
Chapter 4

Temporal representation in

spiking neurons

Few neurobiologists will heed any characterization of neural representation if it de-

pends on the assumption that neurons output real-valued firing rates. This is because

it might come as no surprise that real-valued output from neurons can be used to rep-

resent signals changing constantly in real time. But neurons in real nervous systems

traffic in neural spikes. As a result, what we need to know is how these highly discon-

tinuous, nonlinear outputs can be used to successfully represent continuous temporal

signals. In other words, neural spikes are fundamental features of neurobiological sys-

tems that present an unavoidable challenge for understanding neural representation in

its ‘full-fledged’ form; i.e., as the encoding and decoding of time-varying signals in

populations of spiking neurons.

In this chapter, our goal is precisely to understand the representation of time-

varying signals by spiking neurons. In order to reach this goal, we begin by introducing

a spiking version of the leaky integrate-and-fire (LIF) model. We use this model ex-

tensively in our subsequent simulations and thus begin by discussing its strengths and

weaknesses. Eventually, we demonstrate that our framework does not, in any way, de-

pend on this particular neural model. Neverthelesss, it is a useful place to begin our

consideration of temporal encoding in neural systems.

Again, because we are interested in characterizing representation, we are con-

fronted with the challenge of developing a method for decoding the results of this

kind of encoding as well. In many ways, the approach we develop is analogous to that

in the previous chapters; we again rely on the mean square error to find optimal linear

decoders. There are some important differences as well, but the similarities hint at the

fact that the first principle outlined in chapter 1 applies to both population and temporal

coding.
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4.1 The leaky integrate-and-fire (LIF) neuron

4.1.1 Introduction

The properties of the leaky integrate-and-fire (LIF) model neuron have been investi-

gated since 1907, even before much was known about actual spike generation in neural

systems (Arbib 1995; Koch 1999, p. 335). Since that time, the LIF model has become

a standard approximation to the complex behavior exhibited by real, spiking neurons.

It is widely used for a number of reasons. First, it is a very simple model that affords a

good approximation to the behavior of many kinds of real neurons under a wide range

of conditions. Second, it has been shown to be a limiting case of more complex conduc-

tance models such as the well-known Hodgkin-Huxley model (Partridge 1966). Third,

though simple, the LIF neuron is far more realistic than rate neurons because it intro-

duces the most prominent nonlinearity in neural systems—the neural action potential,

or spike.

It is this third reason that is most important for those concerned with understand-

ing neural representation. As we show, being able to understand the neural code as

modeled by the spiking behavior of the LIF neuron goes a long way to understanding

representation in far more detailed neural models (see section 4.5). Thus, we could

have based our discussion of representation on one of the more complex models found

in section 4.5, but, as that section shows, little theoretical insight would be gained. The

LIF neuron, then, is a convenient and fruitful mixture of realism and simplicity (Koch

1999, see especially chp. 14).

In its standard form, the LIF neuron has two behavioral regimes: sub-threshold

and super-threshold. As shown in figure 4.1, the sub-threshold behavior during a con-

stant soma input consists of an ever-slowing approach towards the input voltage. Once

the threshold is reached, super-threshold behavior begins and an infinitely thin and infi-

nitely tall delta-function voltage spike (δ(t−tn)) with unit area (i.e.,
�∞
−∞ δ(t−tn) dt =

1) is produced. The system is then reset to zero for some time period, τ ref , before it is

allowed to again begin its approach to threshold.

There are a number of physiologically motivated features of this model. First,

the spike which is produced is both narrow and stereotypical as is seen in many real

neurons. Of course, representing the spike as a delta function is a mathematical conve-

nience. However, as long as the width of the neural spike in the neuron being modeled

is small compared to the typical interspike interval, using a delta function approxi-

mation is warranted. Typically, neural spikes are about 1–2 ms in width compared to

interspike intervals between 50 and 200 ms (i.e., 50–200 Hz), so the delta-function ap-

proximation is a good one. Second, the absolute refractory period, τ ref , that forces the

LIF model voltage to zero for a short duration after a spike is emitted is an excellent

approximation to a similar phenomena found in real neurons (Koch 1999). Third, the

sub-threshold leaky integration of the model is produced by a simple passive resistance-

capacitance circuit whose elements have physiological correlates. We introduce and

discuss this circuit in more detail in the next section.

As we note in sections 4.1.3 and 4.5, there are a number of shortcomings of the

LIF model as well. But the realism, or lack thereof, of LIF neurons is itself of little

importance to us because we are only interested in the model to the extent that it allows
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Figure 4.1: Leaky integrate-and-fire (LIF) neuron with constant current input. When

the sub-threshold soma voltage reaches the threshold voltage, Vth, the model emits a

delta function spike, δ(t − tn). The model is then reset for a time, τ ref , before again

integrating its input. As discussed in section 4.1.2, the sub-threshold regime is well-

characterized by an RC circuit, parameterized by τ
RC .

us to construct a useful formalism for understanding neural representation. Showing

that the formalism we construct using LIF neurons is generally applicable is the burden

of sections 4.3–4.5.

4.1.2 Characterizing the LIF neuron

The LIF neuron is best understood as a passive RC circuit coupled to an active spike

(i.e., delta function) generator (see figure 4.2). This circuit provides a simple means

of describing the time course of the membrane potential, V . The membrane potential

is the result of the interaction between charges, Q, in the fluids inside and outside the

cell. These charges are separated by the cell membrane, which acts as a dialectric

layer. The capacitor, C, in the LIF circuit accounts for the charge build-up on either

side of the bilipid layer that comprises the membrane. Notably, there is never any

movement of charge across the lipid membrane itself (Jack et al. 1975, p. 13). Rather,

the capacitive current JC results from a change in the amount of charge separated by

the membrane. Given that the voltage across the capacitor is V = Q/C, we can find

JC by differentiating:

JC = C
dV

dt
. (4.1)

In addition to the capacitance of the bilipid layer, the LIF model includes a leak

resistance, R, that models the effects of (some of) the proteins embedded in the lipid

membrane. These particular proteins act as ion channels, allowing sodium, potassium,
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Figure 4.2: An RC circuit that implements the LIF neuron. The standard RC circuit,

describing the sub-threshold behavior of the neuron is that part outside of the dashed

box. It consists of the membrane potential, V , the leak resistance, R, and the capac-

itance due to the bilipid layer, C. The active, super-threshold behavior is described

by the additional components inside the dashed box. When the membrane potential is

equal to the voltage threshold, Vth, at a time, tn, the short-circuit switch is closed, re-

sulting in a ‘spike’, δ(tn). The switch remains closed, resetting the circuit and holding

V = 0, until it is opened after the refractory period, τ ref .

and chloride ions to pass through the otherwise impervious membrane. The concentra-

tion gradients across the neuron membrane of the various ions results in the movement

of ions into and out of the cell. The ionic current, JR, accounts for this passive ‘leak’

of charge across the membrane.1 Ohm’s law tells us that the ionic current is

JR =
V

R
. (4.2)

The final current of importance to the LIF model is the membrane current, JM .

In effect, this current represents the input to the model. It can be thought of as the

1Because we are assuming that the circuit is passive, R is constant and we can assume that linear cable

theory is applicable (see Jack et al. 1975, chapters 8, 9, and 10 for a discussion of nonlinear cable theory

applied to cellular models).
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somatic current resulting from all of the postsynaptic currents (PSCs) generated at

the dendrites. As mentioned previously, we consider this current to be comprised of

two distinct components, the bias or background current, Jbias, and the drive current,

J
d. The bias current is an ever-present, steady state current, whereas the drive current

accounts for the rapid current fluctuations due to dendritic inputs.

Since the flow of charge must be conserved between the inside and outside of the

membrane (i.e., Kirchoff’s law applies), we know that

JM = JC + JR. (4.3)

Substituting equations (4.1) and (4.2) into (4.3) and rearranging gives

JM = C
dV

dt
+

V

R

dV

dt
= − 1

τRC
(V − JMR) , (4.4)

where τ
RC

= RC.

Recall that this ordinary, first-order, partial differential equation only describes the

passive behavior of the LIF model. In figure 4.2, the distinction between the active

and passive components of the circuit is denoted by a dashed box. Once the membrane

potential, V , crosses the LIF neurons threshold, Vth, the components in this box control

the model’s behavior. In particular, the gate denoted by τ
ref closes and a delta function,

δ(tn), spike is generated. By short-circuiting the capacitor and resistor, the gate sets the

potential across the membrane to zero (i.e., the assumed resting potential) since there

is no way for a difference in charge to build up. This gate stays closed for a length of

time, τ ref , equal to the absolute refractory period of the neuron being modeled.

Solving equation (4.4) for V is examined in some detail in appendix B.2. The

result, which can be verified by differentiating, is

V (t) = JMR

�
1− e

−t/τRC
�

. (4.5)

From this equation, we can determine the effects of past input on the model’s behavior.

In effect, we can begin to understand when the model’s ‘memory’ is important, and

when it is not. To do this, let us consider changes to the membrane time constant, τRC

(i.e., changes to either the resistance or capacitance). First, we can see that under a

constant input current, JM , and after a length of time equal to τ
RC , V (t) will be equal

to approximately two-thirds (i.e., 1− e
−1) of the steady state input, JMR. So, a larger

time constant means both that it takes longer to get up to threshold for above-threshold

inputs, and that a slower ‘forgetting’ is occurring when there is no input. Notably, τRC

becomes much less important if the input current is extremely high. In this case, V (t)

becomes nearly linear between the resting voltage and the threshold voltage for most

values of τRC . Given the fact that the circuit is reset after the threshold is passed, high

input current results in very little effect of past states on current behavior. Thus, there

is an interplay between τ
RC and the magnitude of the input current that determines the

relevance of past input to the LIF neuron behavior.

In real neural systems, of course, the input current, JM , is not static, but time

varying. As we discuss in appendix B.2, the model’s behavior under these conditions
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can be understood as a convolution between the input signal and the exponential leak.

Under that characterization, the voltage right now (at t) depends on all past current

input, JM (t), where the input is weighted by a function that exponentially decays as

that input gets further away (in the past) from the present time. In other words, the

present voltage depends most strongly on the most recent inputs, and exponentially

‘forgets’ about past inputs as they get farther away. It is, in fact, this latter description

that most accurately captures the nonlinearity inherent in the LIF model (and which

we use in our simulations). However, equation (4.5) is easier to handle analytically

because JM is assumed to be relatively static.

In particular, we can use (4.5) to derive an expression for the neuron response rate

curve that we used extensively in chapter 2. We know that the steady-state firing rate

of an LIF neuron is inversely proportional to the length of time it takes the RC circuit

to pass Vth. Note that because we are here concerned with steady-state firing (i.e.,

constant input current), this derivation is based on the assumption that the input current

is changing slowly compared to the interspike interval as assumed when finding (4.5).

Under this assumption, the time to threshold is equal to the length of time, tth, it takes

the circuit described by equation (4.5) to pass Vth plus the absolute refractory period,

τ
ref :

a(tth) =
1

tth + τ ref
. (4.6)

From equation (4.5) we can find tth as follows:

Vth = JMR

�
1− e

−tth/τRC
�

tth = −τ
RC

ln

�
1− Vth

JMR

�
. (4.7)

Substituting (4.7) into (4.6), we find that the firing rate as a function of the input current

JM is

a(JM ) =
1

τ ref − τRC ln

�
1− Vth

JM R

� . (4.8)

Note that Vth = JthR, so we can cancel the resistance terms. As well, if we know

what the input current is as a function of some ‘external’ variable, x, we can re-write

equation (4.8) in the form we first encountered it in section 2.1.2, i.e.,

a(x) =
1

τ ref − τRC ln

�
1− Jth

JM (x)

� , (4.9)

where JM (x) = αx + J
bias. Recall from section 2.1.2 that α is both the gain and

a unit conversion factor, and J
bias accounts for the steady background input to the

cell. Figure 4.3 demonstrates the effects of changing various of the parameters in this

equation on the shape of the neuron response function.
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Figure 4.3: The effects of changing various parameters on the LIF response function.

a) Varying τ
RC between 20 and 100 ms. b) Varying J

bias between 0.2 and 1.0 nA. c)

Varying τ
ref between 1 and 5 ms. d) Varying Jth between 0.1 and 0.9 nA. Note that

α = 17, and unless explicitly changed, Jbias
= 10, Jth = 1, τRC

= 20, τ ref
= 1.

Changing these parameters is partially redundant as demonstrated by comparing a), b),

and d). Specifically, varying Jth is like varying both τ
ref and J

bias, thus in subsequent

models we do not vary Jth.

4.1.3 Strengths and weaknesses of the LIF neuron model

We have now progressed from basic considerations of neuron physiology and simple

circuits through a derivation of the spiking LIF model to arrive at a derivation of a rate

LIF model. In order to motivate our focus on the LIF model, we have already discussed

many of its strengths. To summarize, the LIF neuron model:

1. naturally incorporates a number of physiological parameters, including mem-

brane capacitance, membrane (passive leak) resistance, and absolute refractory

period;

2. is a good approximation over the normal operating range (i.e., low firing rates)

of most neurons; and
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3. introduces the ‘important’ nonlinearity of real neurons, i.e., the neural spike.

Essentially, we agree with Koch (1999) that “such single cell models represent the most

reasonable trade off between simplicity and faithfulness to key neuronal attributes” (p.

335). In addition, it is important for the characterizations of representation we have

introduced previously that there is an analytic expression for the rate curve of such a

neuron. As can be seen from section 2.1.2, this approach depends on our being able to

define ai(x) in order to minimize the error expressed by equation (2.4). Being able to

write ai(x) explicitly as in equation (4.9) makes it easier to solve this error for large

populations of neurons. In particular, it makes it possible to generate large populations

of model neurons whose tuning curves can be easily manipulated.2

The weaknesses of the LIF model have been extensively discussed in the neuro-

scientific literature (Koch 1999; Softky and Koch 1995; Jack et al. 1975; Shamma

1989). Many of the concerns regarding the use of LIF neurons can be summarized by

noting that LIF neurons are physiologically unrealistic to some degree. For example,

LIF neurons have no spatial extent; i.e., they are ‘point’ neurons. A real neuron is ex-

tended in space, so the membrane potential at one location may be very different from

the potential at another location. Furthermore, being a point neuron means that the

electrochemical properties of the dendrites are completely neglected in the LIF neuron.

And, as a final example, the complex time courses of membrane ion conductances are

not accounted for. Contrary to what is assumed by equation (4.2), the membrane ionic

currents tend to be nonlinear functions of both the membrane potential and time (Jack

et al. 1975). All of these sorts of physiological facts are simply ignored by the LIF

model.

Why do we think ignoring all of these important details will not hamper our at-

tempts at understanding neural coding? The answer is simple: our approach does not

depend on how spikes are generated. It only depends on the statistics of spike gener-

ation. Of course, including more physiological detail will make our model statistics

more closely match the actual statistics of spike generation. For this reason, detailed

models are eventually important (see Deco and Schurmann 1998); we discuss a num-

ber of them in section 4.5). However, our method for analyzing some statistics or other

remains the same.3

It has been suggested by Softky and Koch (1993) that the problems with models

like the LIF go much deeper. They claim that such models do not even have the right

kinds of statistics. In particular, they show (using LIF neurons as an example) that mod-

els which assume linear summation of dendritic inputs are inconsistent with the highly

irregular firing statistics found in most cortical neurons. Given the standardly assumed

(i.e., Poisson) statistics of spikes impinging on a LIF neuron with linear dendrites, the

output of that neuron will be less variable than its input. This is simply a consequence

of the ‘law of large numbers’ (or ‘Bernoulli’s theorem’) familiar to probability theo-

rists. This law states that the variance of a random variable linearly comprised of other

2It is also possible to generalize the approach we take to neurons that have dynamic tuning curves (e.g.,

adapting neurons). We do not discuss this generalization in any detail, although see section 4.5 for an

approach to understanding such neurons that does not depend on this generalization.
3Our approach is certainly not unique and the independence of this kind of approach from particular

models has been noted before (de ruyter van Steveninck and Bialek 1988).
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random variables, each with a variance σ
2, is equal to σ2

n , where n is the number of

random variables. Clearly, as n becomes large the variance of the resulting variable

becomes small. This means that standard LIF models that sum dendritic PSCs will

have a lower variability in their firing rate than their randomly firing input neurons.

However, this is not a problem with the LIF neuron itself, but a problem with how the

input current, JM , is determined. Suffice it to say that there are a number of ways that

JM can be determined such that the output from a LIF neuron is sufficiently variable.

So, there are ways to make LIF neurons have the relevant statistics, which means that

the statistical analyses we perform can generalize properly.

4.2 Temporal codes in neurons

When discussing temporal representation (a.k.a. temporal coding) in neurons, it is

difficult to avoid the vigorous debate between those who take the code to be a rate code

(Shadlen and Newsome 1994; Shadlen and Newsome 1995; Buracas et al. 1998), and

those who take it to be a timing code (de ruyter van Steveninck et al. 1997; Softky 1995;

Rieke et al. 1997). In this section we show why this debate is, from our perspective,

irrelevant to a good understanding of temporal representation in neurons.

Both rate codes and timing codes are clearly time dependent codes. A rate code,

as proposed by Adrian (1928) is one that takes the information about a stimulus to re-

side in the mean firing rate of a spike train over a relatively long time window (about

100 ms). From this perspective, which still finds favor with some neuroscientists, the

observed variability about this mean firing rate is considered to be noise (see, e.g.,

Shadlen and Newsome 1994; Shadlen and Newsome 1995). So defined, there are a

wide variety of problems with adopting such a rate code as being a general feature of

neural systems. First, most animals are embedded in highly dynamic environments

and encounter signals that change very rapidly. If these animals needed to integrate

information over an extended period (of even 100 ms), they would have little chance

of survival. Indeed, there is plenty of evidence that many behavioral decisions are

made on the basis of one or two neural spikes, which can arrive only a few millisec-

onds apart (see Rieke et al. 1997, pp. 55–63 for a good review). Second, there are

limitations of rate coding that clearly do not affect some neural systems. For exam-

ple, the frequency/amplitude ambiguity4 can be resolved by a timing code, but not by

a rate code (Bialek and Rieke 1992). Real neural systems seem to have no problem

with this ambiguity. Third, there is experimental evidence that different input spike

trains with the same mean rate, but different temporal structure produce significantly

different output from the same cell (Segundo et al. 1963). Fourth, Zador (1998) has

shown that the existence of a mean rate code contradicts the observed redundancy of

synaptic connections. In particular, he has shown that the information transmission of

such a code falls with redundant synaptic connections. However, such connections are

common in neural systems. Fifth, and lastly, rate codes cannot support the information

transmission rates observed in real neurons (Rieke et al. 1997), although it has long

4This ambiguity arises in auditory neurons because sounds with high amplitude that are not at the pre-

ferred frequency of a neuron can result in the same spike rate as sounds with low amplitude at the neuron’s

preferred frequency.
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been known that a timing code can (MacKay and McCulloch 1952). In conclusion,

there are many reasons to think that the neural code is not a mean rate code.

So, is the neural code obviously a timing code? Unfortunately not. For instance,

there is evidence that the precise timing of spikes is not mandatory for the successful

transmission of neural signals (Bialek et al. 1991).5 More generally, whether or not

the neural code is a timing code depends on what we mean by ‘timing code’. The

standard timing code is one that takes spike train variability to encode the stimulus sig-

nal (MacKay and McCulloch 1952; de ruyter van Steveninck and Bialek 1988; Softky

1995; Rieke et al. 1997). One way of expressing this kind of code is to take the inverse

of the interspike intervals (i.e., 1/ISI) as a measure of the variations in a single trial. Be-

cause the same stimulus commonly elicits different spike trains, this kind of measure

is often averaged over a number of trials. The averaged measure is sometimes called

the ‘instantaneous’ rate code for the neuron (Buracas et al. 1998; Rieke et al. 1997).

The term ‘rate code’ should not be too surprising here, as the measure is equivalent to

a rate code where the window size approaches a limit of zero. However, the fact that

the window size is so small has prompted many to consider this code a timing code.

There are other timing codes, as well. For example, Optican and Richmond (1987)

suggest that information about spatial patterns can be found in an ‘onset’ timing code

(see also Richmond and Optican 1990). They argue that the placement of spikes rela-

tive to stimulus onset carries information about the stimulus, and that this information

can be about non-temporal features, such as shape (Optican and Richmond 1987). Al-

though more recent results have contradicted this interpretation (Tovee et al. 1993),

the ubiquity of adaptation in excitatory cortical neurons (i.e., the slowing of firing rates

given sustained, super-threshold input) suggests that it may be the case that spike times

relative to stimulus onset are important. The main difference between this kind of code

and the instantaneous rate code is that non-temporal features are thought to be multi-

plexed into the time course of the neurons. So, traditional rate codes suffer a number

of limitations, instantaneous rate codes do not seem to be rate codes, and onset timing

codes are not empirically well supported.

This brief review gives some sense of the kinds of approaches to neural coding

available, and why they are at odds. But, why did we say that choosing amongst these

different codes is irrelevant? There are three reasons. The first is semantic. That is,

there is little agreement as to whether instantaneous rate codes are rate codes (Buracas

et al. 1998; Stevens and Zador 1995) or timing codes (Rieke et al. 1997; de ruyter van

Steveninck and Bialek 1988). So, it would be unclear what we meant if we simply

claimed that we were exploring a rate code or a timing code. The second reason is that

it seems likely that the brain uses different codes for different problems (Zador 1998;

Rieke et al. 1997); perhaps rapid sensory processing is more likely to use a timing code

and static sensory processing is more likely to use a rate code (Buracas et al. 1998).

This leads us to our third, and far more important reason for not ‘choosing’ a code:

we simply don’t have to. Given the statistical methodology that we adopt (section

4.3), the ‘appropriate’ code is determined by the signals that are represented and the

properties of the neurons which represent those signals. In cases where the signals

are rapidly varying relative to the interspike interval, something more like a timing

5Actually, for those who like timing codes, this is evidence of the ‘robustness’ of a timing code. For those

who like rate codes, this is evidence of the lack of importance of precise timing.
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code is appropriate. In cases where the dynamic range of the signals is large, but the

correlation time is fairly long relative to the interspike interval, something more like a

rate code is appropriate (see section 4.4). The method we discuss is effective for both

of these cases. As well, in cases where the neurons adapt, thus changing the placement

of spikes relative to stimulus onset, an appropriate code can be found again using the

same method (see sections 4.5.1 and 4.5.3). In other words, we do not need to commit

ourselves to one particular kind of coding as being central to neural representation. The

approach we use here is general enough to characterize the kind of coding appropriate

to the problem at hand. This understanding of neural coding thus transcends concerns

about whether neurobiological systems use rate or timing codes.

4.3 Decoding neural spikes

4.3.1 Introduction

Recently, there has been a large amount of attention given to the information theo-

retic properties of neural spike trains (Bialek et al. 1991; Miller et al. 1991; Koch

1999; Stevens and Zador 1996; Richmond and Optican 1990; Roddey and Jacobs 1996;

Bialek and Rieke 1992). The resulting attempts to decode neural spike trains have been

largely successful, and provided many insights into neural coding. Given this success,

there is no need to develop a completely new means of understanding neural repre-

sentation. As a result, the methods we discuss in this section are a variation on past

themes, to which we introduce only modest improvements. Thus, the importance of

this section largely lies not in its novelty, but in the fact that it is an integrated part of a

general, unified framework for modeling large-scale neural systems.

To begin, then, recall that a LIF neuron provides a good characterization of the

temporal encoding process that is found in nervous systems (see figure 4.4). That is,

a LIF neuron produces a series of stereotypical output spikes, δ(t − tn), given some

real-valued input signal, x(t). To put this more precisely, and in the same form as

encountered in chapter 2, we write

a(x(t)) = G[J(x(t))] (4.10)

=

�

n

δ(t− tn), (4.11)

where

J(x(t)) = αφ̃x(t) + J
bias

.

Here, the encoding function G [·] is defined by the parameters of the LIF neuron. As a
result of these parameters, the model produces spikes (i.e., δ(t − tn)) at times tn. In

order to understand this output as a representation, we must find the relevant decoder.

In real nervous systems, it makes the most sense to think of peripheral neurons (e.g.,

retinal ganglion cells) as encoding some external, time-varying signal. This is because

the encoded signals are relatively easy to pick out: they can be light intensities, veloc-

ities, pressure changes, or any other time-dependent physical magnitude. Such signals
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Figure 4.4: The temporal encoding and decoding process. Some physical signal, x(t),

such as light intensity is encoded by peripheral neurons into a series of spikes, δ(t −
tn). These can be passed to a (non-neural) decoder to give an estimate, x̂(t), of the

original signal and thus help quantify the signal processing characteristics of the neural

system. In more central neurons, the characterization is the same, but the signal being

estimated, y(t), will be some complex function of the input, i.e., y(t) = f(x(t)). Thus

the decoder is a means of characterizing all of the encoding steps that precede that

decoding. A long-standing problem in computational neuroscience is determining the

relevant decoder (FitzHugh 1961).

are fairly directly encoded into a series of neural spikes, δ(t− tn), in nervous systems.

As neurons become farther removed from the periphery, it is often less clear what the

signal is that is being encoded. Nevertheless, a ‘central’ neuron is clearly part of some

encoding process. The fact that the neuron is only one of many elements that give rise

to the encoding process simply means that when we attempt to decode that neuron’s

spike train, we should not associate the decoder with that particular neuron regardless

of its relations to other neurons. Rather, such decoders must be associated with the

entire encoding process that they complement (see figure 4.4). But, importantly, the

problem of characterizing neural representation remains the same.

Despite the fact that a central neuron is only one part of some highly complex en-

coding process, we can still uniquely identify each neuron with one encoding process.

As a result, we can assume that the decoder associated with a neuron is the decoder for

the encoding process for which that neuron is the terminus. With this in mind, we will

not be lead too far astray if we think of decoders as being associated with a particular

neuron. However, we must remember that neurons do what they do (i.e., encode what

they encode) because of their relations to other neurons, and not solely in virtue of their

intrinsic properties.
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Figure 4.5: A push-pull amplifier. The input signal has nonlinear distortions introduced

by each of the elements, but when the responses of the elements are summed those

distortions cancel. The result is a highly linear reproduction of the original input signal

over a wide range, despite nonlinear elements.

4.3.2 Neuron pairs

In order to successfully find the decoders in this picture of neural representation, it

helps to make things a bit more complicated. That is, it helps to consider two neurons

at a time instead of just one. This may seem strange, as the fundamental unit of signal

processing in the nervous system is often thought to be the single neuron. However,

given the considerations of the previous chapters, it is clear that we must understand

representation in populations of neurons in order to understand the behavior of neural

systems. The simplest possible population is a pair of neurons. So, while being simple,

understanding temporal representation in pairs of neurons constitutes a significant first

step towards understanding temporal representation in populations. And, importantly,

some of the more troublesome properties of single neurons (e.g., their highly nonlinear

responses) become far less troublesome when we consider neuron pairs.

This might come as no surprise to communications engineers. It has been known

since the 1920s that superior amplifiers can be built by using complementary pairs of

tubes or transistors. This kind of amplifier is commonly known as a push-pull amplifier

(see figure 4.5). These amplifiers are significantly more efficient than single element

amplifiers that achieve the same linearity (Sawdai and Pavlidis 1999). In general, the

push-pull topology provides higher efficiency, higher power output, greater symmetry

in the output signal, and a wider range of linear responses compared to a single element

circuit.

For our purposes, the increase in linearity is of the most interest. The reason that

the push-pull arrangement provides this benefit is that the nonlinearities in the elements
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are used to offset one another near the midpoint of the range of operation (usually

0). In effect, each element is used to code half of the input signal. However, the

halves overlap such that their sum in the overlapping region serves to linearize the total

response, despite each element having significant nonlinearities in the same region (see

figure 4.5). Thus, the total range over which the response of the system is reasonably

linear is greater than could be achieved with two independent (i.e., averaged) elements.

So what does this have to do with neural coding? There is evidence that nervous

systems often use a similar strategy. It is not unusual to find ‘on’ and ‘off’ cells in a

population that codes a single physical quantity. Most obviously, ‘on’ and ‘off’ retinal

ganglion and lateral geniculate nucleus cells are used to code light intensities (Hubel

and Wiesel 1962). In the neural integrator circuit, the neurons can be divided into two

groups; those whose response increases during leftward movements and those whose

response increases during rightward movements (Fukushima et al. 1992). The same

is true of velocity sensitive neurons in the head-direction system of mammals (Redish

1999) and angular acceleration sensitive cells in the vestibular system (Wilson and

Jones 1979). In motor cortex, cells are broadly tuned and have a wide range of pre-

ferred directions (Georgopoulos et al. 1993). This is simply a generalization to higher

dimensions of the same kind of strategy. That is, for most one-dimensional slices that

go through zero in this two-dimensional space, we observe the same kinds of oppo-

nency cells we see in these other systems; that is, some increase firing for movement

in one direction and some increase firing for movement in the opposite direction.6 In

many cases, then, cells have an opponency relation analogous to that of push-pull am-

plifiers. And we think the reason might be generally the same—this is a more effective

means of constructing a system with a broader range of linear responses.7 In appendix

B.1 we explain why opponency provides more linear responses.

There is another reason that opponency is important. This second reason is unique

to neurons. It is crucial for neurons to have this kind of arrangement because they do

not encode their input with a continuous output signal. Amplifiers have continuous

output. Neurons, in contrast, have an ‘all-or-none’ output in the form of a voltage

spike. In order to understand the consequences of this difference, consider a simple

code in a perfectly linear neuron: the more intense the stimulus, the higher the firing

frequency, with zero intensity equal to zero firing frequency. Significant problems arise

with this kind of code for low stimulus intensities. At low intensities, the neuron fires

at low frequencies so it will take a very long time to determine what the frequency is.

A mechanism decoding the output would have to wait until it sees enough spikes to

guess what the firing frequency is. In other words, the lower the stimulus intensity, the

longer it takes for the neuron to transmit information about stimulus intensity. This is

not acceptable for a system attempting to operate in a rapidly changing environment.

However, this problem is solved with an opponency arrangement. By adding a sec-

ond neuron that increases firing with decreasing stimulus intensity, we have guaranteed

6This is the result of the large number of neurons randomly distributed over the hypersphere in the relevant

space. We do not mean to insinuate that neurons are actually paired (i.e., for each neuron there will always

be a neuron tuned to the opposite direction).
7Neural systems are often quite linear over a broad range. For instance, in some vestibular systems there

is only a 10% deviation from linearity over a 16 fold change in stimulus intensity (Wilson and Jones 1979,

p. 99).
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that the average firing rate (so the average time to transmit information about stimulus

intensity) is constant. If we are not too concerned about having a constant average fir-

ing rate, so long as it is above a certain value, we can increase the slope of our encoding

neurons. This gives us a better signal-to-noise ratio over the same range since a smaller

change in stimulus intensity leads to a large change in the output firing rate. A similar

argument holds in the case of nonlinear neurons like the LIF neuron.

In sum, this on-off opponency arrangement provides a temporally efficient and

more linear encoding than is evident from examining single neurons. Since we are in-

terested in constructing linear decoders for neural encodings, it is likely that the more

linear response from a pair of neurons will serve our purposes better.8 As well, since

we are ultimately interested in understanding temporal codes in neural populations, it

makes sense to start with one of the simplest populations—just two neurons. Given

these considerations, we take it that neuron pairs are at least as fundamental for under-

standing the properties of neural representation as individual neurons.

4.3.3 Representing time dependent signals with spikes

Taking opponent neurons as the fundamental unit of signal processing in neural sys-

tems, figure 4.6 shows what we take to be the basic encoding and decoding steps that

are needed to characterize neural representation. As mentioned earlier, the encoding

process is determined by the neural model we have chosen (LIF in our case) and so

we are largely concerned with the task of determining the appropriate decoder. This is

much like the problem we originally faced in chapter 2, except that we are interested

in understanding the representation of a continuously changing function of time, rather

than a static scalar or vector.

As a result, we begin by making the same well-supported assumption about the

linearity of the decoding as we did for the population code (see Rieke et al. 1997 for

an excellent review, especially pp. 76–98 and 168–172; see also Bialek et al. 1991;

Bialek and Zee 1990). In particular, we presume that we can decode the neural spike

train by taking a (continuous, time-shifted) sum of some decoding function, h(t −
t
�
), weighted by the encoded signal (see figure 4.7 for an intuitive picture of linear

decoding). We know, given the LIF model, that the signal, x(t), is encoded as a series

of delta functions, which we can write as
�

n δ(t − tn). Thus, our decoding of the

encoded function, x(t), can be expressed as

x̂(t) =

� T

0
h(t− t

�
)

�

n

δ(t
� − tn)dt

�
. (4.12)

This kind of expression is known as a convolution integral. This equation says that our

best guess as to what x(t) is, can be found by adding up the occurrences of a time-

shifted decoding function (analogous to the decoding weights, φi, in the population

code). Another way of describing this decoding process is to say that we are assuming

that there is some linear system that can decode the spike train, δ(t− tn), and success-

8Notably, Rieke et al. (1997) also find optimal decoders by examining two neurons, although they do not

make much of the point.
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Figure 4.6: Encoding and decoding with an on-off neuron pair. Just like the push-pull

amplifier, each neuron encodes part of the signal, and their decoded sum provides a

good representation of the whole signal.

fully reconstruct the original input signal that was presented to the neuron. Our job,

then, is to find this linear system.

Because a linear system can be completely characterized by its impulse response,

h(t), finding the linear system is the same as finding, h(t). In particular, the output

from any linear system, y(t), can be written as a convolution integral of the input, f(t),

and the system’s impulse response, h(t):

y(t) =

�
h(t− t

�
)f(t

�
)dt

�
.

This is clearly analogous to equation (4.12) above. So what we mean when we say

that we assume a linear decoding, is that we can find an impulse response, h(t), that

reconstructs the original signal. Because the function f(t) in equation (4.12) is a series

of delta functions, we can simplify the integral by evaluating it analytically to give

x̂(t) =

�

n

h(t− tn). (4.13)

Note that calling h(t) a linear decoder (or linear filter) does not mean that we assume

that we can find h(t) by a linear analysis of the neuron’s response. In fact, we have

shown explicitly elsewhere that a linear analysis will not allow us to find this decoding

filter (Anderson et al. 2000). In some ways, this should not be surprising given how

nonlinear neurons really are.

Now that we have a characterization of the general nature of temporal representa-

tion, we need to consider if there are any special properties of the signals themselves.

This is because any constraints on what is actually represented by nervous systems
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can help us find the relevant decoders. To this end, it is important to emphasize that

we do not want a linear decoder that will decode one particular signal. Rather, we

want a linear decoder that is useful for decoding all signals of interest; i.e., we want to

find a linear decoder that is good for an ensemble of signals, just as we earlier wanted

decoders for an ensemble of functions. There is good evidence that real neurons are

optimized for passing information about particular ensembles—namely, natural sig-

nals (de ruyter van Steveninck et al. 1997). It would be very surprising if biological

relevance had not played a role in constraining the representational characteristics of

neural systems, so this is just what we might expect.9

One general property of naturally occurring signals that we assume is that they are

not unique in time. This property variously goes by the name of ‘stationarity’, ‘er-

godicity’, or ‘time independence’. By definition, if a signal (or process or system) is

stationary, then the statistics of any sample of the signal does not depend on the tem-

poral placement of that sample. So, for example, signals consisting of natural images

are stationary because they have the same kinds of statistics now as they did yester-

day, and as they will tomorrow. In general, sensory signals do not have clearly defined

beginnings and endings, so they can be usefully treated as stationary.

Being able to ascribe the property of stationarity to natural signals is important

because it allows us to define the relevant ensembles of signals using statistically in-

dependent coefficients. In particular, we can write the ensemble that we take to be

represented as a Fourier series:10

x(t;A) =

(N−1)/2�

n=−(N−1)/2

A(ωn)e
iωnt

, (4.14)

where A is the vector of frequency amplitudes and ωn is n∆ω where ∆ω is the fre-

quency step size. The series of frequency components, ωn, consists of N complex

frequency components where A(ωn) = A
∗
(−ωn), and N is odd. It is important to

note that we always assume a finiteN . The reason we do this is because we are always

interested in characterizing systems that operate in the real world, under tight imple-

mentational constraints. Under such conditions, there will always be some finite time,

T , that is the maximum length of a signal in our ensemble. Given the duality between

the length of time of a signal and its resolvability in the frequency domain, we know

that ∆ω = 2π/T . This guarantees that we can faithfully represent our signal with a

finite number of frequency components.

As before, choosing a particular set of amplitude coefficients (i.e., a specific A
vector) picks out one signal in this ensemble (see section 3.2). So, in order to properly

define an ensemble of signals, we must specify what values the vector A can assume.

Again, we can do this by specifying the probability distribution of A. Assuming that
each component of A is an independent Gaussian random variable whose variance is

given by the power spectrum P(ωn), we can write a Gaussian distribution11

9This makes it rather unfortunate that many experiments in neurophysiology use very unnatural signals

(e.g., step functions) to characterize neuron responses. Using signals drawn from a more natural ensem-

ble often shows the neurons to be more adept at passing signals that was previously thought (Mainen and

Sejnowksi 1995).
10This is equivalent to our definition in equation (3.3), but is in a more convenient form for the subsequent

analysis.
11Notably, the experiments that we later compare our results to draw signals from signal ensembles with

the same structure (Bialek et al. 1991).
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ρ(A(ωn)) =
1�

2πP(ωn)
e
−A(ωn)2/2P(ωn)

. (4.15)

Given stationarity, we know that these distributions define the distribution of all of the

amplitudes,A, namely,

ρ(A) =

(N−1)/2�

n=0

ρ(A(ωn)), (4.16)

and A(ωn) = A
∗
(−ωn).

Now that we have a means of describing the relevant signal ensembles, we can

return to the problem of finding an optimal linear filter. Recall that we are interested

in analyzing pairs of neurons, and take the system of interest to be comprised of two

complimentary neurons, whose response profiles mirror one another (see figure 4.6).

Appropriately extending equation (4.11), we can write the encoding of the pair of

neurons of some signal (picked out byA) intoM spikes as

R(t;A) =

Mon�

k

δ(t− t
+
k (A))−

Moff�

l

δ(t− t
−
l (A))

=

2�

i=1

M�

k=1

φiδ(t− tik(A)),

where φi = 1 for the ‘on’ spikes and−1 for the ‘off’ spikes as before. We use R(t;A)

to indicate the response of the pair of neurons; that is, all of the spikes produced by

both neurons given the input (this is not the same as the estimate of the signal in (4.13)).

In order to find the optimal linear filter for decoding this signal, we want to minimize

the mean square error, as we did in (2.4):

E =

�
[x(t;A)− h(t) ∗R(t;A)]

2
�

t,A
(4.17)

=

�

x(t;A)−
�

i,k

h(t− tik(A))




2�

t,A

,

where ∗ indicates convolution. Rather than attempting to minimize this error in the
time domain, we can use the Fourier transform to express the error in the frequency

domain. This has the immediate advantage of turning the convolution in (4.17) into a

multiplication. As a result, we can write the error for each frequency channel as (see

appendix B.3)

E(ωn) =

�
1

2π
|A(ωn)− h(ωn)R(ωn;A)|2

�

A

. (4.18)
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Unfortunately, this is a very high-dimensional integral. Specifically, it will have

as many dimensions as there are frequency components needed to define the ensemble

of signals. It is very difficult to directly evaluate this kind of integral, so instead we

perform a Monte Carlo estimate of its solution. In other words, we generate a large

number of actual signals, x(t;Aα
) (where α indexes a particular set of values for our

amplitudes,A), find the spike train responses from the pair of neurons, R(t;Aα
), and

then determine the linear filter, h(t), that minimizes the average error between the

linear estimate of the signal and the original signal (see appendix B.3 for details).

This analysis, though more intuitive in the time domain, is more efficient in the

frequency domain. This is because the number of degrees of freedom (i.e., the number

of free parameters used to estimate our linear filter) is much smaller in the frequency

domain, even though the results are equivalent. To see why this is the case, consider

the following example of finding the optimal filter for the retinal ganglion parvo cells.

The peak frequency response of these cells is at about 30 Hz (Van Essen and Anderson

1995). Assuming that the membrane leakage time constant is approximately 20 ms

(and thus that effects of inputs about 100 ms in the past can be ignored (i.e., 5τRC )),

we can determine the number of frequency components needed to characterize the

filter. As mentioned earlier,

∆ω =
2π

T

=
2π

100ms

= 10 Hz.

So the number of components needed is

N =
30

10
= 3.

Each of these components is complex, so the problem of describing the linear filter

h(ω) has approximately 6 degrees of freedom. In contrast, if we were to try and es-

timate the filter in the time domain, where sample times necessary for good approxi-

mations are on the order of .1 ms or less, we would have approximately 1000 points

in h(t) to estimate (i.e., almost three orders of magnitude more degrees of freedom).

Of course we could put various constraints on how these parameters were estimated in

order to reduce the complexity of the problem. However, in the frequency domain, we

have a built-in, unbiased means of reasonably limiting the number of parameters that

need to be estimated to find the linear filter.

Theoretically speaking, in order to estimate this filter, we need only run many short

trials (of size T = 5τrc or so). However, large numbers of short trials is expensive

both experimentally and numerically, and startup transients are likely to influence the

results of such experiments. So, as also done by Rieke et al. (1997), we have devel-

oped a means of ‘windowing’ signals of several seconds so as to analyze these longer

experiments as if they were many shorter experiments. As discussed in more detail

in appendix B.3, there are several advantages to our method over existing ones. Most

importantly, our windowing method makes more efficient use of the data from short
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trials, decreasing the likelihood of error from transients. This has important practical

consequences since many experimental preparations cannot be maintained for the long

run times needed to employ previous methods.12

As shown in appendix B.3, minimizing the windowed version of (4.18) gives

h(ωn) =
�A(ωn)R

∗
(ωn;A)�A�

|R(ωn;A)|2
�

A

, (4.19)

where the convolution with the window is included in the averaging, �·�A, to emphasize
that this is a means of approximating the average over the stochastic variables,A. From
the numerator of (4.19) we can see that the filter will have a low amplitude if there is not

much correlated power between the input amplitudes and the spike train amplitudes.

The denominator tells us that this is also true if the average power of the spike trains

is large at a particular frequency. This can occur if the neurons have a high mean

background firing rate that generates power that is uncorrelated with the input signal.

Those familiar with past analyses of this kind may be wary of certain limitations

of this kind of filter. In particular, Rieke et al. (1997) note that linear filtering is far

more likely to work if the correlation time of the signals being encoded are signifi-

cantly shorter than the mean interspike interval (ISI) (p. 86). This is because having a

short correlation time relative to mean ISI ensures that individual spikes are providing

independent information about the signal. If this was not the case, then there may be

significant interactions between neighboring spikes, i.e., both spikes may be providing

information about the same parts of the signal. However, there is nothing in the preced-

ing analysis that makes assumptions about the relation between the mean ISI and the

correlation time of the input signal. So, it is merely a possibility that linear decoding

will not work in the case where correlation times are long compared to mean ISI. In

fact, as we show in section 4.4.1, linear decoding performs very well even for long

correlation times.

Fortunately, we are now in a position to quantify precisely what it means for our

decoder to work well. To determine how accurately our optimal linear filtering ap-

proximates the original signal, we can substitute (4.19) back into (4.18) to obtain the

residual error, Er:

Er(ωn) =

�
|A(ωn)|2

�

A
−

|�A(ωn)R
∗
(ωn;A)�A|2�

|R(ωn;A)|2
�

A

.

This error will only be zero when there are no interharmonic distortions that generate

spurious power at frequency ωn. Nonlinear processes, even those as simple as the LIF

neuron, generally do suffer from these kinds of distortions (Anderson et al. 2000).

The residual error is a good measure of how well our linear decoding works, and is

analogous to what we called ‘static error’ in chapter 2.

We have now shown how to define the representation of time dependent signals in

12The method used by (Rieke et al. 1997) was employed in the context of experimental run times as long

as 2 days.
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pairs of spiking neurons. Specifically, we have defined the encoding

R(t;A) =

M�

i,k

φiδ(t− tik(A)), (4.20)

and decoding

x̂(t) = h(t) ∗R(t;A), (4.21)

where

h(ωn) =
�A(ωn)R

∗
(ωn;A)�A�

|R(ωn;A)|2
�

A

. (4.22)

4.3.4 Discussion

Now that we know how to find the optimal temporal filter, and have a means of deter-

mining how good it is, let us consider the linear decoder, h(t), in more detail. As just

noted, our estimate of the signal that is encoded by the neurons into the spike train is

given by (4.21). Substituting (4.20) into (4.21), and recalling the result in (4.13), we

can write

x̂(t) =

M�

i,k

φiδ(t− tik) ∗ h(t) (4.23)

=

M�

i,k

φih(t− tik). (4.24)

In essence, this equation says that our estimate is found by putting a waveform in the

shape of the linear filter at each spike time and summing the results (see figure 4.7).

This estimate is closely related to the population estimates we used in the previous

chapters. In particular, we could re-write (4.24) as

x̂(t;A) =

M�

i

ai(x(t;A))φi(t), (4.25)

where M is the number of time-steps we have divided the signal into, the ai are 1, 0,

or -1, depending whether or not a neuron emitted a spike, and the φi(t) are all time-

shifted versions of h(t) (i.e., h(t − ti)). This notation is unusual because the neuron

activity in the population code is mapped onto activity (the presence of a spike) at

some time ti, so, as in the case of the population code, for each ‘active element’ we

need one decoder. This results in a large number, M , of temporal decoders, all of

which are essentially the same. While awkward, this notation shows exactly how the

temporal decoders and the population decoders perform the same function—both serve

to translate an activity back into the original domain that was encoded (i.e., either x for

the population code or x(t) for the temporal code). As an aside, it is interesting to note

that most of the coefficients, ai, in (4.25) will be zero for any particular signal. In this

sense, the representation is a ‘sparse’ representation. It makes sense that the neural
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Figure 4.7: An example of linear filtering. The input signal, x(t), is fed into the somas

of a pair of on-off neurons which encode the signal into ‘on’ and ‘off’ spikes. To get

an estimate, x̂(t), of that signal, we can linearly filter those spike trains by effectively

placing the filter at the time of occurrence of each spike and summing the result. When

the on and off neurons are symmetrical, their respective filters will be ‘mirror images’,

as shown in the figure.

code is sparse, as this results in more efficient coding (Olshausen 2000) and a better

use of available energy (Baddeley 1996).

Because x(t) is a function, its representation is much like the representation of x(ν)

that we discussed in section 3.2. Looking again at equation (3.6) we see that it is indeed

very similar to (4.25). However, there is also an important difference between popula-

tion and temporal encoding that becomes evident from this comparison. Namely, there

is no temporal encoding function in the sense of φ̃i(ν). This is because the temporal

encoding is defined completely by the intrinsic properties of the neuron, which are cap-

tured by Gi [·]. This difference means that it is much more difficult to derive the same
kinds of analytical results for understanding temporal coding as we do for population

coding (see section 7.3).

Nevertheless, it proves to be useful that both temporal and population codes in

neurons can be characterized using linear coding, since it allows us to unify these two

kinds of coding (as we discuss in section 5.1). Before doing so, however, let us consider

a number of examples of how to use this characterization of temporal coding to measure

the efficiency of information transmission in neural models. We begin with the simple

LIF neuron and progress to more complex models. Perhaps the most important lesson

to be learned from these examples is that the basic LIF model has just about the same

information transmission characteristics as its more complex counterparts. And, both

kinds of models perform comparably to real neurons.
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4.4 Information transmission in LIF neurons

While we now have a method for characterizing temporal representation, there are

two related issues that we have so far ignored or only partially addressed. First, we

suggested that this analysis applied to spike trains with both short and long-correlation

times, unifying rate and timing codes—we must show that this is the case. And second,

we did not discuss how these optimal decoders (or ‘filters’) relate to their biophysical

counterparts, the postsynaptic currents (PSCs). Although these subsequent discussions

rely solely on applying our method to the LIF model, in section 4.4.2 we relate these

results to the information characteristics of real neurons. As well, in section 4.5 we

compare LIF results with the same measures in more complex neuron models. These

comparisons show that it is reasonable to use simple LIF neurons in simulations of

neural information processing.

4.4.1 Finding optimal decoders in LIF neurons

It is important that nothing in our discussion of optimal linear decoders depends on

the nature of the encoder. Of course, choosing a specific encoder greatly affects the

particular optimal decoder that we find, but the methods and analyses we discuss are

independent of the encoder. In this section we present results using LIF neurons as our

encoder. For these simulations, and all similar ones in this chapter, we assume that our

signal ensemble is band-limited Gaussian white noise (an assumption shared with the

experiments on real neurons that we compare our results to). As well, the encoding in

each case is done by a symmetrical pair of ‘on’ and ‘off’ neurons. This ensures that

the optimal filter is the same for both neurons (as we have assumed to this point, see

(4.24)). The LIF neurons we use for our analyses have a background firing rate of 40

Hz, a refractory period of 2 ms, and an RC time constant of 20 ms.

In figure 4.8, the optimal linear decoder is shown in both the frequency and time

domains. The decoder displayed here was found using the sliding window analysis

described in section 4.3.3 and appendix B.3 on the signal shown in figure 4.9a. Using

four seconds of data, we are able to find a filter that very successfully decodes the

original input signal, as well as other signals that were randomly drawn from the same

ensemble (as shown in figures 4.9b and 4.9c).

We can see from figure 4.10 that the encoding of the original signal via the LIF

neuron into a spike train introduces spurious power, especially at high frequencies. This

is not surprising given the ‘spiky’ nature of the encoding. The power at frequencies

that are actually in the signal, however, are also well-preserved. Thus, one of the main

functions of the decoding filter is to remove these spurious high frequency components

while not otherwise altering the spectrum; i.e., it acts as a low pass filter. As can be

seen in figure 4.8, the filter does indeed resemble a low pass filter. Thus it is localized

in time (figure 4.8b) and nearly flat for frequencies below some cutoff (50 Hz in this

case) in the frequency domain (figure 4.8a). The precise width of the optimal filter in

the time domain depends on the kinds of signals that were used to find it. For higher

frequency signals, it will be thinner, increasing the cutoff frequency of the low-pass

filter. Conversely, for a lower frequency set of signals, it will be wider in the time

domain and have a lower cutoff frequency. It is also worth noting at this point that
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Figure 4.8: An optimal linear decoder for a pair of LIF neurons in a) the frequency

domain and b) the time domain.

the filter somewhat resembles a dendritic PSC. Specifically, it is localized in time and

has a large, rapidly decaying initial response. However, it is clearly non-causal as it is

defined over both negative and positive parts of the time axis.

As mentioned earlier, there is some concern about being able to use such decoders

for signals with long correlation times (see Rieke et al. 1997, p. 86). However, in figure

4.11, it is evident that the optimal filter found for the signal with a short correlation time

(figure 4.9) works equally well for a signal with a long correlation time. This is true in

general. A thousand trials of both slow (i.e., frequency channels between 0 and 4 Hz)

signals with long correlation times and fast signals (i.e., frequency channels between 0

and 30 Hz) with short correlation times results in a mean RMSE for the signals with

long correlation times of 0.123 and mean RMSE for those with short correlation times

of 0.147. This is true despite finding and using the optimal filter for the fast signals

only (i.e., short correlation times). Thus, the same filter not only works for signals with

long correlation times, it actually works better than for signals with low correlation

times. This is to be expected, since RC circuits (like the LIF neuron) function as low

pass filters, and thus are better able to preserve lower frequencies. However, as shown

in figure 4.12, finding the optimal filter using a long correlation time ensemble results

in an even better estimate of such signals, as expected.

By comparing figures 4.9 and 4.11, we can see how the same neuron is using some-

thing more like a ‘timing’ code in the first case, and something more like a ‘rate’ code

in the second case (look especially at the spike times, indicated by small dots). By

comparing figures 4.11 and 4.12, we can see that both seem to use a kind of rate code.

However, in figure 4.12, the optimal filter is much wider in the time domain because
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Figure 4.9: a) Reconstruction of the randomly generated signal used to find the op-

timal filter in figure 4.8 (RMSE = 0.153). Figures b) and c) show reconstructions of

randomly generated signals from the same distribution as the signal in a). These were

reconstructed using the filter found using the signal in a). RMSE = 0.149 for b) and

RMSE = 0.142 for c).

it was constructed from a set of signals with more similar statistics. If the optimal

filter gets wider (while remaining equally smooth), then the precise timing of spikes

becomes less important for decoding the signal, thus acting more like a rate code. We

have verified this by introducing random jitter in the spike times that encode either the

fast (short correlation time) or slow (long correlation time) signal. As expected, the

RMS error increases significantly more when decoding the jittered spike trains for fast

signals (using the ‘fast’ optimal filter) than for slow ones (using the ‘slow’ optimal

filter), despite the fact that the spike trains have approximately the same total number

of spikes. As well, the RMS error increases significantly more for the slow signals

decoded with the ‘fast’ optimal filter. Thus, the average firing rate is more informative

about the slow signals, as long as we know it is drawn from a distribution with long

correlation times.

So, in conclusion, we have found a means for determining an optimal decoder that

works well under a variety of conditions. Not surprisingly, the optimal filter generally

works better for a signal drawn from an ensemble with characteristics similar to those

used to find the optimal filter. Nevertheless, filters found from ensembles that gener-

ally result in short correlation times work very well for signals with longer correlation

times. So, this method of finding optimal filters bridges the gap between timing and

rate codes because it works effectively in either realm.
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Figure 4.10: Comparisons of the power of the original signal (depicted in figure 4.9a)

and the spike train which encodes the signal (also depicted in figure 4.9a). Note that

all power in the spikes signal above 30 Hz is not in the original signal.

4.4.2 Information transmission

In order to compare the behavior of LIF information processing to that of natural neural

systems, let us briefly review the information characteristics observed for real neurons.

Chief amongst the measures of information processing is information transmission

rates, measured in bits per spike or bits per second. These measures are surprisingly

consistent across many different neural systems. In the cricket cercal system, which

measures wind velocity, information rates of between about 150 (Roddey and Jacobs

1996) and 300 (Bialek and Rieke 1992) bits per second have been reported.13 These

rates are equivalent to between 1.1 and 3 bits per spike. In the bullfrog sacculus, which

senses ground-borne vibrations, Bialek et al. (1991) report transmission rates of about

3 bits per spike. As well, Bialek et al. (1991) show that motion-selective H1 neurons

in the blowfly visual system carry about 3 bits per spike. In salamander retina, recent

results suggest that information is transmitted at a rate of about 3.4 bits/spike (Berry II

and Meister in press). In primate visual area V5, information transmission rates of

1–2 bits per spike have been observed (Buracas et al. 1998). The highest transmission

rates we have seen reported are for the bullfrog auditory neurons, which reach rates

as high as 7.8 bits per spike (Rieke et al. 1997, p. 185). Notably, these rates were

only achieved for stimuli with frequency spectra of naturally occurring bullfrog calls.

Broadband stimuli had transmission rates of about 1.4 bits per spike. In sum, natural

13Although Miller et al. (1991) calculate the rate to be about 40 bits per second, they used a 100 ms binned

rate code to calculate information.
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Figure 4.11: Reconstruction of a randomly generated signal from a distribution guar-

anteeing a low frequency signal, using the optimal filter from figure 4.8. This filter

was found using a signal distribution with high frequencies as well. Nevertheless, this

reconstruction works very well (RMSE = 0.143). Note that the time scale has been

lengthened.

sensory systems are generally able to encode stimuli with between about 1 and 3 bits

of information per spike (see also Rieke et al. (1997) for a review).

These are impressively high transmission rates that approach the optimal possible

coding efficiencies (de ruyter van Steveninck and Bialek 1988; Rieke et al. 1997). In

the frog sacculus, the cricket cercal system, the bullfrog auditory system, and the elec-

tric fish electrosensory system, the codes are between 20 and 60% efficient (Wessel

et al. 1996; Rieke et al. 1997, p. 180). And, efficiency significantly increases when

stimuli are restricted to be more like naturally occurring stimuli of interest to the organ-

ism (Rieke et al. 1997, p. 185).14 All of these measures of information transmission

performance in natural systems are found by closely related methods. The researchers

use opponent neurons, assume stationarity, and find optimal linear filters, just as we

have done. What is of interest to us, as modelers, is to see how these measures in neu-

robiological systems compare to those for model neurons. So, in the remainder of this

section, we perform a similar analysis for the LIF neuron.

To begin, we must realize that model neurons are entirely deterministic. Thus, un-

14Also note, that the estimation of information transmission rates using this method places a lower bound

on the amount of information transmitted by the code. There are reasons to think this bound generally

underestimates the actual amount of information transmitted (Stevens and Zador 1996). Thus, efficiencies

are likely even higher.
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Figure 4.12: Reconstruction of a the same signal from figure 4.11 using an optimal

filter based on a long correlation time (i.e., low-frequency) ensemble (RMSE = 0.122).

The error is slightly improved, and the high-frequency aspects of the reconstruction in

figure 4.11 are removed.

like real neurons, they can be run under conditions of no noise. Technically, then, in-

formation transmission rates can be unlimited. However, we can still find an analogous

information measure because we linearly decode a nonlinear system. In particular, we

can compare the total variance to the variance that is unexplained by our linear decod-

ing procedure. Usually noise is the source of unexplained variance, but in this case, it

is the result of our linear filtering.

We can derive and express the information transmission per frequency channel as

(see appendix B.4 for the derivation)

Info(ωn) =
1

2
log2





�
|A(ωn)|2

�

A�
|A(ωn)|2

�

A
− |�A(ωn)R∗(ωn;A)�A|2

�|R(ωn;A)|2�
A


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A



 . (4.27)

In (4.27), the numerator expresses the total variance at the output, while the denom-

inator expresses the variance that is not explained by our assumption that the output

is linearly related to the input. Equation (4.26) has a similar interpretation, though in
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Figure 4.13: Information transmission for the example in section 4.4.1 (see figures 4.9,

4.10, and 4.11). This shows the amount of information decodable from the original

signal at each frequency band using the optimal filter.

terms of the input signal. Because we assume linear decoding, these equations express

only a lower bound on the amount of information that could be transfered through this

system (figure 4.13 depicts the application of these equations to the example in the

section 4.4). The resulting information transmission rates for this example are 1.24

bits per spike or 114 bits per second. Both of these measures are comparable to those

reported earlier for real neurons.

If we had a more sophisticated, nonlinear decoding technique, we could get a better

estimate of the input signal given the output, and thus increase the information trans-

mission. However, Rieke et al. (1997) argue that nonlinear decoding only provides

about a 5% improvement in information transmission in real neurons. And, more im-

portantly, it is unclear how such nonlinear techniques relate to biophysical mechanisms.

Linear filtering does not suffer this same lack of biological realism because it can

be related to the production of postsynaptic currents (PSCs) in the postsynaptic cell. In

fact, we can use (4.27) to determine the information transmission using PSCs instead

of the optimal filter. Assuming a simple PSC model, hpsc(t) = e
−t/τsyn , where τsyn

is the synaptic time constant, we can perform an analogous analysis on the resulting

decoding.15 These results are shown in figure 4.14. As can be seen from this figure,

information transmission using PSCs compares very favorably to that using the optimal

filter. Over the entire range, there is a 6% decrease in the information transmitted using

15The analysis is not strictly identical because, in order to determine the PSC information transmission, we

replace the spike train with the PSC filtered signal. That is, R in (4.26) and (4.27) is the frequency domain

representation of the PSC filtered signal for this analysis.
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Figure 4.14: Information decodable using the postsynaptic current (PSC) as a temporal

filter instead of the optimal filter as in figure 4.13.

the PSCs compared to the optimal filter. This is a very small loss considering the vast

increase in neurological plausibility when using PSC decoding.

Figure 4.15 provides an example of decoding a signal with PSCs, which can be

compared to the optimal decoding in the previous section (see figure 4.9a). Here, we

can see that the decoding is good, though not as good as for the optimal case. However,

information transmission rates are similar at 1.17 bits per spike or 108 bits per second;

again similar to what is observed in real neural systems. As well, despite the fact that

the RMS error is about twice that of the optimal decoders, it is still reasonably low.

This is not too much of a concern since we are only using two neurons in this example.

Given what we know about the effects of increasing the number of neurons in the

population, we can be reasonably confident that this error can be reduced by adding

neurons (in chapter 5, we explicitly show this to be the case). Given these promising

results, and the vastly increased physiological plausibility of models that rely on PSCs

as their temporal filters, all of the simulations we present in subsequent chapters use

PSCs as the temporal decoder.

It is worth noting that there are other methods for finding information transmission

rates that often result in higher transmission rates (Stevens and Zador 1996; Buracas

et al. 1998). However, by far the majority of researchers who have found information

rates in real neural systems have used reconstruction methods like the one we have

adopted. Thus, taking this approach facilitates comparisons with the analyses done on

real neurobiological systems. Nevertheless, Stevens and Zador (1996) have made it

clear that such reconstruction methods do not provide the highest possible lower bound

on information transmission.
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Figure 4.15: Signal reconstruction using PSC (RMSE = 0.287). This compares favor-

ably to the reconstruction using the optimal filter in figure 4.9a.

4.4.3 Discussion

Our central focus to this point in the chapter was on finding optimal decoders for char-

acterizing temporal representation in neurobiological systems. However, we noted

along the way that we do not expect there to actually be such optimal decoders in

real neural systems. So why bother finding optimal decoders? There are a number of

reasons. First, optimal decoders allow us to calculate quantitative measures of the sys-

tem’s performance. This means we can objectively compare the information processing

characteristics of neural models to actual neurons. Second, developing such measures

provides bounds on the performance of systems that might use non-optimal decoders,

like PSCs. Third, if the optimal linear decoder does a good job of decoding, and the

non-optimal decoder is substantially like the optimal decoder, then it is reasonable to

assume that neural systems can be well-characterized as doing linear filtering of spike

trains. Fourth, once we have used the optimal decoder to show that linear decoding is

useful, we can more easily combine our characterization of the temporal code with that

of the population code (as we do in section 5.1). Finally, getting a general handle on

how to understand filtering in neural systems (optimal or not) should ultimately allow

us to predict what kinds of filters (i.e., the characteristics of the PSCs) we expect to

see given the task of certain neural systems. This is not an avenue we have explored in

detail, although finding and quantifying optimal filters is a first step along this path.
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4.5 More complex single neuron models

It is important to compare the LIF neuron to more complex models because there are

serious concerns regarding the neurobiological plausibility of the LIF model. For ex-

ample, the LIF model is very limited with respect to its modeling of the active spik-

ing behavior of neurons. In particular, the so-called ‘spike’ in LIF models is simply

‘stuck on’ to the output when the membrane voltage crosses threshold. This is done

essentially to make the output look like that produced by real neurons. More complex

models include detailed descriptions of the active mechanisms that actually produce

the voltage changes that occur during the spiking process. As well, LIF models include

only a single ion current and thus do not have adapting firing rates. In mammalian

cortical neurons, there are at least 12 different ion currents (Gutnick and Crill 1995;

Johnston and Wu 1995). Furthermore, in a large subset of these neurons (e.g., the

‘regular-spiking’ cells), some of these currents result in spike adaptation.

Our strategy in this section is to consider successively more complex models. Thus

we begin by introducing an extra ion current needed to explain adaptation into an LIF

model (section 4.5.1). However, this model still does not explain spiking. Next, we

consider a model that has been developed as a canonical model of a large class of neu-

rons (section 4.5.2). This model is called the θ-neuron, and includes the spike genera-

tion process as part of its intrinsic dynamics (Ermentrout 1996; Gutkin and Ermentrout

1998a). However, this model does not include adaptation and makes mathematical

reductions unfamiliar to most neurophysiologists. For these reasons, we conclude by

considering a conductance-based model, which we call the Wilson model, that includes

a number of currents that account directly for adaption and the relevant dynamics of

the spiking process (section 4.5.3).

During our consideration of each of these models, we analyze their information

processing behavior using the methods developed previously. As a result, we conclude

by comparing all four models to show that the various increases in complexity do not

significantly affect information transmission. And, just as important when constructing

large simulations, we show that the LIF neuron is a far less computationally demanding

model to run.

4.5.1 Adapting LIF neuron

Adaptation, or slowing of the spike rate, is seen prominently in what are called ‘reg-

ular spiking’ cortical neurons (Connors and Gutnick 1990). When these neurons are

injected with a depolarizing step function, they spike rapidly at first, but quickly slow

their firing rate to a much lower steady-state firing rate (see figure 4.16). In order to

capture this behavior in a leaky integrate-and-fire (LIF) model, we can incorporate the

voltage dependent resistance as shown in figure 4.17 (Wehmeier et al. 1989; Koch

1999). This mimics the effects of the slow hyperpolarizing potassium current (Jadapt

in figure 4.17) found in regular-spiking cells.

We can write the equations governing this circuit as follows:

dV

dt
= − 1

τRC

�
V (1 +

R

Radapt
)− JMR

�
(4.28)
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a) b)

Figure 4.16: a) An adapting spike train recorded from a human regular spiking cortical

neuron with an input current of 1.6 nA. b) Adaptation at different input strengths. ISI

is the interspike interval, which increases with interval number for every input current.

(From McCormick et al. 1985 c� The American Physiological Society, reproduced

with permission.)

Outside Membrane

Inside Membrane

V CRJR

JM

JCτref

δ(tn)

V=Vth

RadaptJadapt

Figure 4.17: RC circuit for LIF with adaptation. The dynamics of variable resistor,

Radapt, are controlled by an adaptation time constant, τadapt. (See figure 4.2 for the

circuit with no adaptation).
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Figure 4.18: Comparison of an adapting LIF neuron with a biophysically detailed,

conductance-based model of a layer 5 pyramidal neuron. (From Koch 1999, p. 337

c� Oxford University Press, reproduced with permission.)

dRadapt

dt
=

Radapt

τadapt
.

Equation (4.28) is identical to (4.4) with the addition of the time varying resistance,

Radapt. Notably, the time constant that controls the speed of adaptation, τadapt, will

be large compared to the RC time constant of the circuit, τ
RC . Assuming the cell

is initially at rest (i.e., V = 0 and Radapt = ∞), once Vth is passed and an action

potential is produced, the voltage dependent resistance,Radapt, begins to decrease (i.e.,

the conductance increases) by some value, Ginc.
16 This introduces an extra current,

Jadapt, which acts to lessen the effects of the input voltage, JM . Thus, it takes longer

for the next action potential to be generated because there is a larger difference between

Vthreshold and Vreset than there was at rest. When there is no input, the resistance drifts

exponentially towards its resting state.

Perhaps surprisingly, this simple addition to the LIF model makes it behave quite

similarly to detailed conductance-based models, as shown in figure 4.18. As can be

seen in this figure, the strong nonlinearity of the LIF model near threshold is also re-

moved by the inclusion of adaptation. In fact, Ermentrout (1998a) has shown that, in

general, adaptation in highly nonlinear neurons serves to linearize the response func-

tion. Notably, this linearization of the response function makes it more likely that we

can find a good linear decoder.

Comparing figures 4.19 and 4.9a is instructive regarding the effects of including

adaptation in our model neuron. As can be seen, the resultant decoding is very sim-

16For mathematical convenience, it is easier to model the decreasing resistance as an increasing conduc-

tance. Note that the conductance is 0 when the resistance is∞.
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Figure 4.19: Signal reconstruction using the optimal filter as the decoder and the adapt-

ing LIF model as the encoder (τadapt = 55 ms, Ginc = 20 nS, RMSE = 0.153). This

can be compared to figure 4.9a, where the same signal and decoder are used but the

encoder is the non-adapting LIF model.

ilar to the original LIF. In fact, both the RMSE and the information transfer rate are

the same. However, the efficiency of the adapting LIF is significantly higher (2.23

bits/spike) than the standard LIF (1.24 bits/spike). This suggests that the ubiquity of

adaptation in cortical neurons might serve to improve the efficiency of information

transfer.

So, the adapting LIF model is just as good, if not better than the standard LIF

model. However, there is also a 25% increase in the length of time it takes to simulate

the adapting model, so the computational costs are significantly higher.

4.5.2 θ-neuron

Recently, there have been a number of attempts to generate simple, nonlinear, spik-

ing models that effectively capture the behaviors of an entire class of neurons (Gutkin

and Ermentrout 1998a; Ermentrout 1996; Hoppensteadt and Izhikevich 1997; Hop-

pensteadt and Izhikevich in press). Most of these are focused on understanding the

dynamics of what are called ‘class I’ neurons. Hodgkin (1948) proposed a distinction

between two classes of neurons, where class I neurons are those that can spike at ar-

bitrarily low frequencies and steadily increase their frequency as a function of input
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Figure 4.20: RC circuit for class I neurons. The parameters RNa, RK , RA, and R

are the sodium, slow potassium, fast potassium (A-current), and membrane leakage

resistances, respectively. The equilibrium potentials, E, for the respective currents are

shown as batteries. For further related discussion see section 4.5.3.

current.17 Notably, mammalian neurons are almost all class I neurons (Wilson 1999b,

p. 149).

Class I neurons are very similar to Hodgkin-Huxley neurons, except that they in-

corporate an extra, very fast, voltage dependent potassium current, called the A-current

(JA in figure 4.20). Notice that the circuit describing class I behavior (figure 4.20) no

longer incorporates a delta function generator as in the case of the LIF neuron. This is

because the time courses of the voltage dependent potassium (RK) and sodium (RNa)

channels are responsible for the generation of the neural spike (for a discussion of the

dynamics of these currents see Nelson and Rinzel 1995).

It is natural to characterize the dynamics of class I cells in the language of nonlinear

systems theory (see Rinzel and Ermentrout 1989 for a discussion of nonlinear systems

theory in the context of neural models). In particular, the class I cells contain what

is known as a saddle-node bifurcation (Wilson 1999b; Hoppensteadt and Izhikevich

in press). This occurs because of the change in recovery dynamics due to the near-

rest threshold of the A-current activation and inactivation. Being able to describe the

behavior of class I neurons in this general way has lead to the development of canonical

17In fact, Hodgkin suggested that there are three classes, but the third is a class of neurons that do not fire

repetitively at all; presumably this is a methodological artifact. Class II neurons are those, like the famous

Hodgkin-Huxley neuron (Hodgkin and Huxley 1952), that have a non-zero minimum spiking frequency,

can have graded spike size, and whose firing rates are less sensitive to changes in input current strength.

Arvanitaki (1938) earlier presented a similar classification.
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Figure 4.21: Theta-neuron behavior. In (a) and (c) the upper diagram shows the loca-

tion of critical points on the invariant circle, the middle graph shows the behavior of θ,

and the lower graph is the trace of (1− cos θ) showing the spikes. (a) Excitable regime

with β+σ = −0.3. The stable state is the node on the right. The single spike is evoked

by a pulse stimulus (marked by the triangle) that forces θ past the saddle fixed point on

the right. (b) Meeting of the saddle and node points with β + σ = 0. The trajectory

has an infinite period. (c) Oscillatory regime where the stable state is now a limit cycle

with β + σ = 0.3. Periodic behavior of the phase variable and spikes in (1 − cos θ)

are present. (d) Phase evolution and its analog to membrane voltage states. Note that

the spike occupies a small region near π. A strong enough stimulus will push θ past

the threshold and into the excited region. Here the regenerative dynamics that sum-

marize active conductances carry the phase through the spike. (Adapted from Gutkin

and Ermentrout 1998a and Hoppensteadt and Izhikevich in press both c� MIT Press,

reproduced with permission.)

models of such neurons.18

In order for canonical models to be useful, they need to be simple. This way, the

universal properties of the entire family of models can be studied more easily. Re-

cently, Bard Ermentrout and his colleagues have developed a simple canonical model

for class I neurons called the θ-neuron (Ermentrout and Kopell 1986; Ermentrout 1996;

Gutkin and Ermentrout 1998a; Gutkin and Ermentrout 1998b). The θ-neuron is a

1-dimensional model that preserves the dynamics of a saddle-node bifurcation. Es-

sentially, the model describes the location of the neural state vector along the spike

trajectory with a single phase variable, θ. The model can be written as

dθ

dt
= (1− cos θ) + (1 + cos θ)(β + σ) for θ ∈ [0, 2π], (4.29)

where β is a bias (analogous to J
bias in equation (2.3)) and σ is the input (analogous

to J
d).

18A canonical model is one which any member of a family of models can be transformed into, using a

continuous change of variables (Hoppensteadt and Izhikevich 1997).
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Figure 4.22: Signal reconstruction using an optimal filter and the θ-neuron model as

the encoder (RMSE = 0.160).

The behavior of this model is summarized in figure 4.21. As can be seen from

this figure, the θ-neuron displays the main qualitative features of a class I spiking neu-

ron, including distinct subthreshold and superthreshold regions, an all-or-none spike, a

steady-state resting point, and an absolute and relative refractory period.19

The θ-neuron more than just captures the qualitative features of spiking neurons.

(Hoppensteadt and Izhikevich) (in press) rigorously show how complex conductance

models can be reduced to models like the θ-neuron. Thus, determining the information

transmission characteristics of this neuron is very useful for providing insight into the

behavior of a wide variety of neurons. Figure 4.22 shows the decoded θ-neuron spike

train for the same signal used in past examples. Note that the background firing rate

and maximal firing rate over the range were matched the LIF models using β and a

gain, α.

The θ-neuron compares favorably to the LIF neurons in most respects. The RMS

error and information transmission rates are within 5% of each other. There is a slightly

larger difference in efficiency, where the LIF (1.24 bits/spike) outperforms the θ-neuron

(.96 bits/spike), but the values are comparable. The biggest difference between the

models is that it takes approximately 100 times longer to run the θ-neuron. This, of

course, is a major drawback when trying to run models of large, complex systems.

Given the generality of the dynamics of a canonical model like the θ-neuron, we

take these results to be indicative of what should be found in all class I models. So,

19The presence of the absolute refractory period is evident from (4.29). While the neuron is spiking, the

effect of the input will be minimal since 1 + cos θ ≈ 0 for values of θ near π.
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it is reassuring to see just how similar the information transmission characteristics are

to a simple LIF model. However, despite the generality of the θ-neuron, it does suffer

some important limitations. For one, the output does not map directly onto voltage

changes in real neurons, so spike shape is not modeled (although spike timing is).

More importantly, adaptation is not included in the θ-neuron.20 Given the ubiquity

of adaption in mammalian cortical cells, it is important that we consider models that

both spike, and adapt. As well, on a more methodological note, the θ-neuron, and

the methods used to reduce conductance-based models to it, are unfamiliar to most

neuroscientists. In contrast, more direct reductions, like those found in the FitzHugh-

Nagumo (FitzHugh 1961), Morris-Lecar (1981), and Rinzel (1985) models are likely to

be more familiar. These models explicitly describe voltage dynamics, and thus produce

true action potential traces, unlike the θ-neuron.

4.5.3 Adapting, conductance-based neuron

In this section, we consider the most realistic of the models we have seen so far; we

call it the Wilson neuron (Wilson 1999b; Wilson 1999a). The Wilson neuron is a

conductance-based model of the regular spiking neuron in mammalian neocortex. This

model includes adaptation but, unlike in the adapting LIF model, the dynamics of the

adaptation current are modeled directly after the calcium-dependent potassium current

thought to be responsible for adaptation in class I neurons (Wilson 1999b). Like the

θ-neuron, this model includes spiking dynamics. However, the reduction of this model

from conductance-based models is very direct, resulting in a model that also captures

the voltage dynamics observable in real neurons. As a result, this model captures fea-

tures of neural spiking not addressed by the previous models. For example, changes in

spike height with frequency, spike shapes, and after-hyperpolarization are captured by

this model.

Let us briefly consider the reduction of complex conductance models to the Wilson

neuron to show its relation to more empirically generated models (see Wilson 1999b;

Wilson 1999a). To begin, consider the famous Hodgkin-Huxley (1952) model whose

parameters were derived directly from experimental observations of the giant squid

axon:

C
dV

dt
= −gNam

3
h(V − ENa)− gKn

4
(V − EK)− g(V − E) + JM (4.30)

dm

dt
=

1

τm(V )
(−m + M(V )) (4.31)

dh

dt
=

1

τh(V )
(−h + H(V )) (4.32)

dn

dt
=

1

τn(V )
(−n + N(V )). (4.33)

The circuit for this model is identical to figure 4.20, with the A-current removed. The

parameters gNa, gK , and g are the sodium, potassium and membrane leakage con-

ductances ( 1
R ), respectively. The parameters m, h, and n are the sodium activation,

20Although it could be included, by adding a second dimension to the model analogous the slow A-current.
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sodium inactivation, and potassium activation parameters, respectively. These parame-

ters model the dynamics of the opening and closing of ion channels in the cell mem-

brane. Notably, the equilibrium values of these parameters (M , H , and N ) and their

respective time constants (τm, τh, and τn) are functions of the membrane potential, V .

Finally, the equilibrium potentials (shown as batteries in figure 4.20), ENa, EK , and

E are the potentials for which the net ionic current across the membrane is zero (these

are largely due to the ion concentration gradients across the membrane). Thus, these

equations capture a fourth-order nonlinear system. Analyses of such complex systems

are extremely difficult.

Fortunately, Rinzel (1985) noticed two very useful simplifications. First, he pointed

out that τm is extremely small, so (4.31) can be eliminated by approximating m as

M(V ) (since the equilibrium, M(V ), is reached quickly). Second, he realized that

sodium channels close at approximately the same rate, but in the opposite direction as

the potassium channels. Thus, (4.32) can be eliminated by letting h = 1− n. Notably,

there is now a single ‘recovery’ variable that results from the amalgamation of h and n,

call it R. These simplifications mean that an accurate approximation to the Hodgkin-

Huxley equations can be found in a two-dimensional system.

As mentioned in the previous section, the introduction of the A-current accounts for

the differences between the Hodgkin-Huxley and class I neurons. A direct introduction

of this current makes the two-dimensional model a three-dimensional one. However,

Rose and Hindmarsh (1989) showed that a good approximation to the effects of this

current is found by making the equation for the recovery variable,R, quadratic.21 Thus,

a good approximation to a class I neuron can be achieved in a two-dimensional system.

In order to introduce adaptation into the model, we must add a slow potassium cur-

rent (analogous to Jadapt in the adapting LIF neuron), governed by the conductance

variable H . Using parameters found to produce good approximations in human neo-

cortical neurons, we can write the final Wilson model as (after Wilson 1999a; Wilson

1999b, p. 157)

C
dV

dt
= −

�
1781 + 4758V + 3380V

2
�
(V − 48)

−26R(V + 95)− 13H(V + 95) + JM (4.34)

dR

dt
=

1

5.6

�
−R + 129V + 79 + 330(V + 38)

2
�

(4.35)

dH

dt
=

1

99.0
(−H + 11(V + 75.4)(V + 69)). (4.36)

Equation (4.34) incorporates the resting potentials of sodium and potassium ions at

48 and -95 mV. The quadratic in V and the constants multiplying R and H in (4.34)

are found by fitting the nullclines of this system to the full conductance model. In

(4.35), the contributions of the standard potassium current (linear) and the A-current

(quadratic) have been amalgamated, as suggested by Rose and Hindmarsh (1989). Fi-

nally, (4.36) includes a term with the resting potential, -75.4 mV, so as to ensure the

current has no effect at rest. Notably, the time constant of this current is very long (99.0

ms) so as to produce an appropriate adaptation without affecting the shape of the spike.

21See Rush and Rinzel 1994 for reservations regarding this interpretation of the A-current.
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Figure 4.23: Wilson’s conductance-based model compared to real data (from Avoli

et al. 1994 c� Springer-Verlag as inWilson 1999b). Both transient and steady state (i.e.,

after adaptation) properties of a human regular spiking cortical neuron are reproduced

well, and over a range of inputs.

As can be seen from figure 4.23, these equations do an excellent job of approximating

the behavior of real regular-spiking neurons.

As shown in figure 4.24, decoding the spike train of this model again works well.

The neurons used here are again matched to the original LIF model for background and

maximal firing rates. In this case, the information transmission rate (91 bits/s) and RMS

error are about 20% worse than for the LIF model. However, the efficiency is improved

(2 bits/spike, a 30% increase). Given the results of the adapting LIF model this is likely

due to inclusion of the adapting current. Again, by far the greatest difference between

this model and the LIF model is that it takes approximately 600 times longer to run the

same problem.

4.5.4 Discussion

In this section, we have progressed from the simple LIF model to a conductance-based,

adapting model that is known to capture a wide-variety of detailed biophysical results

(Wilson 1999b; Wilson 1999a). What we have shown through this discussion, is that

the information transmission characteristics of a variety of single-cell models are not

only very similar to one another, but also to neurons found in real neurobiological sys-

tems. Table 4.1 summarizes the results from the various models we have explored. As

this table shows, there is not a very large spread in either the information transmission

rates or efficiencies, although the adapting neurons are consistently more efficient. It
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Figure 4.24: Signal reconstruction using an optimal filter and the conductance-based

model as the encoder (RMSE = 0.186).

is also important to note that the efficiencies of the models lies comfortably within the

range of efficiencies reported for actual neurobiological systems, between about 1 and

3 bits/spike (see section 4.4.2). By far the greatest differences between the models lies

in their run times. All in all, this tables shows that the simple LIF model is a good

trade-off between a realistic neural encoder and a computationally tractable model. As

models become large, computational tractability becomes extremely important. Be-

cause our focus in this book is on large-scale modeling, we adopt the LIF as our neural

model of choice.22

4.6 Summary

In this chapter, we have been largely concerned with introducing and formally charac-

terizing neural spiking, the most salient neural nonlinearity. We began with a study of

the leaky integrate-and-fire (LIF) model, which is simple, yet incorporates this central

nonlinearity. We then turned to a general discussion of temporal coding in neurons

and argued that 1) it is not necessary to understand neural coding in terms of a rate

code/timing code dichotomy, and 2) considering pairs of neurons as fundamental to

temporal coding is highly productive. We then described a means of finding optimal

temporal decoders for pairs of neurons. This analysis is very similar to those that have

been done on neurons in the past, with some slight improvements (i.e., Gaussian win-

dowing).

22However, the software package associated with this book allows the user to pick any of these models

when constructing a simulation.
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Neuron Rate Bits/spike RMSE Run time (s)

LIF 114 1.24 0.153 0.18

Adapting LIF 114 2.23 0.153 0.24

θ-Neuron 109 0.96 0.160 20.1

Wilson Model 91 2.00 0.186 125.2

Table 4.1: Comparison of information transmission characteristics of various model

neurons.

We employed this analysis on the LIF neuron to show that these methods effec-

tively bridge the gap between timing and rate codes, allowing us to remain agnostic

as to what ‘the’ code of neural systems is. As well, we showed that the simple LIF

neuron has approximately the same information transfer characteristics as both real

neurons and more complex neuron models. Our examination of these more complex

models both showed how they could be included in this general framework and demon-

strated that the LIF model strikes a convenient balance between neural plausibility and

computational cost.

In addition, we addressed the issue of the biophysical relevance of the optimal

decoders. We showed that the post-synaptic currents (PSCs) could be used in place

of the optimal decoders with little loss in information transfer. The gain in neural

plausibility is, of course, enormous. As a result of these considerations, all of our

subsequent models use the LIF model and PSC temporal filtering.
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