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Abstract F We demonstrate by experiment an image storage 

and compression task by directly storing analog image data 

onto an analog-valued RRAM array. A joint source-channel 

coding algorithm is developed with a neural network to 

encode and retrieve natural images. The encoder and decoder 

adapt jointly to the statistics of the images and the statistics of 

the RRAM array in order to minimize distortion. This 

adaptive joint source-channel coding method is resilient to 

RRAM array non-idealities such as cycle-to-cycle and 

device-to-device variations, time-dependent variability, and 

non-functional storage cells, while achieving a reasonable 

reconstruction performance of ~ 20 dB using only 0.1 

devices/pixel for the analog image.  

I. INTRODUCTION 

-B27 =5 A=31EJ@ 31A1 (e.g. video, audio, and images) are 

inherently analog. To store and compress these analog data 

onto digital memory, analog-digital data conversion (source 

coding) and digital compression (channel coding) are usually 

performed separately. Analog, non-volatile memory (NVM), 

such as RRAM and PCM, offer opportunities to directly store 

multi-dimensional analog data. The challenge is to perform 

reliable storage and retrieval of analog signals with non-ideal 

NVM devices. In this paper, we present a joint source-

channel coding algorithm with a neural network to store and 

compress natural images onto an analog-valued RRAM array. 

Through jointly learning the data and memory statistics, our 

source-channel coding algorithm finds an optimal use of the 

;4;=?EJ@ intrinsic data storage capacity [1]. Using this 

algorithm, we demonstrate by experiment that natural images 

can be reliably stored and retrieved with an analog-valued 

RRAM array, while having additional desirable properties of 

being resilient to array-level non-idealities such as cycle-to-

cycle and device-to-device variations, time-dependent 

variability, and non-functional storage cells. Our work 

presents a way to use imperfect NVMs whereby cost and 

fabrication advantages are utilized while the non-idealities of 

the device technology are circumvented. This approach 

shows that it is fruitful to customize the way we use the 

device technology to suit the task at hand. 

II. JOINT SOURCE-CHANNEL CODING ALGORITHM 

To learn a mapping from natural images to the RRAM 

array, we constructed a multilayer autoencoder neural 

network (Fig. 1), analogous to a denoising autoencoder [2]. 

With a succession of linear/nonlinear operations, the encoder 

transforms an input image into a set of resistances to be 

written to the array. To retrieve the stored image, the decoder 

transforms the read-resistances into a reconstruction. 

Specifically, the encoder and decoder weights are 

parameterized as filter convolutions. For the non-linearities, 

=? G12A8C1A8=< 5B<2A8=<@I  we used divisive normalization 

(Equation 3 in [3]), a population nonlinearity that implements 

a local form of gain control. 

In order to train the network, we constructed a 

differentiable model of the RRAM channels, with two 

sources of channel noise: (1) a uniform noise  induced by the 

write process and (2) 1 G@>1?@4I <=8@4 8<3B243 by device 

failure. The latter was implemented during network training 

by randomly choosing a certain percentage of the devices and 

then sending them to the low resistance state (LRS) (i.e. 

setting RT to 0). Thus, the noise model for each device was: 

"$!19 L1;M D "$!1; , L* C 4M B "$! 6 , 7& & 7(2LC)'+& )'+M L*M  

where 6 is the write process acceptance range, 2LC)'+& )'+M is 

the uniform distribution function and 4 - N)&*O is the sparse 

noise parameter (by default 4 D )& but 4 D *  when the 

device fails). More importantly, this channel model is not 

specific to the type of memory device. The model can be 

adapted to any analog programmable memory device (even 

those with highly nonlinear input/output functions [4]).  

For training, the network weights were learned by 

backpropagating the gradient of the objective function: 
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The first term corresponds to the squared error between the 

original image, X, and its reconstruction, J. The second term 

is a cost that penalizes the network for using values outside 

the range of acceptable RT (5 being a scalar hyper-parameter 

A71A D4867A@ A78@ A4?;J@ 8;>=?A1<24 ! .' / indicates an average 

over an image-batch during training. The training set 

consisted of ~1.2×105 images from the 2016 ImageNet test 

set [5] and the Flickr Creative Commons set [6].  

III. ANALOG VALUE STORAGE WITH RRAM ARRAY 

To demonstrate by experiment this analog data storage 

method, we fabricated a CMOS-integrated TiN/HfOx/Pt 1K 

1T1R array (Fig. 2). Fig. 3 shows a cross-section schematic 

of the RRAM Stack: Pt (30 nm) / HfOx (5 nm) / TiN (50 nm). 

Fig. 4 shows typical DC (Fig. 4 (a)) and AC (Fig. 4 (b)) cell 

characteristics in the 1T1R array with analog storage 

capability.  We encoded 448 analog resistances, RT (10 KK to 

100 MK , from 64×64 pixels (8 bits per pixel) images onto 
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448 cells, a ratio of 1 device per 10 pixels. We set the write 

acceptance range 6  to 2. Ref. [7] showed that for a two-

terminal RRAM device, any resistance level within its 

dynamic range can be achieved with high accuracy by 

applying a combination of incremental step RESET and SET 

pulse trains. Here we extend this write algorithm to 1T1R 

device programming. A double-direction incremental step 

pulse programming strategy (DD-ISPP) was used to precisely 

program cell resistances into the acceptance range, in spite of 

cycle-to-cycle and device-to-device variations. Fig. 5 (a) 

shows the DD-ISPP sequence. The device was initially SET 

to the LRS (1?=B<3 #" 9K). A full DD-ISPP writing pulse 

parameter set is listed in Fig. 5 (b). The cell resistance was 

verified after each write pulse. The sequence continued until 

one out of three conditions was satisfied: (i) the programmed 

resistance fell into the acceptance range; (ii) the WL voltage 

exceeded the maximum value (5V for RESET, 1.2V for 

SET); (iii) the total number of write pulses reached the 

maximum number (100). If the final programmed resistance 

was still outside the acceptance range, we SET it back to the 

initial LRS (corresponding to the sparse noise in the RRAM 

model of Section II). Fig. 5 (c) (d) show an example writing 

with DDFISPP, where RESET over-programming is fixed by 

the SET pulse train. Targeting at different RT (100 KK %""
KK 1 -K 1<3 % MK D8A7 A74 1224>A1<24 ?1<64 =5 $ Fig. 6 

shows cycle-to-cycle (Fig. 6 (a)) and device-to-device (Fig. 6 

(b)) resistance distributions written by DD-ISPP, both 

following the same uniform distribution centered at RT with 

boundaries defined by the acceptance range (this being well-

modeled by the uniform noise term in the RRAM model). Fig. 

7 shows the log-scale 448 resistance values encoded by the 

network (RT, Fig. 7 (a)) and stored on the array (RM, Fig. 7 

(b)). 

IV. IMAGE RECONSTRUCTION WITH DEVICE  NON-

IDEALITY 

Device non-ideality brings different challenges to the 

system robustness of analog RRAM storage than digital 

(binary) storage. Specifically, there are two main kinds of 

device non-ideality that degrade analog array storage 

capability: error cells and resistance relaxation. 

Error Cells  The full resistance dynamic range (max. 

and min. achievable resistance values) of different cells 

within an array may differ. For a specific cell, if the target 

resistance assumed by the algorithm is outside the full 

dynamic range of the cell by a distance larger than the 

acceptance range, error values are generated. Our 

experimental array had an error rate of 0.2% (1 out of 448). 

Different images could have different number of error bits 

based on the targeted resistance from the encoder. In order to 

achieve reliable reconstruction results, the algorithm needs to 

tolerate the worst-case scenario (maximum error rate). We 

trained the network with an estimated maximum error rate of 

2%. Note that this is a very high error rate for a product 

technology and we used this as a way to illustrate the error 

resiliency of our methodology. To test the algorithmJs error-

resiliency, we explored the relation between reconstruction 

mean squared error (MSE) and storage error rate. Various 

error rates (0.5%, 1%, 2%, 5%, and 10%) were dialed in by 

randomly selecting a set of cells and SETTING them to LRS 

(Fig. 8). Fig. 9 shows reconstructions (top) for the original 

image and corresponding MSE (bottom) for the different 

error rates (all images are scaled to have pixel values of mean 

= 0, variance = 1). Interestingly, even though the network 

was trained with 2% error, the algorithm was able to tolerate 

error up to 5% before suffering from serious degradation.  

Resistance Change After Programming  Our DD-ISPP 

method is capable of programming cell resistances efficiently 

within the acceptance range given by the target. However, 

when decoding from resistance values read from the array, 

time-dependent variability (TDV), which cannot be 

suppressed with write-verification methods [8][9], may cast 

the resistance values outside of acceptance ranges and 

degrade reconstructions. TDV must be properly considered 

when evaluating image reconstruction performance. After 

storing the resistances onto the array, resistance drift over 

time was monitored (Fig. 10). Fig. 11 (a) shows the final 

resistances programmed with DD-ISPP. Within 1 second 

after programming, we read the resistance again (Fig. 11 (b)) 

and observed some outliers due to read noise and short-term 

relaxation [8]. Fig. 11 (c) shows that more outliers appear 1 

minute after programming. A broader distribution is observed 

when reading resistance 12 hours after programming (Fig. 11 

(d)). Fig. 12 shows the reconstructions (top) of the original 

image and their corresponding MSE (bottom) over time. Fig 

12 (a) shows compression-only, where RT=RM. Fig. 12 (b)-

(e) correspond to the reconstruction results from the 

resistance read values from the array shown in Fig. 11 (a)-(d). 

Our scheme is resilient to outliers, where GC4?85E-?413I 
Gdirect readI 1<3 G1 minute after writeI @7=D similar MSE 

and resistance distribution broadening after 12-hours only 

causes a small increase in MSE. 

It should also be noted that at this compression rate of 1 

device/10 pixels and 1 bit/ channel, JPEG would produce a 

very poor reconstruction. As shown previously [4], if the goal 

is simply to perform compression with a set of additive-noise 

storage devices (neglecting the more realistic device failures) 

the neural-network algorithm is able to outperform JPEG. 

V. CONCLUSION 

Key achievements: (1) A joint source-channel coding 

algorithm was developed, adapting to RRAM array 

characteristics to store analog data directly onto the analog-

valued RRAM array. (2) An image storage and compression 

task was demonstrated by experiments with an RRAM array. 

(3) Our method empirically showed error-resilience against 

device non-idealities such as error cells, cycle-to-cycle and 

device-to-device variations, and resistance relaxation. 
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Fig. 5 DD - ISPP Scheme (a) Flow chart showing how to use DD-ISPP to fine

tune the resistance into acceptance range using incremental step RESET pulse

train and incremental step SET pulse train (b) Table: SET and RESET

incremental pulse train parameters used in DD-ISPP. (c) -(d) Example writing

with DD ISPP showing the over-programming can be fixed by programming in

the opposite direction, and starting from minimal voltage when changing the

direction can minimize programming across the range and thus save energy. (c)

write pulse train waveform (d) measured resistance as a function of pulse number.
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Fig. 1 Diagram of the autoencoder architecture. The input image, X, is transformed through the

encoding neural network, F, into a set of target write resistances, RT. These resistances are then

written to the device array (purple circles). The devices are then read, yielding measured resistances

RM. RM are passed through the decoding neural network, G, yielding the reconstructed image , .
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Fig. 4 Analog programmable capability of RRAM 

cell (a) Typical I-V curves of one cell in RRAM 

array. Median set (red) and reset (blue) of 50 set 

(VWL = 1.2 V, VSL = 0 V ) /reset (VWL = 4.5 V, 

VBL = 0 V ) cycles. (b) Multiple resistance levels 

achieved by pulse RESET with different VWL

(Pulse Width = 100 ns, VSL = 3.5  V, VBL = 0 V). 
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Fig. 3 The cross-section schematic of  

RRAM stack: Pt (30 nm) / HfOx (5 nm) 

/ TiN (50 nm). SiN : passivation layer. 

Al : M7 layer
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