
Journal of Machine Learning Research 20 (2019) 1-42 Submitted 10/18; Revised 11/19; Published 11/19

Learning Overcomplete, Low Coherence Dictionaries with
Linear Inference

Jesse A. Livezey jlivezey@lbl.gov
Biological Systems and Engineering Division
Lawrence Berkeley National Laboratory
Berkeley, California 94720, USA
Redwood Center for Theoretical Neuroscience
University of California, Berkeley
Berkeley, California 94720, USA

Alejandro F. Bujan afbujan@gmail.com

Friedrich T. Sommer fsommer@berkeley.edu

Redwood Center for Theoretical Neuroscience

University of California, Berkeley

Berkeley, California 94720, USA

Editor: Aapo Hyvärinen

Abstract

Finding overcomplete latent representations of data has applications in data analysis, signal
processing, machine learning, theoretical neuroscience and many other fields. In an over-
complete representation, the number of latent features exceeds the data dimensionality,
which is useful when the data is undersampled by the measurements (compressed sensing
or information bottlenecks in neural systems) or composed from multiple complete sets of
linear features, each spanning the data space. Independent Components Analysis (ICA)
is a linear technique for learning sparse latent representations, which typically has a lower
computational cost than sparse coding, a linear generative model which requires an itera-
tive, nonlinear inference step. While well suited for finding complete representations, we
show that overcompleteness poses a challenge to existing ICA algorithms. Specifically, the
coherence control used in existing ICA and other dictionary learning algorithms, necessary
to prevent the formation of duplicate dictionary features, is ill-suited in the overcomplete
case. We show that in the overcomplete case, several existing ICA algorithms have unde-
sirable global minima that maximize coherence. We provide a theoretical explanation of
these failures and, based on the theory, propose improved coherence control costs for over-
complete ICA algorithms. Further, by comparing ICA algorithms to the computationally
more expensive sparse coding on synthetic data, we show that the limited applicability of
overcomplete, linear inference can be extended with the proposed cost functions. Finally,
when trained on natural images, we show that the coherence control biases the exploration
of the data manifold, sometimes yielding suboptimal, coherent solutions. All told, this
study contributes new insights into and methods for coherence control for linear ICA, some
of which are applicable to many other nonlinear models.
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1. Introduction

Mining the statistical structure of data is a central topic of machine learning and is also a
principle for computational models in neuroscience. A prominent class of such algorithms
is dictionary learning, which reveal a set of structural primitives in the data, the dictionary,
and a corresponding latent representation, often regularized by sparsity. In this work, we
focus on overcomplete dictionary learning (Olshausen and Field, 1997; Hyvärinen, 2005; Le
et al., 2011), the case when the dimension of the latent representation exceeds the dimension
of the data and therefore the linear filters (dictionary) generating the data cannot all be
mutually orthogonal.

Independent Components Analysis (ICA) (Comon, 1994; Bell and Sejnowski, 1997) is
a technique for learning the underlying non-Gaussian and independent sources, S, in a
dataset, X. ICA is commonly used in the complete, noiseless case, although methods which
can be run on noisy data exist Hyvarinen (1999). When run as a complete, noiseless model,
ICA is computationally light-weight because the learned mappings between data and sources
are linear in both directions. ICA can be formulated as a noiseless linear generative model

Xi =
L∑
j=1

AijSj , (1)

where A ∈ RD×L is referred to as the mixing matrix wherein D is the dimensionality of the
data, X, and L is the dimensionality of the sources, S. In the complete case (D = L), the
goal of ICA is to find the unmixing matrix W ∈ RL×D such that the sources for all M data

samples can be recovered, S
(i)
j =

∑
kWjkXk with W = A−1. The unmixing matrix W can

then be obtained by minimizing the negative log-likelihood of the model

− logP (X;W ) =
M∑
i=1

L∑
j=1

g(
∑
k

WjkX
(i)
k )−M log(det(W )) (2)

where g(·) specifies the shape of the negative log-prior of the latent variables S and is usually
a smooth version of the L1 norm such as the log(cosh(·)), which encourages the projections
of X to be sparse, X(i) is the ith element of the dataset, X, which has M samples, and
where the bases are constrained to have unit-norm. The log-determinant comes from the
multivariate change of variables in the likelihood from X to S

P (X) = P (S)| det
dS

dX
| = P (W ·X)|detW |. (3)

If the data has been whitened, the unconstrained optimization (Eq 2) can be replaced by
a constrained optimization where the second term in the cost function is replaced with the
constraint WW T = I (Hyvärinen and Oja, 1997).

In complete ICA, the log-determinant (or the identity constraint) will prevent multiple
elements of the dictionary, W , from learning the same feature. In overcomplete ICA, the
linear generative model (Eq 1) cannot be inverted, and therefore, overcomplete versions of
Eqs 2 and 3 cannot be derived. One alternative to maximum likelihood learning is to create
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an objective function by adding a new cost, C(W ), to the sparsity prior (Hyvärinen and
Inki, 2002; Le et al., 2011). The new unconstrained objective function becomes

Objective(W ) = λ
M∑
i=1

L∑
j=1

g(
∑
k

WjkX
(i)
k ) + C(W ). (4)

This form is also similar to the log-posterior of the sources, S, which appears in sparse
coding models and is used in maximum a posteriori inference, although here, the cost is
used to optimize the dictionary, W , not estimate sources. Overcomplete ICA models of
this form are one case of analysis dictionary learning methods, where the projections of the
data are assumed to have sparse structure rather than assuming a sparse linear generative
(synthesis) model. In complete ICA methods, there is no distinction between the synthesis
and the analysis view (Bell and Sejnowski, 1997; Hyvärinen et al., 2001; Elad et al., 2007;
Teh et al., 2003; Ophir et al., 2011; Rubinstein et al., 2013; Chun and Fessler, 2018)

Synthesis: X = AS, S sparse

Analysis: P = WX, P sparse.
(5)

In overcomplete ICA, these two formulations are no longer equivalent to each other.
The cost, C(W ), should be chosen to exert coherence control on the dictionary, that

is, to prevent the co-alignment of the bases. The coherence of a dictionary is defined as
the maximum absolute value of the off-diagonal elements of the Gram matrix of a unit-
normalized dictionary (Davenport et al., 2011), W ,

coherence(W ) ≡ max
i 6=j
|
∑
k

WikWjk| = max
i 6=j
| cos θij | (6)

where
∑

kWikWjk = cos θij is the cosine similarity between the unit normalized dictionary
elements Wi and Wj . A dictionary with high coherence (near 1) will have duplicated or
nearly duplicated bases.

A number of methods for coherence control in complete and overcomplete methods
have been proposed including a quasi-orthogonality constraint (Hyvärinen et al., 1999),
a reconstruction cost (Le et al., 2011) which is equivalent to the L2 coherence cost in
Eq 8 (Ramırez et al., 2009; Sigg et al., 2012; Bao et al., 2014; Chun and Fessler, 2018; Bansal
et al., 2018), and a Random Prior cost (Hyvärinen and Inki, 2002) (see Section 3 for details).
However, a systematic analysis of the properties of proposed coherence control methods and
a comparison with methods that extend more naturally to overcomplete representations, for
example, sparse coding, is still missing in the literature. In particular, the L2 cost is often
claimed to promote diversity or incoherence in overcomplete dictionaries elements, which
we will show is not the case.

Our first theoretical result is that although the global minima of the L2 cost have minimal
coherence (coherence = 0) for a complete basis, in the overcomplete case, it has global
minima with maximal coherence (coherence = 1). We introduce an analytic framework
for evaluating different coherence control costs, and propose several new costs, which fix
deficiencies in previous methods. Our first novel cost is the L4 cost on the difference between
the identity matrix and the Gram matrix of the bases. The second is a cost which we call
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the Coulomb cost because it is derived from the potential energy of a collection of charged
particles bound to the surface of an n-sphere. We also propose modifications to previously
proposed methods of coherence control which we show allows them to learn less coherent
dictionaries.

In addition to controlling coherence, we show empirically that these costs will influence
the entire distribution of the learned bases in an overcomplete dictionary. We investigate
the impact of different coherence control costs on recovering overcomplete synthesis and
analysis models. Finally, we evaluate the coherence and diversity of bases learned on a
dataset of natural image patches.

1.1. Related work

Studying methods for learning overcomplete dictionaries is motivated from applications
in data analysis and theoretical neuroscience. In data analysis, overcomplete dictionaries
become essential if data are either undersampled (Hillar and Sommer, 2015), or have a
sparse structure with respect to a combination of orthobases (Donoho and Elad, 2003). In
neuroscience, dictionary learning has not only been proposed for data analysis (Delorme
et al., 2007; Agarwal et al., 2014; Hirayama et al., 2015), but also as a computational
model for understanding the formation of sensory representations (Bell and Sejnowski, 1997;
Olshausen and Field, 1996; Klein et al., 2003; Smith and Lewicki, 2006; Rehn and Sommer,
2007; Zylberberg et al., 2011; Carlson et al., 2012). It has been estimated from anatomical
data that in primary sensory areas the number of neurons by far exceeds the number of
afferent inputs (Barlow, 1981; Spoendlin and Schrott, 1989; Curcio and Allen, 1990; Leuba
and Kraftsik, 1994; Northern and Downs, 2002; DeWeese et al., 2005). Further, it has
been shown that dictionary learning forms more diverse sets of features when overcomplete,
which more closely matches the diversity of receptive fields found in sensory cortex (Rehn
and Sommer, 2007; Carlson et al., 2012; Olshausen, 2013).

Sparse coding is a linear generative model for dictionary learning, which unlike typical
ICA models, also includes an additive noise term to the mixtures

Xi =

L∑
j=1

AijSj + εi, (7)

where εi ∼ N (0, σ). Sparse coding requires an iterative, computationally complex maximum
a posteriori estimation, posterior estimation step, or an approximation to these (Olshausen
and Field, 1996; Lewicki and Sejnowski, 2000; Rehn and Sommer, 2007; Rozell et al., 2008;
Gregor and LeCun, 2010; Hu et al., 2014). However, unlike ICA, sparse coding extends nat-
urally to the overcomplete setting without modification. During inference, latent features in
overcomplete sparse coding models (Lewicki and Olshausen, 1999) have an explaining-away
effect on each other which discourages them from learning coherent solutions. Methods for
incoherent overcomplete dictionary learning which add additional coherence costs, includ-
ing the L2 cost, with nonlinear inference have also been proposed (Ramırez et al., 2009;
Sigg et al., 2012; Mailhé et al., 2012; Bao et al., 2014). Score matching (Hyvärinen, 2005)
is another alternative to maximum likelihood learning which can be used for overcomplete
ICA models.
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In overcomplete dictionary learning, a distinction is made between synthesis and analysis
methods. Synthesis methods posit that data is formed from a linear combination (dictio-
nary) of sparse sources, and methods are designed to both recover the dictionary and the
sources (Olshausen and Field, 1997; Chen et al., 2001; Davenport et al., 2011). Analysis
dictionary learning assume that the atoms which combine linearly to makeup a signal have
sparse projections from some analysis matrix (Ophir et al., 2011; Rubinstein et al., 2013;
Chun and Fessler, 2018). In the overcomplete case, these two problems will deviate (Elad
et al., 2007). Methods have been proposed for inference in analysis models (Elad et al.,
2007) as well as analysis dictionary learning (Ophir et al., 2011; Rubinstein et al., 2013;
Chun and Fessler, 2018).

2. Results

In this section we first prove that the L2 cost has global minima with coherence = 1. We
then propose new coherence control costs and evaluate them on synthetic datasets and
natural images.

2.1. The L2 cost has high coherence global minima

Dictionary or representation learning methods often augment their cost functions with ad-
ditional terms aimed at learning less coherent features (Ramırez et al., 2009; Le et al., 2011;
Sigg et al., 2012; Bao et al., 2014; Chun and Fessler, 2018; Bansal et al., 2018) or making
learning through optimization more efficient (Howard et al., 2008). The L2 cost, defined for
a unmixing matrix, W , as

CL2(W ) =
1

2

∑
ij

(δij −
∑
k

WikWjk)
2 =

1

2

∑
ij

(δij − cos θij)
2, (8)

has been used to augment dictionary learning methods motivated by the desire to learn
more incoherent or diverse dictionaries (Strohmer and Heath Jr, 2003; Davenport et al.,
2011). However, we show that minimizing the L2 cost is a necessary but not sufficient
condition for finding equiangular tight frames (see Section 3.1.1 for details and definitions),
a certain class of minimum coherence solutions. Moreover, we prove that the L2 cost has
global minima with maximum coherence. This shows that the L2 cost and its related costs
are not providing coherence control in overcomplete dictionaries.

For the L2 cost, it can be shown that for integer overcompleteness, there exists a set
of global minima in which the angle between many pairs of bases is exactly zero and the
coherence is 1, the maximum attainable value. We prove the following theorem:

Theorem 1 Let W0 ∈ RL×D be an overcomplete unmixing matrix with data dimension
D and latent dimension L = n × D, with n > 1, ∈ Z and unit-norm rows. There exist
dictionaries, W0, that are global minima of the L2 cost with coherence = 1.

This shows that the L2 cost has global minima that have the exact property it was proposed
to prevent (high coherence). The proof of this theorem also shows that, in the complete
case (n = 1), an orthonormal basis is a global minimum of the L2 cost. We also prove
that there are operators which transform the pathological solution (coherence = 1) into
non-pathological solutions (coherence < 1) to which the L2 cost is invariant:
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Theorem 2 Let P be a projection operator from the L dimensional space of dictionary
elements to a D dimensional subspace and PC its complement projection. Φ is constructed
as the sum of any rotation, R ∈ O(L), projected within the D-dimensional subspace of
the dictionary elements and an identity applied to the complement subspace, Φ = PR +
PC . There exist non-trivial continuous transformations: Φ, on W0 to which the L2 cost
is invariant. These transformed dictionaries, W0Φ, have coherence ≤ 1 for non-identity
rotations and are global minima of the L2 cost.

Appendices B.1 and B.4 contain the proofs of these theorems.

These high coherence global minima are illustrated with a two dimensional, two times
overcomplete example in Fig 1. It can be shown that there are pathological (high coher-
ence) minima (Fig 1A) which can be continuously rotated into other low coherence minima
(Fig 1B). These configurations are equivalent in terms of the value of the L2 cost and lie on
a connected global minimum. These families of configurations are minima if it can be shown
that the gradient of the cost is zero, that is, they are critical points of the cost, and that
the Hessian is positive definite in all directions but the one that rotates the configuration
within the family of solutions. We will show these two things through an explicit derivation
in the 2 dimensional case.

In order to understand these minima, we evaluate the L2 cost in a two dimensional ex-
ample analytically. The global rotational symmetry of the L2 cost allows us to parameterize
all solutions with respect to one fixed dictionary element: (1, 0), without loss of generality.
The four dictionary elements, shown in Fig 1, are

(1, 0), (cos θ1, sin θ1), (cos θ2, sin θ2), (cos θ2 + θ3, sin θ2 + θ3). (9)

Setting θ1 and θ3 to π/2, that is, creating two sets of orthonormal bases, forms a ring of
minima as θ2 is varied. This can be shown by computing the gradient and the eigenvalues
of the Hessian of the L2 cost at these points. The cost function, gradient, and Hessian are
tabulated in Appendix A and the eigenvalues are plotted individually in Fig 1.

The value of the L2 cost is constant as a function of θ2 (Fig 1C, purple, dashed line)
even though the coherence is drastically changing as a function of θ2. The Hessian of the
L2 cost along this path has one eigenvalue that is 0 as a function of θ2 whose eigenvector
corresponds to changing θ2 with fixed θ1 and θ3 (Fig 1D, see Appendix A for the exact
functional form). The other two eigenvalues are greater than zero and greater then zero
for θ2 6= 0 respectively which shows that the cost is a minimum almost everywhere along
this path. At θ2 = 0, the second eigenvalue becomes 0. This eigenvalue has eigenvector
(−1, 0, 1). If we evaluate the cost along this direction centered at θ1 = θ2 = θ3 = 0, we find
that although the second derivative is zero, the fourth derivative is positive showing that
indeed, this point is a minimum (see Appendix A.2 for a derivation).

In many previous studies, the L2 cost or variations of it were proposed in order to learn
dictionaries with lower coherence (Ramırez et al., 2009; Le et al., 2011; Sigg et al., 2012; Bao
et al., 2014; Chun and Fessler, 2018; Bansal et al., 2018). The results in this section show
that the L2 cost function does not provide coherence control in the overcomplete regime. In
fact, dictionaries that should be maxima are part of a set of global minima. This indicates
that there is a need for new forms of coherence control.
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Figure 1: Structure of the pathological global minimum in the L2 cost which the L4 cost
corrects. In A and B, each arrow represents a dictionary element in a 2-times
overcomplete dictionary in a 2-dimensional space. A A dictionary with high
coherence which has the same value of the cost as the dictionary in B for any θ2
including the pathological solution θ2 → 0. B A dictionary with low coherence.
C The L2 and L4 costs are plotted at θ1 = θ3 = π/2 as a function of θ2. The
costs have been scaled so that their maximum value is 1. D The eigenvalues of
the L2 cost at θ1 = θ3 = π/2 as a function of θ2 scaled between -1 and 1. E The
eigenvalues of the L4 cost at θ1 = θ3 = π/2 as a function of θ2 scaled between -1
and 1.

7



Livezey, Bujan, Sommer

2.2. Addressing high coherence solutions: L4 and Coulomb costs

The rotational symmetry in the L2 cost leads to its pathological (high coherence) global
minima, and this insight motivates a simple modification which will not have high coherence
minima. We propose a novel coherence control cost termed the L4 cost, which removes the
pathological minima of the L2 cost. The motivation for this cost function is to more strongly
penalize large inner products in the gram matrix. The L4 cost function also acts on the
gram matrix of W , but raises each off diagonal element to the fourth power which breaks
the rotational symmetries which lead to the pathological minima

CL4(W ) =
1

4

∑
ij

(δij −
∑
k

WikWjk)
4 =

1

4

∑
ij

(δij − cos θij)
4. (10)

Following the same analysis as in Section 2.1, we show that the pathological solutions
are either reduced to saddle points at θ2 = nπ2 or local minima at θ2 = (2n + 1)π4 , which
correspond to incoherent solutions (Fig 1E). The L4 cost as a function of θ2 has a maximum
at θ2 = 0 (coherent solutions) and minima at θ2 = π

2 (Fig 1C). The L4 cost function,
gradient, and Hessian are tabulated in Appendix A for this 2 dimensional example.

We also propose a second alternative cost, where the repulsion from high coherence is
Coulombic: the Coulomb cost. Coherence control can then be related to the problem of
characterizing the minimum potential energy states of L charged particles on an n-sphere,
an open problem in electrostatics (Smale, 1998). The energy, ECoulomb, of two charged
point particles of the the same sign is proportional to the inverse of their distance, ~rij

ECoulomb
ij ∝ 1

|~rij |
. (11)

When constrained to the surface of the unit-radius n-sphere, the distance between two
points can be written as a function of only the angle between the two points |rij | =√

1− cos2(θij/2). In the case of same-sign charged particles, the minimum energy is when
the particles are at antipodal points. However, in ICA, there is no distinction between a
dictionary element and its negative (the antipodal point). Instead, the minimum energy
configuration should be when two elements are perpendicular. To map this problem onto
ICA, the cost should be made symmetric around θ = π/2 rather than θ = π since a dic-
tionary element and its negative should have maximal pairwise energy, not minimal. This
can be accomplished by replacing θ with 2θ, that is,

√
1− cos2(θij/2) →

√
1− cos2 θij .

Therefore, the Coulomb cost can be formulated as

CCoulomb(W ) =
∑
i 6=j

1√
1− cos2 θij

=
∑
i 6=j

1√
1− (

∑
kWikWjk)2

. (12)

In practice, we subtract the value of the cost for perpendicular bases, 1, for each pair i 6= j
to bring the cost into a better dynamic range. This cost diverges as coherence → 1, which
means it cannot have high coherence minima.

2.3. Numerical investigations of coherence control

The above analysis provides evidence of a failure of the L2 cost to provide coherence control.
The alternative coherence cost function can prevent high coherence solutions, but all costs
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functions will act on the entire distribution of dictionary elements, not only the high coher-
ence pairs. Deriving the distribution of pairwise angles in the minima of the cost functions
is analytically difficult. However, understanding the influence of the coherence control cost
function on the distribution of dictionary elements allows us to better understand their
biases.

In order to understand the origin of the effects of the different coherence controls on
the pairwise angle distributions, the coherence costs can be directly compared without the
data dependent ICA sparsity prior. We use two different initializations of the bases and
optimize the data-independent coherence costs. These initializations are: a noisy patholog-
ical initialization (as in Section 2.1) and a random uniform initialization on the surface of a
n-sphere (Gaussian distributed entries normalized to unit-norm elements). We will numer-
ically explore the minima of these cost function for a 2 times overcomplete dictionary in a
32 dimensional data space by minimizing the cost function with these two initializations.

The noisy pathological initialization tiles an orthonormal, complete basis two times and
adds a relatively small (σ = .01) amount of zero-mean Gaussian noise to every basis element
to create W . As shown by the red-dashed histogram in Fig 2A, most pairwise angles start
close to either 0 or π

2 as shown in the two peaks in the initial distribution. Minimizing
the L2 cost (purple line) from this initialization gives a final solutions with high coherence,
similar to the initial distribution. The other costs push the pairs of bases with initially
small pairwise angles apart. This shows numerically that the L2 does not provide coherence
control for overcomplete dictionaries unlike other proposed methods. Appendix Fig C1
contains the same analysis for the full set of cost functions, and Appendix Fig C2 contains
a comparison across powers from 1 to 6. Although the L4 cost may have saddle points
in the cost landscape (see Section 2.2), in practice they do not seem to be a problem for
optimization (see Appendix Fig C3).

In the random uniform case, the elements of W are drawn independently from a uniform
distribution on the unit n-sphere. The final distribution of pairwise angles for the L2 cost
peaks at π

2 but also has a longer tail towards small pairwise angles. The other costs have
shorter tails and have varying amounts of density near π

2 . Of all costs, the L4 cost distributes
the angles most evenly which is reflected by its distribution having the narrowest width and
lowest coherence.

Together, these results show that the L2 cost does not provide coherence control and is
also sensitive to the initialization method. The proposed L4 and Coulomb cost, as well as
the previously proposed Random Prior (see Section 3), all provide coherence control. For
these three costs, the distribution from which the dictionary was initialized does not have a
large effect on the distributions at the numerical minima. These traits mean that they are
better suited for providing coherence control in overcomplete dictionary learning methods.

2.4. Flattened costs

The previous analysis provides insight into why different cost function have different behav-
ior for small angles (high coherence). However, the L4, Coulomb, and Random Prior cost
also show qualitatively different behavior in their distributions near π

2 . Both the Coulomb
and Random Prior have density near π

2 for the distribution of pairwise angles, meaning
that a fraction of the bases are nearly orthogonal. The L4 has much lower density near π

2 ,
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Figure 2: Coherence control costs have minima with varying coherence which can depend
on initialization. Color legend is preserved across panels. For both panels a 2
times overcomplete dictionary with a data dimension of 32 was used and the
distributions are averaged across 10 random initializations. A Distribution of
pairwise angles (log scale) obtained by numerically minimizing a subset of the co-
herence cost functions for the pathological dictionary initialization. Red dotted
line indicates the initial distribution of pairwise angles. Note that the horizontal
axis is broken. B Angle distributions obtained through optimization from a uni-
form random dictionary initialization. Note that the horizontal axis only includes
the range from π

3 to π
2 . In both plots, the Coulomb and Random Prior lines are

almost entirely overlapping.
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and a correspondingly lower coherence (smallest pairwise angle). In order to achieve mini-
mal coherence (equiangular tight frame) for an overcomplete dictionary, the distribution of
pairwise angles should form a delta-function away from π

2 . Therefore high density near π
2

may not be desirable for learning low coherence solutions.

In order to gain more insight into the causes of the qualitative differences in the distri-
butions of angles, we analyze the behavior of the costs around θ = 0 and θ = π

2 (Fig 3A,
B respectively). The gradient of the cost close to | cos θ| = 1 is proportional to the force
the angles feel to stay away from zero which will influence the high coherence tail of the
distribution. Taylor expanding all the costs near cos θ = 0 reveals that all cost functions
have non-zero second order terms except for the L4 cost which only has a fourth order
term with linear and cubic terms in their gradients respectively as shown in Fig 3A. Cost
with gradients that have lower-order Taylor expansions near cos θ = 0 encourage pairs of
basis vectors to be more orthogonal at the expense of higher coherence. This may lead
to distributions of pairwise angles which are less uniform over all pairs of elements of the
dictionary. Since the L4 cost only has higher order derivatives near cos θ = 0, there is no
pressure to form exactly perpendicular pairs. This can also be seen in an L1 cost which
encourages many pair to be almost exactly perpendicular at the expense of many pairs with
maximum coherence (see Appendix Fig C2).

We hypothesize that the quadratic terms are creating higher coherence minima with
more pairwise angles close to π

2 . This is additional motivation for the L4 cost and leads us
to propose modified versions of the Coulomb and Random Prior costs where the quadratic
terms have been removed. The Random Prior cost (Hyvärinen and Inki, 2002) is derived
from the distribution of angles expected between pairs of angles randomly drawn on the
surface of an n-sphere and is described in Section 3. This can be done by subtracting the
quadratic term in the Taylor series from the original cost function

CFlat(cos θij) = C(cos θij)−
∂2C(cos θij)

∂ cos θ2ij

∣∣∣∣∣
0

cos2 θij . (13)

This hypothesis can be validated numerically. We compared the distribution of pairwise
angles when the Coulomb nad Random Prior costs were minimized with their flattened
counterparts. Both the Flattened Coulomb and Random Prior costs (Fig 3C, dotted) show
pairwise angle distributions which have lower coherence and fewer pairwise angles close to
90 degrees compared to the original costs (Fig 3C, solid). This shows that across costs, the
quadratic terms dominate the behavior of the pairwise angle distributions near 90 degrees
and can have a small effect on the coherence on the distributions.

These coherence control methods will also have different behaviors as a function of
overcompleteness. To understand their behavior, we measured the coherence of their minima
as a function of overcompleteness. Fig 3D shows the minimum pairwise angle (arccos of
coherence, low coherence is high minimum pairwise angle) of these methods as a function
of overcompleteness at fixed data dimensionality. The median over random initializations
of the minimum pairwise angle between dictionary elements for numerically minimized
coherence costs is shown. The cost functions evaluated here fall into three groups with
quantitatively similar intra-group coherence as a function of overcompleteness. The L2 cost
has the highest coherence (smallest pairwise angle) for all overcompletenesses greater than
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Figure 3: Quadratic terms dominate the minima of coherence control costs. A Gradient
of the costs as a function of cos θ near cos θ = 0. B Gradient of the costs as a
function of cos θ near cos θ = 1. C Distibution of pairwise angles for a 2 times
overcomplete dictionary with a data dimension of 32 from 10 random uniform
initializations. The Coulomb and Random Prior cost function distributions are
shown (solid lines) along with their counterparts with quadratic terms removed
(“flattened”, dashed). The Coulomb and Random Prior lines are almost entirely
overlapping. D The median minimum pairwise angle (arccosine of coherence)
across 10 initializations is plotted as a function of overcompleteness for a dictio-
nary with a data dimension of 32. The largest possible value (Welch Bound) is
also shown as a function of overcompleteness. The L4 and Flat Coulomb lines
are almost entirely overlapping.
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1. The L4 cost and flattened versions of the Random Prior and Coulomb costs have the
lowest coherence. The Random Prior and Coulomb costs behave similarly to the L2 costs
for low overcompleteness (less than 1.5) and then converge to be similar to the L4 and
flattened costs for high overcompletenesses (greater than 2). Fig C6 contains a detailed
Coulomb and Random Prior comparison. The Welch Bound (Welch, 1974) is a lower bound
for the smallest possible coherence (upper bound on the largest minimum pairwise angle)
achievable (Fig 3D). The best coherence control cost functions approach, but do not saturate
this bound. Note that constructing overcomplete dictionaries that saturate this bound for
arbitrary overcompleteness is an open problem (Strohmer and Heath Jr, 2003; Fickus and
Mixon, 2015). This shows that the quadratic terms in the cost function are dominating the
coherence behavior of the cost functions and that removing the term as in the flattened
costs or only including quartic terms as in the L4 leads to lower coherence solutions.

These results show that proposed coherence control methods prevent high coherence to
different degrees, and furthermore that the choice of coherence control, which is meant to
affect the distribution of small pairwise angles, has an effect on the entire distribution of
angles. Specifically, the L2 cost does not provide coherence control and leads to solutions
which are heavily biases by initialization unlike other proposed costs. These results also
validate the relationship between second order terms in the cost function and the trade-
off between coherence and orthogonality. Furthermore, since the costs were investigated
without the data-dependent ICA prior, they should be useful for augmenting methods
including sparse coding, deep learning, and anything that learns a overcomplete dictionary
or weight matrix.

2.5. Recovery of the synthesis mixing matrix with overcomplete ICA

The previous analysis considered the data-independent coherence costs on their own. In
ICA, the coherence costs will trade-off with the sparsity prior (Eq 4). Ideally, coherence
costs would only prevent duplication of learned dictionary elements, but otherwise let the
data shaping of the basis functions through the sparsity prior. In practice, we have shown
that coherence control costs can have an effect on all dictionary elements, including those
with large pairwise angles. It is not currently clear how these different costs will bias the
learned dictionaries.

To investigate how the coherence control costs perform on data in overcomplete ICA, we
compare different ICA cost functions and a sparse coding model on the task of recovering a
known mixing matrix from k-sparse data with a Laplacian prior. We compare three classes of
overcomplete dictionary recovery methods. The first is a sparse coding baseline (Olshausen
and Field, 1997), the second are analysis ICA models described in Section 1 which combine
the sparse prior from complete ICA and a coherence control cost, and the final is Score
Matching (Hyvärinen, 2005), which is a non-maximum-likelihood method that can be used
in overcomplete ICA. The data generated for this task comes from a noiseless overcomplete,
sparse generative model. Sparse coding, as a dictionary recovery method, is designed to
infer generative models. However, the overcomplete ICA models considered here are being
fit assuming a sparse analysis model (Ophir et al., 2011; Rubinstein et al., 2013; Chun and
Fessler, 2018). Therefore, these ICA models are mismatched to the underlying generative
process of the data. Here, we evaluate in what regime overcomplete analysis ICA models

13



Livezey, Bujan, Sommer

are able to recover a generative dictionary and what impact the coherence control cost has
on recovery.

Overcomplete mixing matrices were generated from the Soft Coherence Cost (see Sec-
tion 3) and used to generate a k-sparse dataset. The dictionary learning methods were then
all trained on these datasets. Recovered unmixing matrices were compared to the ground-
truth mixing matrix where the error for recovery is 0 for a perfect recovery (W T = A) and
1 for a random recovery (see Section 3.5 for details). For a 32-dimensional data space, we
vary the k-sparseness and overcompleteness of the data. For each of these datasets, where
the number of dataset samples was 10-times the mixing matrix dimensionality, we fit all
models to the data from 10 random initializations, for a range of sparsity weights: λ, if
applicable, and then compare the recovery metric across models.

For a 12-sparse, 2-times overcomplete dataset, all methods can recover the mixing matrix
well for some value of λ (Fig 4A). The L2 and Score Matching costs perform slightly worse
than the maximum-likelihood inspired ICA methods and sparse coding. All methods have
a certain range of λ over which they recover the mixing matrix well and have differences
in how they fail, for instance sparse coding has a very quick transition to poor recovery
compared to ICA methods whose performance tends to decrease more slowly as λ moves
outside of the optimal range.

At fixed k-sparsity (k = 12), we vary the overcompleteness and compare recovery costs
(Fig 4B). As a function of overcompleteness, Score Matching recovers well in a smaller range
of overcompleteness as compared to other ICA methods. Besides the L2 cost, all other ICA
methods have nearly identical recovery. The L2 cost’s performance breaks down at lower
overcompleteness. All ICA methods fail to recover the mixing matrix once the overcom-
pleteness becomes too large, while sparse coding continues to succeed in recovering the
mixing matrix. Since the number of bases being recovered changes as the overcompleteness
changes, it is not meaningful to compare the recovery metric between overcompletenesses,
but it meaningful to compare different models at fixed overcompleteness.

At fixed overcompletenesss (OC=2), we vary the k-sparsity and compare recovery costs
Fig (4C). Sparse coding performs well at all k-sparsenesses, but the ICA methods perform
better with larger k-sparseness. The L2 cost and Score Matching fails to recover well at
a lower k-sparseness than other ICA methods. Since the number of bases being recovered
is fixed as a function of the k-sparseness, the recovery metric can be compared across k-
sparseness and models.

Fig 4D and E show the methods in a regime (k = 6 and 3-times overcomplete, re-
spectively) where ICA methods do not recover the mixing matrix as well as sparse coding.
Fig C4 contains the same analysis for the full set of cost functions.

In summary, we show that in general, ICA analysis methods have limited ability to
recover generative dictionaries as a function of overcompleteness compared to sparse coding
although the methods proposed here extend the range of applicability, which is consistent
with Elad et al. (2007). Furthermore, we show that different ICA methods have different
regimes of performance with Score Matching and the L2 cost having the smallest ranges
of applicability. Other ICA methods generally have similar performance. Score Matching
did not always perform as well as other ICA methods as a function of overcompleteness
or k-sparseness, although it is a hyperparameter-free cost (no λ hyperparameter). The
more computationally costly sparse coding was able to recover the mixing matrix more
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Figure 4: Coherence control costs do not all recover mixing matrices well. All ground truth
mixing matrices were generated from the Soft Coherence cost and had a data
dimension of 32. Color and line style legend are preserved across panels. A The
normalized recovery error (see Section 3 for details) for a 2-times overcomplete
mixing matrix and k = 12 as a function of the sparsity prior weight (λ). Since
score matching does not have a λ parameter, it is plotted at a constant. B
Recovery performance (± s.e.m., n = 10) at the best value of λ as a function
of overcompleteness at k = 12. C Recovery performance (± s.e.m., n = 10) at
the best value of λ as a function of k-sparseness at 2-times overcompleteness. D,
E Same plots as B and C at a point where methods do not perform as well:
k = 6 and 3-times overcomplete. In B-E, the L4 and Flattened Coulomb lines
are largely overlapping.
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consistently than ICA models. This suggests that the linear inference in ICA models can
only recover dictionaries for moderately overcomplete representations.

2.6. Recovery of the analysis matrix with overcomplete ICA

In analysis dictionary learning (Elad et al., 2007; Rubinstein et al., 2013; Ophir et al.,
2011; Chun and Fessler, 2018), the goal is to find a set of dictionary elements such that
each datapoint is orthogonal to many (or k) elements of the set, rather than to find a
generative model for the data. Since overcomplete ICA models fit more naturally into an
analysis framework rather than a synthesis framework, we perform a similar analysis as in
Section 2.5, except here, we generate the data from an analysis model using the method
described in Rubinstein et al. (2013) (see Section 3 for details).

Across overcompleteness (OC) and k, the methods are generally more similar than in
Section 2.5. Note that in this analysis, k is the number of zeros in the projection per data
point, which is different than k in the synthesis data, which is the number of elements
included per data point. We find three main trends as a function of overcompleteness
and k: the L2 cost tends to perform worse or as well as the other costs, score matching
can perform slightly better or slightly worse than other methods, and L4, Coulomb, and
Flattened Coulomb are not well separated. Although this analysis does not distinguish the
costs proposed here, it does show that the L2 cost is suboptimal for both the synthesis and
analysis problems.

2.7. Experiments on natural images

When ICA is applied to real data, one typically does not know the exact sparse distribution
of the data. For instance, for a natural images dataset, we no longer have a ground truth
mixing matrix or known prior, and furthermore, it is not likely that natural image patches
come from a simple generative model (Hyvärinen and Köster, 2007; Lücke et al., 2009).
However, the effects of coherence control on the distribution of dictionary elements learned
can be evaluated. Specifically, we can look at the coherence of learned dictionaries and
whether different methods prevent duplicate features from being learned.

We train 2-times overcomplete ICA models on 8-by-8 whitened image patches from the
Van Hateren database (van Hateren and van der Schaaf, 1998) at a fixed value of sparsity
across costs found by binary search on λ. The score matching cost has no λ parameter
to trade off sparsity versus coherence although it finds solutions of similar sparsity to the
value chosen for the other costs. It is known that for natural images data sets, bases learned
with ICA can be well-fit by Gabor filters (Bell and Sejnowski, 1997). Hence, we evaluate
the distribution of the learned basis by inspecting the parameters obtained from fitting the
bases to Gabor filters (see Section 3.6 for details).

The distributions of angles from the trained ICA models are in line with the theoretical
results from Section 2.3. The L2 cost has more pairwise angles close to zero compared to the
other costs with the L4 having the smallest coherence (Fig 6A). Although the probabilities
for the L2 cost in Fig 6A trend to 10−5 for small angles, there is a peak at zero which is
closer to 10−3. For the natural images analysis, each learned dictionary has 2× 8× 8 = 128
elements which corresponds to 8128 pairwise angles. This means that for the L2 cost there
are approximately 8 pairs of elements that are nearly identical on average which means
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Figure 5: Coherence control costs do not all recover analysis matrices well. All ground truth
analysis matrices were generated from the Soft Coherence cost and had a data
dimension of 32. Color and line style legend are preserved across panels. A The
normalized recovery error (see Section 3 for details) for a 2-times overcomplete
analysis matrix and k = 10 as a function of the sparsity prior weight (λ). Since
score matching does not have a λ parameter, it is plotted at a constant. B
Recovery performance (± s.e.m., n = 10) at the best value of λ as a function of
overcompleteness at k = 10. C Recovery performance (± s.e.m., n = 10) at the
best value of λ as a function of k-sparseness at 2-times overcompleteness. D, E
Same plots as B and C at a point where methods do not perform as well: k = 5
and 6-times overcomplete. In B-E, the L4, Coulomb, and Flattened Coulomb
lines are largely overlapping.
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that about 5% of the elements are redundant. Similarly, as shown in Fig 6B, the Random
Prior and Coulomb costs have lower coherence when the second order terms are removed
and behave more similarly to the L4 cost. These distributions also show that ICA models
with the L2 cost tend to learn duplicate bases from natural images.
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Figure 6: The coherence of an overcomplete dictionary learned from natural images de-
pends on the coherence control cost. Results from fitting a 2-times overcomplete
model on 8-by-8 natural image patches. A, B Pairwise angle distributions (log
scale) across costs for the learned dictionaries for a fixed value of sparsity across
costs. B Comparison between the Random Prior and Coulomb costs and their
flattened versions. The L4 distribution is also shown for comparison. Note that
the horizontal axis covers 45 to 90 degrees and that the Flattened Random Prior
and Flattened Coulomb lines largely overlap the L4 line. C For each cost from
A and B, the 8 pairs of bases with smallest pairwise angle are shown. Since the
overall sign of a basis element is arbitrary, the bases have been inverted to have
positive inner product, if needed, for visualization.
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For the range of sparsities which were considered, the visual appearance of the individual
bases is similar to results from previous ICA work and similar across costs (L4 bases are
shown in Fig 7A). The tiling properties of the learned dictionaries can also be visualized
directly. The coordinates of the center of the fit Gabor filter, rotations, and scales tile the
space for the L2, L4, and Flattened Coulomb costs (Fig 7B). The dimensions and rotation of
the rectangle represent the envelope widths and planar rotation angle respectively. This is
similarly true for the planar rotation angle against the oscillation wavelength of the Gabor
(Fig 7C) and the envelope widths and wavelengths (Fig 7D). Although these distributions
look qualitatively similar, the underlying dictionaries can have very different coherence.

These results demonstrate that the L2 cost learns undesirable, high-coherence overcom-
plete dictionaries on real data. Visually inspecting the bases or even their tiling properties
may not reveal the redundant set of basis functions. To reveal this type of redundancy one
has to measure the coherence or the distribution of pairwise angles of a dictionary directly.

3. Methods

In this section we summarize previously proposed coherence control methods, our model
implementations, and datasets used.

3.1. Previously proposed coherence control methods

3.1.1. Reconstruction cost and the L2 cost

Le et al. (2011) propose adding a reconstruction cost to the ICA prior (RICA) as a form of
coherence control, which they show is equivalent to a cost on the L2 norm of the difference
between the Gram matrix of the filters and an identity matrix for whitened data

CRICA =
1

N

∑
ij

(X
(i)
j −

∑
kl

WkjWklX
(i)
l )2

∝ CL2 =
1

2

∑
ij

(δij −
∑
k

WikWjk)
2 =

1

2

∑
ij

(δij − cos θij)
2,

(14)

where Wij is the component of the ith source for the jth mixture , X
(i)
j is the jth element

of the ith sample, θij is the angle between pairs of basis, and δij is the Kronecker delta.
The L2 cost has also been proposed as a form of coherence control (Ramırez et al.,

2009; Sigg et al., 2012; Bao et al., 2014; Chun and Fessler, 2018). Equiangular tight-frames
(ETFs) are frames (overcomplete dictionaries) which have minimum coherence. The fact
that an ETF has minimum coherence is used to motivate the L2 cost as a form of coherence
control. A matrix W ∈ RL×D is an ETF if

|
∑
k

Wik ·Wjk| = cosα, ∀i 6= j (15)

for some angle, α, and ∑
k

WkiWkj =
L

D
δij . (16)

The L2 cost will encourage Eq 16 to be satisfied, but does not encourage Eq 15 to be
satisfied as we show in Theorem 1.
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Figure 7: All coherence costs learn a dictionary that approximately tiles the space of Gabor
Filters. A Dictionary learned using the L4 cost on 8-by-8 natural image patches.
B Distributions of locations, envelope scales, and rotations. Rectangle position:
center of Gabor fit in pixel coordinates, rectangle rotation: planar-rotation of the
Gabors, rectangle shape: envelope width parallel and perpendicular to the oscilla-
tion axis. C Distributions of rotations, log-wavelengths (λ), and envelope widths.
Polar plots of planar-rotation angle and log-spatial wavelength of the Gabors.
Marker size scales with geometric mean of envelope widths. D Distributions of
envelope scales and log-wavelengths. Log-scale plot of envelope widths-squared
parallel and perpendicular to the oscillation axis of the Gabors. Circle size scales
with log-wavelength.
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3.1.2. Quasi-orthogonality constraint

Hyvärinen et al. (1999) suggest a quasi-orthogonality update which approximates a sym-
metric Gram-Schmidt orthogonalization scheme for an overcomplete basis, W , which is
formulated as

W ← 3

2
W − 1

2
WW TW. (17)

3.1.3. Random prior cost

A prior on the distribution of pairwise angles was proposed to encourage low coherence (Hyvärinen
and Inki, 2002). The prior is the distribution of pairwise angles for two vectors drawn from
a uniform distribution on the n-sphere1

CRandom prior = −
∑
i 6=j

logP (cos θij) ∝ −
∑
i 6=j

log(1− cos2 θij). (18)

3.1.4. Score Matching

Score matching is a training objective function for non-normalized statistical models of
continuous variables(Hyvärinen, 2005). It has been used to learn overcomplete ICA models.
The score function is derivative of the log-likelihood of the model or data distribution with
respect to the data

ψ(X; Θ) = ∇X log p(X; Θ) (19)

The score matching objective is the mean-squared error between the model score, ψ(X; Θ),
and data score, ψD(X; Θ) averaged over the data, D

J(Θ) =
1

2

∫
X
pD(X)||ψ(X; Θ)− ψD(X; Θ)||2. (20)

3.2. Coherence-based costs

The coherence of a dictionary is defined as the maximum absolute value of the off-diagonal
elements of the Gram matrix (Davenport et al., 2011) as in Eq 6. Using the coherence as
a cost is equivalent to using the L∞ norm version of the Lp cost function. We find that
this cost is difficult to numerically optimize with both second order methods and gradient
descent since the derivative through the max operation will only act on one pair of bases
at each optimization step, although it should find solution with local minima of coherence.
An easier to optimize, but heuristic, version of this cost is the sum over all off-diagonal
elements whose squares are larger than the mean squared value

CSoft Coherence =
∑

i 6=j s.t. cos θ2ij>cos θ̂2

| cos θij |, with cos θ̂2 = mean
i 6=j

(cos θ2ij). (21)

We find that this cost does not optimize well for coherence control in ICA when fit with
data, but it can be used to create low-coherence mixing matrices for generating data with
known structure in Section 2.5.

1. For both the Random Prior and the Coulomb cost, we regularize the costs and their derivatives near
| cos θ| = 1 by adding a small positive constant in the objective: 1− cos θ2ij → 1 + |ε| − cos θ2ij .
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3.3. Model implementation

All models were implemented in Theano (Theano Development Team, 2016). ICA models
were trained using the L-BFGS-B (Byrd et al., 1995) implementation in SciPy (Jones et al.,
2001–2017). FISTA (Beck and Teboulle, 2009) was used for MAP inference in the sparse
coding model and the weights were learned using L-BFGS-B. All weights were training
with the norm-ball projection (Le et al., 2011) to keep the bases normalized. A repository
with code to reproduce the results is available2. For ICA models with coherence costs, the
coherence control cost with no sparsity penalty (λ = 0) was used as the objective for Figs 2
and 3.

3.4. Datasets

For all datasets and models, the number of samples in a dataset was equal to 10 times the
number of model parameters, that is, 10×nsources×nmixtures. Datasets were mean-centered
and whitened.

3.4.1. k-sparse and analysis datasets

For both datasets, dictionaries were generated by minimizing the Soft Coherence cost. The
synthesis data was generated by keeping k random elements per data sample from draws
of a diagonal multivariate Laplacian distribution, zeroing out the rest, and combining them

with the mixing matrix, X
(i)
j =

∑L
j=1AjkS

(i)
k , with k-sparse S.

For the analysis dataset, we use the method proposed by Rubinstein et al. (2013). X(i)

is initialized to i.i.d. Gaussian samples. Then, a subset of k elements, WAsub , of the analysis
matrix, WA, are chosen per data sample and are used to form a projection matrix which

removes the subspace spanned by WAsub from X(i), X
(i)
j =

∑L
k=1(I − ΩTΩ)

(i)
jkX

(i)
k , where

Ω is a basis for the subspace spanned by WAsub . This ensures that at least k elements of
WAX(i) will be zero.

3.4.2. Natural images dataset

Images were taken from the Van Hateren database (van Hateren and van der Schaaf, 1998).
We selected images where there was no evident motion blur and minimal saturated pixels.
8-by-8 patches were taken from these images and whitened using PCA.

3.5. Dictionary recovery error

If the mixing matrix A is recovered perfectly, W T will be a permutation of A. To estimate
the closeness to a permutation matrix, the matrix Pij = |ATi · Wj | is created. For the
analysis dictionaries WA, Pij = |WA

i ·Wj |. The Hungarian method (Kuhn, 1955) is used
to find the best assignment between ATi (or WA

i ) and Wj . Given this best assignment, the
median angle between the elements is returned.

This error is normalized by calculating the same quantity for matrices, W ∗, which
were recovered from mixing matrices A∗, which were from the same distribution as A but

2. https://github.com/JesseLivezey/oc_ica
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with different random initializations. After this normalization, perfect recovery gives a
normalized error of 0 and a random recovery gives a normalized error of 1.

3.6. Fitting Gabor parameters

We fit the Gabor parameters (Ringach, 2002) to the learned bases using an iterative grid-
search and optimization scheme which gave the best results on generated filters. The learned
parameters were the center vector: {µx, µy}, planar-rotation angle: θ, phase: φ, oscillation
wave-vector k, and envelope variances parallel and perpendicular to the oscillations: σ2x̂ and
σ2ŷ respectively. Because they are constrained to be positive, the log of the parameters: σ2x̂
and σ2ŷ are optimized. To keep the wavelength of the Gabor larger than 2 pixels, instead

of optimizing k directly we optimize ρ with k = 2π
2
√
2+exp(ρ)

. Shorter wavelengths would be

aliased by the pixel sampling.

x̂ = cos(θ)x+ sin(θ)y

ŷ = − sin(θ)x+ cos(θ)y

µ̂x = cos(θ)µx + sin(θ)µy

µ̂y = − sin(θ)µx + cos(θ)µy

Gabor(x, y;µx, µy, θ, σx̂, k, σŷ, φ) = exp

(
−(x̂− µ̂x)2

2σ2x̂
− (ŷ − µ̂y)2

2σ2ŷ

)
sin(kx̂+ φ)

(22)

A global, gradient-based optimization leads to many local minia where one lobe of the
Gabor would be well fit, but the other would not. We found that a combination of an
iterative approach with gradient-based optimization of subsets of the parameters worked
well. The procedure for finding the best Gabor kernel parameters was to save the parameter
set with best mean-squared error after the following iterations

1. for different initial envelope widths, fit the center location for the envelope to the
blurred, absolute value of the basis element,

2. for different initial planar rotations and frequencies, numerically optimize the planar
rotation, phase, and frequency of the Gabor

3. for the best fit from above, re-optimize the centers, widths, and phases,

4. re-optimize all parameters from best previous fit.

A repository with code to fit the Gabor kernels is posted online 3.

4. Discussion

Learning overcomplete sparse representations of data is often an extremely informative first
stage in analyzing multivariate data. In the field of neuroscience, overcomplete dictionary
learning serves as a theoretical model of how the brain analyzes sensory inputs (Olshausen

3. https://github.com/JesseLivezey/gabor_fit
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and Field, 1996; Klein et al., 2003; Smith and Lewicki, 2006; Rehn and Sommer, 2007;
Zylberberg et al., 2011; Carlson et al., 2012), motivating the study of methods suitable in
the overcomplete regime. For all of these purposes, the heavy computational cost of the
nonlinear inference step involved in common sparse coding approaches can be an obstacle for
large datasets. For learning complete sparse representations, ICA with just a linear inference
mechanism is a viable alternative with drastically reduced computational demand. Here,
we investigated the limitations of linear inference in overcomplete dictionary learning.

Any multidimensional method for extracting signal components needs a form of coher-
ence control to prevent components from becoming co-aligned and therefore redundant. We
first compared different coherence costs’ ability to prevent the learning of coherent dictio-
nary elements in the overcomplete case. We show theoretically and by simulation, that the
L2 cost, which successfully achieves minimum coherence (orthogonality) in the complete
case, exhibits pathological global minima with maximum coherence in the overcomplete
case. Encouraging diverse, incoherent, or orthogonal solutions has been proposed as a de-
sirable additional cost function for dictionary learning and deep network applications (Le
et al., 2011; Sigg et al., 2012; Ramırez et al., 2009; Bao et al., 2014; Brock et al., 2017; Chun
and Fessler, 2018; Bansal et al., 2018), typically by applying a power/norm to the difference
between an identity matrix and the gram matrix. However, the impact of previously pro-
posed costs (L1 and L2) on coherence has not been directly explored, and we have shown
that they do not encourage lower coherence.

We propose novel cost functions which do not suffer from pathological minima in the
overcomplete case. Specifically, we propose the L4 cost and the flattened versions of the
Coulomb and Random Prior costs, and show that they yield dictionaries with lower coher-
ence than the cost functions that have been proposed earlier. At the same time, these new
cost functions have smaller effects on incoherent basis pairs, thus leading to dictionaries
that reflect the structure of the data rather than effects from the coherence term.

We show that the methods of coherence control proposed here can extent the regime
of overcompleteness and sparseness, in which ICA methods can successfully learn recover
synthetic dictionaries with linear inference. However, this expansion of the regime of ap-
plicability is still limited. Even the improved methods begin to fail when overcompleteness
grows beyond two-fold (for 32 dimensional data) or if the data is k-sparse with small k. The
problem to deal with extremely k-sparse data is counterintuitive at first, because nonlinear
inference methods usually do better as k is decreased because the combinatorial search for
the best sparse support in the inference becomes easier (Davenport et al., 2011). However,
linear inference in ICA models cannot recover extremely sparse sources unlike sparse coding
models, which do not fail in the small-k limit.

Based on the observations in Section 2.4 that the leading terms in the Taylor expansion
will have the largest influence on the distribution of angles, we proposed a modification to
the Coulomb and Random Prior costs to make them more similar to the L4 costs which
resulted in lower coherence solutions. We do not have a strong way of distinguishing the
L4 cost and the flattened Coulomb and Random Prior costs. However, it may be possible
that the higher order terms become important in specific situations we have not considered
here and may distinguish these costs.

In this work, coherence costs were investigated as augmented costs for overcomplete ICA.
Although, the proposed methods only modestly extended the ability of linear inference to
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perform overcomplete model recovery, the proposed coherence control costs lead to learned
dictionaries with significantly higher coherence. In the case of dictionaries learned on natural
image patches, we show that the L4 cost prevents the model from learning duplicated
bases, unlike the L2 cost. For other application where low coherence might be desirable
(e.g., sparse coding, deep learning, the proposed cost functions could provide improved
coherence control. We note that variations of the ICA sparsity prior and mismatch with
data sparsity structure have not been systematically explored here and are another potential
topic of further investigation. All told, our study explores the power and limitations of linear
inference for overcomplete dictionary learning.
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Appendix A. Minima analysis for the L2 and L4 costs for a 2-dimensional
space.

We can write a 2 dimensional, 2 times overcomplete dictionary as

W =


1 0

cos θ1 sin θ1
cos θ2 sin θ2

cos(θ2 + θ3) sin(θ2 + θ3)

 (23)

If we restrict the dictionary to be composed of two orthogonal pairs, without loss of gener-
ality, we can write W as

W |θ1=θ3=π
2

=


1 0
0 1

cos θ2 sin θ2
− sin θ2 cos θ2

 (24)
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For the general dictionary For the Lp cost for even p is

CLp =
1

p

∑
ij

(δij −
∑
k

WikWjk)
p

=
1

p

∑
ij




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1 cos θ1
cos θ1 1
cos θ2 cos θ1 cos θ2 + sin θ1 sin θ2

cos(θ2 + θ3) cos θ1 cos(θ2 + θ3) + sin θ1 sin(θ2 + θ3)

· · ·

· · ·

cos θ2 cos(θ2 + θ3)
cos θ1 cos θ2 + sin θ1 sin θ2 cos θ1 cos(θ2 + θ3) + sin θ1 sin(θ2 + θ3)

1 cos θ2 cos(θ2 + θ3) + sin θ2 sin(θ2 + θ3)
cos θ2 cos(θ2 + θ3) + sin θ2 sin(θ2 + θ3) 1



p

=
1

p
(2 cosp θ1 + 2 cosp θ2 + 2 cosp(θ2 + θ3)

+ 2(cos θ1 cos θ2 + sin θ1 sin θ2)
p + 2(cos θ1 cos(θ2 + θ3) + sin θ1 sin(θ2 + θ3))

p

+2(cos θ2 cos(θ2 + θ3) + sin θ2 sin(θ2 + θ3))
p)

(25)

This can be simplified for the case of 2 orthogonal bases (Eq 24)

CLp |θ1=θ3=π
2

=
1

p
(2 cosp θ2 + 2 sinp θ2 + 2 sinp θ2 + 2 cosp θ2 + 2(− cos θ2 sin θ2 + sin θ2 cos θ2)

p)

=
1

p
(4 sinp θ2 + 4 cosp θ2) .

(26)

For p = 2 and p = 4 this is

CL2 |θ1=θ3=π
2

=
1

2
(4 cos2 θ2 + 4 sin2 θ2) = 2

CL4 |θ1=θ3=π
2

= cos4 θ2 + sin4 θ2.
(27)

Here we tabulate the full Hessian matrices, eigenvalues, and eigenvectors for the analysis
in Sections 2.1 and 2.2.
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A.1. L2 cost

CL2(θ1, θ2, θ3)|θ1,θ3=π2
= 2

∂CL2(θ1, θ2, θ3)

∂~θ
|θ1,θ3=π2

=
(
0 0 0

)
H(CL2)|θ1,θ3=π2

=

 2 0 2 cos 2θ2
0 0 0

2 cos 2θ2 0 2


EVal.(HL2)|θ1,θ3=π2

=

 0
4 sin2 θ2
4 cos2 θ2


EVec.(HL2)|θ1,θ3=π2

=

0
1
0

 ,

−1
0
1

 ,

1
0
1



(28)

A.2. The second eigenvalue of the L2 cost

For the second eigenvalue and eigenvector, 4 sin2 θ2 and (-1, 0, 1), centered at θ1 = θ3 = π/2,
θ2 = 0, the cost along the direction of the eigenvector is

C(EVal2,∆θ) =
1

2

(
2 cos2(π/2−∆θ) + 2 cos2 0 + 2 cos2(0 + π/2 + ∆θ)

+ 2(cos(π/2−∆θ) cos 0 + sin(π/2−∆θ) sin 0)2

+ 2(cos(π/2−∆θ) cos(0 + π/2 + ∆θ)

+ sin(π/2−∆θ) sin(0 + π/2 + ∆θ))2

+2(cos 0 cos(0 + π/2 + ∆θ) + sin 0 sin(0 + π/2 + ∆θ))2
)

= 1 + 4 sin2 ∆θ + sin4 ∆θ + cos4 ∆θ − 2 sin2 ∆θ cos2 ∆θ

(29)

which Taylor-expanded around ∆θ = 0 gives

C(EVal2,∆θ) = 1 + 4(∆θ2 +
∆θ4

3
) + (∆θ4) + (1− 2∆θ2 +

5∆θ

3
)

− 2(∆θ2 − 4∆θ

3
) +O(∆θ5)

= 2 +
4∆θ4

3
+O(∆θ5).

(30)

This shows that although the second (and third) derivative is zero, the fourth derivative is
positive, meaning this point is a minimum.
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A.3. L4 cost

CL4(θ1, θ2, θ3)|θ1,θ3=π2
= cos4 θ2 + sin4 θ2

∂CL4(θ1, θ2, θ3)

∂~θ
|θ1,θ3=π2

=
1

2

(
sin 4θ2 −2 sin 4θ2 − sin 4θ2

)
H(CL4)|θ1,θ3=π2

=

 −2 cos 4θ2 2 cos 4θ2 cos 2θ2 + cos 4θ2
2 cos 4θ2 −4 cos 4θ2 −2 cos 4θ2

cos 2θ2 + cos 4θ2 −2 cos 4θ2 −2 cos 4θ2



EVal.(HL4)|θ1,θ3=π2
=


cos 2θ2 − cos 4θ2

−1
2 cos 2θ2 − 7

2 cos 4θ2 − . . .
. . . 1

2
√
2

√
34− 2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + 33 cos 8θ2

−1
2 cos 2θ2 − 7

2 cos 4θ2 + . . .
. . . 1

2
√
2

√
34− 2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + 33 cos 8θ2


EVec.(HL4)|θ1,θ3=π2

=

1
0
1

 ,


−1

(
√
2
8

√
2 cos 2θ2 + cos 4θ2 − . . .

. . . 2 cos 6θ2 + 33 cos 8θ2 + 34
− . . .

. . .− 2 cos 2θ2) sec 4θ2 + 1
4

1

 ,


−1

1
4 − (2 cos 1

4θ2 + . . .

. . .
√
2
8

√
−2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + . . .

. . . 33 cos 8θ2 + 34
) sec 4θ2

1


(31)

Appendix B. Proofs of Theorems 1 and 2

B.1. L2 cost minima and equiangular tight-frames: proof of Theorem 1

We can prove Theorem 1 in two ways. The first way is by showing that a dictionary of
concatenated identity matrices is at the global minimum of the CL2 cost and is a short
proof. The second is longer, but makes an explicit connection to the CL2 cost optimizing
one but not both of the conditions of an equiangular tight-frame (Eqs 15 and 16).

B.2. Proof 1

Here we prove Theorem 1 by showing that a dictionary of stacked identity matrices is a
global minimum of the CL2 cost.
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Proof [Proof 1 of Theorem 1] For an overcomplete dictionary W ∈ RL×D, the expression
for the minimum possible coherence is known (Strohmer and Heath Jr, 2003)

Coherencemin(W ) =

√
L−D
D(L− 1)

. (32)

The CL2 cost is the sum of the off-diagonal elements of the squared Gram matrix. The
minimum possible value for each element is given by the square of Eq 32 and so the minimum
of the CL2 cost will be achieved if all (L2−L) off-diagonal elements are equal to the square
of the value in Eq 32

CL2, min = (L2 − L)

√
L−D
D(L− 1)

2

=
L(L−D)

D
. (33)

For W = W0 constructed as an identity matrix concatenated L/D times, the sum of the
off-diagonal elements of the squared Gram matrix is

CL2(W0) = (
L

D

2

− L

D
)D =

L(L−D)

D
(34)

which is the minimum value. However, W0 has coherence = 1 since the stacked identity
matrices contain identical elements.

B.3. Proof 2

Here we prove Theorem 1 in two steps: first we can show the equivalence, up to an additive
constant, of minimizing the L2 cost and minimizing the L2 norm of the error of Eq 16.
Then we show that the pathological solution (Section 2.1) is at the global minimum of this
cost.

Proof [Proof 2 of Theorem 1] For a normalized (
∑

kW
2
ik = 1, ∀ i) matrix, W

CL2 =
∑
ij

(
∑
k

WikWjk − δij)2

=
∑
ij

(
∑
k

WikWjk − δij)(
∑
l

WilWjl − δij)

=
∑
ijkl

WikWjkWilWjl − 2
∑
ijk

WikWjkδij +
∑
ij

δ2ij

=
∑
ijkl

WikWjkWilWjl − 2
∑
ik

W 2
ik + const.(L)

=
∑
ijkl

WikWjkWilWjl + const.(L)

(35)
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CEq 16 =
∑
kl

(
∑
i

WikWil −
L

D
δkl)

2

=
∑
kl

(
∑
i

WikWil −
L

D
δkl)(

∑
j

WjkWjl −
L

D
δkl)

=
∑
ijkl

WikWilWjkWjl − 2
∑
ikl

L

D
WikWilδkl +

∑
kl

(
L

D
δkl)

2

=
∑
ijkl

WikWilWjkWjl − 2
L

D

∑
ik

W 2
ik + const.(L,D)

=
∑
ijkl

WikWilWjkWjl + const.(L,D)

(36)

where
∑

kW
2
ik = 1, ∀ i is used extensively and the index letters were initially chosen to

make the comparison of the final lines more clear. Le et al. (2011) show this first equivalence
and that the L2 cost is also shown to be equivalent to the reconstruction cost with whitened
data (Lemmas 3.1 and 3.2 in Le et al. (2011)).

Now we can show that the same dictionary that was described in Section 2.1: W0, an
integer overcomplete dictionary where each set of complete bases is an orthonormal basis,
exactly satisfies Eq 16 and so is a minimum of the L2 cost. This solution is very far
away from an ETF in the sense of Eq 15. A dictionary of this form, W ∈ RL×D, can be
constructed as Wij = δ(i mod D)j with L = n × D, n > 1, ∈ Z, that is, a D dimensional
identity matrix tiled n times.

This construction satisfies Eq 16 and therefore has a value of 0 for CEq 16. Since CEq 16 is
a sum of quadratic, and therefore non-negative, terms, this construction is a global minimum
of CEq 16 and the L2 cost∑

k

WkiWkj =
∑
k

δ(k mod D)iδ(k mod D)j

= nδij

=
L

D
δij

⇒ CEq 16 = 0

(37)

as k mod D = i a total of n times when i = j.
However, this construction has off-diagonal Gram matrix elements that are either 0 or

1:

cos θij =
∑
k

WikWjk

=
∑
k

δ(i mod D)kδ(j mod D)k

= δ(i mod D)(j mod D),

(38)

which is not equal or close to an equiangular solution, that is, cos θij = cosα, ∀i 6= j.
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B.4. Invariance to continuous transformations: proof of Theorem 2

Here we prove Theorem 2: the L2 cost, initialized from the pathological solution, is invariant
to transformations, Φ, constructed as orthogonal rotations applied to any basis subset and
an identity transformation on the remaining bases. This shows that low coherence and high
coherence configurations are both global minima of the L2 cost.

Proof [Proof of Theorem 2] For an D dimensional space with an n times overcomplete
dictionary, with n an integer greater than 1, the pathological dictionary configuration is a
orthonormal basis tiled n times. The dictionary elements can be labels as the sequential
subsets of orthornormal subsets W1, . . . ,WD, . . . ,W2D, . . . ,Wn×D. So, bases W1 through
WD form a full-rank, orthonormal basis and this basis is tiled n times.

Consider the following partition of the bases: partition A is the first orthonormal set,
bases W1 through WD, and partition B the remainder of the bases, WD+1 through Wn×D.
Let P be a projection operator for A and PC its complement projection operator for B,
that is, PCWi = Wi, PWi = 0 ∀ Wi ∈ B and PWj = Wj , P

CWj = 0 ∀ Wj ∈ A. Let
R ∈ O(L) be any rotation and PR a rotation that only acts on the A subspace. The
operator Φ = PR + PC is a rotation applied to all elements of A which leaves elements of
B unchanged. Under its action, only terms in the cost between elements of A and B will
change. It is straightforward to show that the terms in the cost that have both elements
within A or both within B are constant since the rotation does not alter the relative pairwise
angles.

For Wi ∈ B, we can write down the terms in the L2 cost which contain itself and elements
from APR

CWi(AΦ) =
∑
Wj∈A

(RTP TW T
j Wi)

2 + (W T
i WjPR)2

=
∑
Wj∈A

(RTW T
j Wi)

2 + (W T
i WjR)2

= 2
∑
Wj∈A

ProjWjR(Wi)
2

= 2|Wi|2

= CWi(A).

(39)

Since the Wj ∈ A remain an orthonormal basis under a rotation, the sum of the
projections-squared is the L2 norm-squared of Wi which is constant. Since this is true
for every Wi ∈ B, the entire cost is constant under this transformation. This argument
holds for any subset which forms an orthonormal basis and so all orthonormal subsets can
rotate arbitrarily with respect to each other without changing the value of the L2 cost,
but the coherence of the matrix does depend on the transformation, Φ. This shows that
the L2 global minimum contains dictionaries with coherence = 1 and < 1 which can be
continuously transformed into each other.
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Appendix C. Additional figures

C.1. Extended Fig 2

Fig C1 is identical analysis as Fig 2 with all cost functions included.
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Figure C1: Coherence control costs have minima with varying coherence which can depend
on initialization. Color legend is preserved across panels. For both panels a 2
times overcomplete dictionary with a data dimension of 64 was used. A Dis-
tribution of pairwise angles (log scale) obtained by numerically minimizing a
subset of the coherence cost functions for the pathological dictionary initializa-
tion. Red dotted line indicates the initial distribution of pairwise angles. Note
that the horizontal axis is broken at 10 and 80 degrees. B Angle distributions
obtained (as in A) from a uniform random dictionary initialization. Note that
the horizontal axis only includes π

3 to π
2 .

C.2. Pairwise distributions for different powers

Fig C2 shows parwise angle distrubutions for cost functions based on powers of the difference
between the gram matrix and the identity matrix for powers from 1 to 6 (skipping 2).

C.3. Local minima and saddle points are rare

Fig C3A shows the distribution of the mean-centered final cost values normalized by the
average cost value at initialization

Normalized Cost =
Cmin − 〈Cmin〉
〈Cinit〉

(40)

over 1000 uniform n-sphere initializations. All optimized cost functions are tighly bunched
(1 part in ∼ 10−3). Minimizing the L2 cost finds minima that are exactly equal to single
precision floating point. This means that all costs are empirically converging to the same
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Figure C2: Coherence control costs based on powers of the difference between the Gram
matrix and the identity matrix have highest coherence for powers 4 and 5. A
Distribution of pairwise angles (log scale) obtained by numerically minimizing
power-based coherence cost functions for the pathological dictionary initializa-
tion. Red dotted line indicates the initial distribution of pairwise angles. Note
that the horizontal axis is broken at 10 and 80 degrees. B Angle distributions
obtained (as in A) from a uniform random dictionary initialization. Note that
the horizontal axis only includes 65 to 90 degrees.
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value across many random re-initializations implying that they are not getting stuck in local
minima or saddle points.
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Figure C3: Local minima and saddle points do not impede optimization. A The distribution
of the mean-centered final cost values normalized by the average cost value at
initialization over 1000 uniform n-sphere initializations. B The distribution of
the mean-centered final smallest pariwise angles over 1000 uniform n-sphere
initializations.

Fig C3B shows the distribution of mean-centered final smallest pariwise angles

Normalized Smallest Pairwise Angle = Θmin − 〈Θmin〉 (41)

over 1000 uniform n-sphere initializations. Although all cost functions minimize to con-
sistent values, they do not all minimize to consistent values of coherence (cosine of the
smallest pairwise angle). The L4, Flat Coulomb and Flat Random Prior costs all minimize
to have tightly bunched coherence (∼ .002 radians, ∼ 0.1 degrees) compared to the L2 cost
(∼ 0.025 radians, ∼ 1.5 degrees). This shows that all costs do not have problems with local
minima or saddle points, but that minimizing the L2 cost does not lead to consistently low
coherence.

C.4. Extended Fig 4

Fig C4 is identical analysis as Fig 4 with all cost functions included.

C.5. Extended Fig 5

Fig C5 is identical analysis as Fig 5 with all cost functions included.

C.6. Supplemented Fig 3D.

Fig C6 is similar to Fig 3D for the Coulomb and Random Prior costs and their flattened
versions.
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Figure C4: Coherence control costs do not all recover mixing matrices well. All ground truth
mixing matrices were generated from the Soft Coherence cost and had a data
dimension of 32. Color and line style legend are preserved across panels. A The
normalized recovery error (see Section 3 for details) for a 2-times overcomplete
mixing matrix and k = 12 as a function of the sparsity prior weight (λ). Since
score matching does not have a λ parameter, it is plotted at a constant. B
Recovery performance (± s.e.m., n = 10) at the best value of λ as a function
of overcompleteness at k = 12. C Recovery performance (± s.e.m., n = 10) at
the best value of λ as a function of k-sparseness at 2-times overcompleteness.
D, E Same plots as B and C at a point where methods do not perform as
well: k = 6 and 3-times overcomplete. In B-E, the L4, Coulomb, Flattened
Coulomb, Random, and Flattened Random lines are largely overlapping.
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Figure C5: Coherence control costs do not all recover analysis matrices well. All ground
truth analysis matrices were generated from the Soft Coherence cost and had a
data dimension of 32. Color and line style legend are preserved across panels. A
The normalized recovery error (see Section 3 for details) for a 2-times overcom-
plete analysis matrix and k = 10 as a function of the sparsity prior weight (λ).
Since score matching does not have a λ parameter, it is plotted at a constant.
B Recovery performance (± s.e.m., n = 10) at the best value of λ as a function
of overcompleteness at k = 10. C Recovery performance (± s.e.m., n = 10) at
the best value of λ as a function of k-sparseness at 2-times overcompleteness.
D, E Same plots as B and C at a point where methods do not perform as
well: k = 5 and 6-times overcomplete. In B-E, the L4, Coulomb, Flattened
Coulomb, Random, and Flattened Random lines are largely overlapping.
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Figure C6: Quadratic terms dominate the minima of coherence control costs as a function
of overcompleteness. The median minimum pairwise angle (arccosine of coher-
ence) across 10 initializations is plotted as a function of overcompleteness for
a dictionary with a data dimension of 32. The largest possible value (Welch
Bound) is also shown as a function of overcompleteness.
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Friedrich T Sommer. Spatially distributed local fields in the hippocampus encode rat
position. Science, 344(6184):626–630, 2014.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality
regularizations in training deep networks? In Advances in Neural Information Processing
Systems, pages 4261–4271, 2018.

Chenglong Bao, Yuhui Quan, and Hui Ji. A convergent incoherent dictionary learning
algorithm for sparse coding. In European Conference on Computer Vision, pages 302–
316. Springer, 2014.

Horace B Barlow. The ferrier lecture, 1980: Critical limiting factors in the design of the
eye and visual cortex. Proceedings of the Royal Society of London B: Biological Sciences,
212(1186):1–34, 1981.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Anthony J Bell and Terrence J Sejnowski. The independent components of natural scenes
are edge filters. Vision research, 37(23):3327–3338, 1997.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston. Neural photo
editing with introspective adversarial networks. In 5th International Conference on Learn-
ing Representations 2017, 2017.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–
1208, 1995.

Nicole L Carlson, Vivienne L Ming, and Michael Robert DeWeese. Sparse codes for speech
predict spectrotemporal receptive fields in the inferior colliculus. PLoS Comput Biol, 8
(7):e1002594, 2012.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition
by basis pursuit. SIAM review, 43(1):129–159, 2001.

Il Yong Chun and Jeffrey A Fessler. Convolutional analysis operator learning: Acceleration,
convergence, application, and neural networks. arXiv preprint arXiv:1802.05584, 2018.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287–314, 1994.

Christine A Curcio and Kimberly A Allen. Topography of ganglion cells in human retina.
Journal of comparative Neurology, 300(1):5–25, 1990.

Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Introduction
to compressed sensing. preprint, 93(1):2, 2011.

38



Learning Overcomplete, Low Coherence Dictionaries with Linear Inference

Arnaud Delorme, Terrence Sejnowski, and Scott Makeig. Enhanced detection of artifacts in
eeg data using higher-order statistics and independent component analysis. Neuroimage,
34(4):1443–1449, 2007.
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