A 'puzzle picture’ Dallenbach (1951)

Vision in jumping spiders

(Bair \& Olshausen, 1991)

One-day old jumping spider (filmed in the Bower lab, Caltech)

Orientation by Jumping Spiders During the Pursuit of Prey
(D.E. Hill, 1979)

(a)

Procedure 1 A

(b)

Procedure 2 A

(c)

Procedure 3 A

Figure 1 a-c.

Head-direction cells in ellipsoid body of Drosophila

 (Seelig \& Jayaraman 2015)

Ellipsoid body activity (calcium imaging

Decoded vs. actual head dir.

How to build a model of world from sensory data?

Bayesian inference

Perception as inference

Area V1

Macaque visual cortex

Lewis \& Van Essen (2000) Visual areas

flattened

Wallisch \& Movshon (2008)

Lateralization of the visual pathways

V1 is highly overcomplete

Barlow (1981)

I mm² of cortex contains 100,000 neurons and

 receives input from $\sim 14 x \mid 4$ 'pixels' in retina

Single-unit electrophysiology

Extracellular microelectrode recordings can be used to measure action potentials

Mapping of simple cell receptive field

VI - topographic representation

Cortical magnification

courtesy of Arash Fazl

Foveal oversampling in LGN and Cortex (Connolly \& Van Essen, 1984)

"...despite the fact that the estimated total number of LGN cells is similar to the total number of retinal ganglion cells, their ratio must vary from many LGN cells per retinal ganglion cell for the fovea to fewer than one LGN cell per retinal ganglion cell in the periphery."

Cortex:LGN cell ratio ranges from I000:I in fovea to 100:I in periphery
 (Connolly \& Van Essen, 1984)

Cortical layers

Primary visual cortex slice (Nissl stain)

Connections of cortical layers in V1

Ocular dominance columns (Horton)

$1 \mathrm{~mm}^{2}$ of cortex analyzes ca. 14×14 array of retinal sample nodes and contains 100,000 neurons

