
Error-Resilient Analog Image Storage and Compression with Analog-Valued RRAM
Arrays: An Adaptive Joint Source-Channel Coding Approach

Xin Zheng1*, Ryan Zarcone2, Dylan Paiton3, Joon Sohn1, Weier Wan1, Bruno Olshausen3+ and H. -S. Philip Wong1#

1Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA,
$*8=>7E@82@ ,?13B1A4 ,?=B> %08@8=< .284<24 ,?13B1A4 ,?=B> /+ *4?94:4E *4?94:4E +) (&'$" /.)!

E-mail: *xzheng3@stanford,edu, + baolshausen@berkeley.edu, # hspwong@stanford.edu

Abstract F We demonstrate by experiment an image storage

and compression task by directly storing analog image data

onto an analog-valued RRAM array. A joint source-channel

coding algorithm is developed with a neural network to

encode and retrieve natural images. The encoder and decoder

adapt jointly to the statistics of the images and the statistics of

the RRAM array in order to minimize distortion. This

adaptive joint source-channel coding method is resilient to

RRAM array non-idealities such as cycle-to-cycle and

device-to-device variations, time-dependent variability, and

non-functional storage cells, while achieving a reasonable

reconstruction performance of ~ 20 dB using only 0.1

devices/pixel for the analog image.

I. INTRODUCTION

-B27 =5 A=31EJ@ 31A1 (e.g. video, audio, and images) are

inherently analog. To store and compress these analog data

onto digital memory, analog-digital data conversion (source

coding) and digital compression (channel coding) are usually

performed separately. Analog, non-volatile memory (NVM),

such as RRAM and PCM, offer opportunities to directly store

multi-dimensional analog data. The challenge is to perform

reliable storage and retrieval of analog signals with non-ideal

NVM devices. In this paper, we present a joint source-

channel coding algorithm with a neural network to store and

compress natural images onto an analog-valued RRAM array.

Through jointly learning the data and memory statistics, our

source-channel coding algorithm finds an optimal use of the

;4;=?EJ@ intrinsic data storage capacity [1]. Using this

algorithm, we demonstrate by experiment that natural images

can be reliably stored and retrieved with an analog-valued

RRAM array, while having additional desirable properties of

being resilient to array-level non-idealities such as cycle-to-

cycle and device-to-device variations, time-dependent

variability, and non-functional storage cells. Our work

presents a way to use imperfect NVMs whereby cost and

fabrication advantages are utilized while the non-idealities of

the device technology are circumvented. This approach

shows that it is fruitful to customize the way we use the

device technology to suit the task at hand.

II. JOINT SOURCE-CHANNEL CODING ALGORITHM

To learn a mapping from natural images to the RRAM

array, we constructed a multilayer autoencoder neural

network (Fig. 1), analogous to a denoising autoencoder [2].

With a succession of linear/nonlinear operations, the encoder

transforms an input image into a set of resistances to be

written to the array. To retrieve the stored image, the decoder

transforms the read-resistances into a reconstruction.

Specifically, the encoder and decoder weights are

parameterized as filter convolutions. For the non-linearities,

=? G12A8C1A8=< 5B<2A8=<@I we used divisive normalization

(Equation 3 in [3]), a population nonlinearity that implements

a local form of gain control.

In order to train the network, we constructed a

differentiable model of the RRAM channels, with two

sources of channel noise: (1) a uniform noise induced by the

write process and (2) 1 G@>1?@4I <=8@4 8<3B243 by device

failure. The latter was implemented during network training

by randomly choosing a certain percentage of the devices and

then sending them to the low resistance state (LRS) (i.e.

setting RT to 0). Thus, the noise model for each device was:

"$!19 L1;M D "$!1; , L* C 4M B "$! 6 , 7& & 7(2LC)'+&)'+M L*M

where 6 is the write process acceptance range, 2LC)'+&)'+M is

the uniform distribution function and 4 - N)&*O is the sparse

noise parameter (by default 4 D)& but 4 D * when the

device fails). More importantly, this channel model is not

specific to the type of memory device. The model can be

adapted to any analog programmable memory device (even

those with highly nonlinear input/output functions [4]).

For training, the network weights were learned by

backpropagating the gradient of the objective function:

0 D .K3 C 3IK
8
B 5 E# %G)& "$! :@

:@><A
H B# % P)& "$!

:@>=?
:@

Q F/ (2)

The first term corresponds to the squared error between the

original image, X, and its reconstruction, J. The second term

is a cost that penalizes the network for using values outside

the range of acceptable RT (5 being a scalar hyper-parameter

A71A D4867A@ A78@ A4?;J@ 8;>=?A1<24 ! .' / indicates an average

over an image-batch during training. The training set

consisted of ~1.2×105 images from the 2016 ImageNet test

set [5] and the Flickr Creative Commons set [6].

III. ANALOG VALUE STORAGE WITH RRAM ARRAY

To demonstrate by experiment this analog data storage

method, we fabricated a CMOS-integrated TiN/HfOx/Pt 1K

1T1R array (Fig. 2). Fig. 3 shows a cross-section schematic

of the RRAM Stack: Pt (30 nm) / HfOx (5 nm) / TiN (50 nm).

Fig. 4 shows typical DC (Fig. 4 (a)) and AC (Fig. 4 (b)) cell

characteristics in the 1T1R array with analog storage

capability. We encoded 448 analog resistances, RT (10 KK to

100 MK , from 64×64 pixels (8 bits per pixel) images onto

978-1-7281-1987-8/18/$31.00 ©2018 IEEE 3.5.1 IEDM18-71

448 cells, a ratio of 1 device per 10 pixels. We set the write

acceptance range 6 to 2. Ref. [7] showed that for a two-

terminal RRAM device, any resistance level within its

dynamic range can be achieved with high accuracy by

applying a combination of incremental step RESET and SET

pulse trains. Here we extend this write algorithm to 1T1R

device programming. A double-direction incremental step

pulse programming strategy (DD-ISPP) was used to precisely

program cell resistances into the acceptance range, in spite of

cycle-to-cycle and device-to-device variations. Fig. 5 (a)

shows the DD-ISPP sequence. The device was initially SET

to the LRS (1?=B<3 #" 9K). A full DD-ISPP writing pulse

parameter set is listed in Fig. 5 (b). The cell resistance was

verified after each write pulse. The sequence continued until

one out of three conditions was satisfied: (i) the programmed

resistance fell into the acceptance range; (ii) the WL voltage

exceeded the maximum value (5V for RESET, 1.2V for

SET); (iii) the total number of write pulses reached the

maximum number (100). If the final programmed resistance

was still outside the acceptance range, we SET it back to the

initial LRS (corresponding to the sparse noise in the RRAM

model of Section II). Fig. 5 (c) (d) show an example writing

with DDFISPP, where RESET over-programming is fixed by

the SET pulse train. Targeting at different RT (100 KK %""
KK 1 -K 1<3 % MK D8A7 A74 1224>A1<24 ?1<64 =5 $ Fig. 6

shows cycle-to-cycle (Fig. 6 (a)) and device-to-device (Fig. 6

(b)) resistance distributions written by DD-ISPP, both

following the same uniform distribution centered at RT with

boundaries defined by the acceptance range (this being well-

modeled by the uniform noise term in the RRAM model). Fig.

7 shows the log-scale 448 resistance values encoded by the

network (RT, Fig. 7 (a)) and stored on the array (RM, Fig. 7

(b)).

IV. IMAGE RECONSTRUCTION WITH DEVICE NON-

IDEALITY

Device non-ideality brings different challenges to the

system robustness of analog RRAM storage than digital

(binary) storage. Specifically, there are two main kinds of

device non-ideality that degrade analog array storage

capability: error cells and resistance relaxation.

Error Cells The full resistance dynamic range (max.

and min. achievable resistance values) of different cells

within an array may differ. For a specific cell, if the target

resistance assumed by the algorithm is outside the full

dynamic range of the cell by a distance larger than the

acceptance range, error values are generated. Our

experimental array had an error rate of 0.2% (1 out of 448).

Different images could have different number of error bits

based on the targeted resistance from the encoder. In order to

achieve reliable reconstruction results, the algorithm needs to

tolerate the worst-case scenario (maximum error rate). We

trained the network with an estimated maximum error rate of

2%. Note that this is a very high error rate for a product

technology and we used this as a way to illustrate the error

resiliency of our methodology. To test the algorithmJs error-

resiliency, we explored the relation between reconstruction

mean squared error (MSE) and storage error rate. Various

error rates (0.5%, 1%, 2%, 5%, and 10%) were dialed in by

randomly selecting a set of cells and SETTING them to LRS

(Fig. 8). Fig. 9 shows reconstructions (top) for the original

image and corresponding MSE (bottom) for the different

error rates (all images are scaled to have pixel values of mean

= 0, variance = 1). Interestingly, even though the network

was trained with 2% error, the algorithm was able to tolerate

error up to 5% before suffering from serious degradation.

Resistance Change After Programming Our DD-ISPP

method is capable of programming cell resistances efficiently

within the acceptance range given by the target. However,

when decoding from resistance values read from the array,

time-dependent variability (TDV), which cannot be

suppressed with write-verification methods [8][9], may cast

the resistance values outside of acceptance ranges and

degrade reconstructions. TDV must be properly considered

when evaluating image reconstruction performance. After

storing the resistances onto the array, resistance drift over

time was monitored (Fig. 10). Fig. 11 (a) shows the final

resistances programmed with DD-ISPP. Within 1 second

after programming, we read the resistance again (Fig. 11 (b))

and observed some outliers due to read noise and short-term

relaxation [8]. Fig. 11 (c) shows that more outliers appear 1

minute after programming. A broader distribution is observed

when reading resistance 12 hours after programming (Fig. 11

(d)). Fig. 12 shows the reconstructions (top) of the original

image and their corresponding MSE (bottom) over time. Fig

12 (a) shows compression-only, where RT=RM. Fig. 12 (b)-

(e) correspond to the reconstruction results from the

resistance read values from the array shown in Fig. 11 (a)-(d).

Our scheme is resilient to outliers, where GC4?85E-?413I
Gdirect readI 1<3 G1 minute after writeI @7=D similar MSE

and resistance distribution broadening after 12-hours only

causes a small increase in MSE.

It should also be noted that at this compression rate of 1

device/10 pixels and 1 bit/ channel, JPEG would produce a

very poor reconstruction. As shown previously [4], if the goal

is simply to perform compression with a set of additive-noise

storage devices (neglecting the more realistic device failures)

the neural-network algorithm is able to outperform JPEG.

V. CONCLUSION

Key achievements: (1) A joint source-channel coding

algorithm was developed, adapting to RRAM array

characteristics to store analog data directly onto the analog-

valued RRAM array. (2) An image storage and compression

task was demonstrated by experiments with an RRAM array.

(3) Our method empirically showed error-resilience against

device non-idealities such as error cells, cycle-to-cycle and

device-to-device variations, and resistance relaxation.

ACKNOWLEDGMENT

Work supported in part by ASCENT, one of the six centers

in JUMP, ENIGMA from the NSF/SRC, E2CDA, NSFGRFP,

and the Stanford SystemX Alliance and Stanford NMTRI.

3.5.2IEDM18-72

Fig. 5 DD - ISPP Scheme (a) Flow chart showing how to use DD-ISPP to fine

tune the resistance into acceptance range using incremental step RESET pulse

train and incremental step SET pulse train (b) Table: SET and RESET

incremental pulse train parameters used in DD-ISPP. (c) -(d) Example writing

with DD ISPP showing the over-programming can be fixed by programming in

the opposite direction, and starting from minimal voltage when changing the

direction can minimize programming across the range and thus save energy. (c)

write pulse train waveform (d) measured resistance as a function of pulse number.

Acceptance

Range

Set Pulse

Train
Reset

Pulse Train

VWL

Time

Reset Pulse

Train

Set Pulse Train

50 ns100 ns

(a)

(b)

DD-ISPP Programming Conditions

RESET SET

VWL Start (V) 2.5 0.5

VWL Stop (V) 5 1.2

VWL Step (V) 0.2 0.1

VBL (V) 0 2.5

VSL (V) 3.5 0

Pulse Width (ns) 100 50

(c)

Fig. 1 Diagram of the autoencoder architecture. The input image, X, is transformed through the

encoding neural network, F, into a set of target write resistances, RT. These resistances are then

written to the device array (purple circles). The devices are then read, yielding measured resistances

RM. RM are passed through the decoding neural network, G, yielding the reconstructed image , .

Input

image

Encoding

neural

network

Target

Resistances
Measured

Resistances

Decoding

neural

network

X RM XF G

Recon.

image

RRAM

array

RT

g

Fig. 4 Analog programmable capability of RRAM

cell (a) Typical I-V curves of one cell in RRAM

array. Median set (red) and reset (blue) of 50 set

(VWL = 1.2 V, VSL = 0 V) /reset (VWL = 4.5 V,

VBL = 0 V) cycles. (b) Multiple resistance levels

achieved by pulse RESET with different VWL

(Pulse Width = 100 ns, VSL = 3.5 V, VBL = 0 V).

(b)

VWL = 2.5 V

RESET &

Read

Success

R >LL

VWL += 0.2 V
Yes

LL: Lower Limit of Acceptance Range

UL: Upper Limit of Acceptance Range

N: Maximum number of write pulses

R <UL

Yes

VWL = 0.5 V

SET &

Read

R <UL

No

R >LL
Yes

Yes

Success No

No

No

RESET Pulse Train SET Pulse Train

VWL

> 5 V

Pulse

> N

Yes

No

No

No

VWL += 0.1 V

End

End

(a)
Start from LRS

VWL

>1.2 V

No
Yes

Yes

Pulse

> N

Yes

Yes

Yes

Fig. 3 The cross-section schematic of

RRAM stack: Pt (30 nm) / HfOx (5 nm)

/ TiN (50 nm). SiN : passivation layer.

Al : M7 layer

a)

y

M5

SiN

M5

RRAM

TiN (50 nm)

HfOx (5nm)

Pt (30 nm)

RRAM

M6

(d)

(b)

Fig. 4 Analog programmable capabili

REFERENCES

[1] JH. Engel, et al. IEDM (2014)

[2] P. Vincent et al. ICML (2008)

[3] J. Balle et al. ICLR (2017)

[4] R. Zarcone, et al. DCC (2018)

[5] J. Deng et al. CVPR (2009)

[6] B. Thomee et al, Communications of
the ACM, 59, 2, pp. 64-73 (2016)

[7] F. Alibart, et al. Nanotechnology, 23,

7, p.075201 (2012)

[8] A. Fantini, et al. IEDM (2015)

[9] S. Ambrogio, et al. IEEE TED, 62, 11,

pp.3812-3819 (2015)

VWL = 3.8 V

3.6 V

3.4 V

LRS

1024 RRAMs on CMOS

50 um

5 um

Fig. 2 SEM image of the 1K 1T1R

analog-valued RRAM array used for

storing image in this work

5 um

1T1R Cells

3.5.3 IEDM18-73

