The non-locality of the algorithm is interesting when 
we come to consider the biological significance of the 
learned filters later in this paper. 
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METHODS 

We took four natural scenes involving trees, leaves and 
so on* and converted them to greyscale byte values 
between 0 and 255. A training set, {x}, was then 
generated of 17 595, 12 × 12 samples from the images. 
The training set was "sphered" by subtracting the mean 
and multiplying by twice the local symmetrical (zero- 
phase) whitening filter of equation (8): 

x +--- 2Wz({X} - (x)) (18) 

This removes both first- and second-order statistics 
from the data, and makes the covariance matrix o f x  equal 
to 4I. This is an appropriately scaled starting point for 
further training since infomax [equation (13)] on raw 
data, with the logistic function, Yi = (1 + e x p ( - u i )  -1,  
produces a u-vector which approximately satisfies 
(uu T) = 4I. Therefore, by prewhitening x in this way, 
we can ensure that the subsequent transformation, 
u = Wx, to be learnt should approximate an orthonormal 
matrix (rotation without scaling), roughly satisfying the 
relation w T w  = I (Karhunen et  al. ,  1996). This W moves 
the solution along the decorrelating manifold from ZCA 
to ICA (see Fig. 2). 

The matrix, W, is then initialized to the identity matrix, 
and trained using the logistic function version of equation 
(13), in which equation (12) evaluates as: yi = 1 - 2yi. 
The training was conducted as follows: 30 sweeps 
through the data were performed, at the end of each of 
which the order of the data vectors was permuted to avoid 
cyclical behaviour in the learning. During each sweep, 
the weights were updated only after every 50 presenta- 
tions in order that the vectorized MATLAB code could be 
more efficient. The learning rate [proportionality constant 
in equation (13)] was set as follows: 21 sweeps at 0.001, 
and three sweeps at each of 0.0005, 0.0002 and 0.0001. 
This process took 2 hours running MATLAB on a Sparc- 
20 machine, though a reasonable result for 12 × 12 filters 
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*The images (gif files) used are available in the Web directory ftp:// 
ftp.cnl.salk.edu/pub/tony/VRimages. 
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FIGURE 3. Selected decorrelating filters and their basis functions 
extracted from the natural scene data. Each type of decorrelating filter 
yielded 144 12 × 12 filters, of  which we only display a subset here. 
Each column contains filters or basis functions of  a particular type, and 
each of  the rows has a number relating to which row of the filter or 
basis function matrix is displayed. (a) PCA (Wp): The first, fifth, 
seventh etc principal components, calculated from equation (7), 
showing increasing spatial frequency. There is no need to show basis 
functions and filters separately here since for PCA, they are the same 
thing. (b) ZCA (Wz): The first six entries in this column show the 1- 
pixel wide centre-surround filter which whitens while preserving the 
phase spectrum. All are identical, but shifted. The lower six entries (37, 
60... 144) show the basis functions instead, which are the columns of  
the inverse of  the Wz matrix. (c) W: the weights learnt by the ICA 
network trained on Wz-whitened data, showing (in descending order) 
the DC filter, localized oriented filters, and localized checkerboard 
filters. (d) W1: The corresponding ICA filters, calculated according to 
Wz = WWz,  looking like whitened versions of the W-filters. (e) A: the 
corresponding basis functions, or columns of  W l  1. These are the 
patterns which optimally stimulate their corresponding ICA filters, 

while not stimulating any other ICA filter, so that WzA = I. 

can be achieved in 30 min. To verify that the result was 
not affected by the starting condition of W = I, the 
training was repeated with several randomly initialized 
weight matrices, and also on data that were not 
prewhitened. The results were qualitatively similar, 
though convergence was much slower. 
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ICA is not a general solution for finding 
independent components of data

Assumptions of the model:

1. linear superposition:  

2. shape of the prior over each of the components:                      

3. factorial prior over the entire set of components: 

p(si) / e�C(si)


