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Abstract— The concept of sparsity has proven useful to
understanding elementary neural computations in sensory sys-
tems. However, the role of sparsity in motor regions is poorly
understood. Here, we investigated the functional properties
of sparse structure in neural activity collected with high-
density electrocorticography (ECoG) from speech sensorimotor
cortex (vSMC) in neurosurgical patients. Using independent
components analysis (ICA), we found individual components
corresponding to individual major oral articulators (i.e., Coro-
nal Tongue, Dorsal Tongue, Lips), which were selectively
activated during utterances that engaged that articulator on
single trials. Some of the components corresponded to spatially
sparse activations. Components with similar properties were
also extracted using convolutional sparse coding (CSC), and
required less data pre-processing. Finally, individual utterances
could be accurately decoded from vSMC ECoG recordings
using linear classifiers trained on the high-dimensional sparse
codes generated by CSC. Together, these results suggest that
sparse coding may be an important framework and tool
for understanding sensory-motor activity generating complex
behaviors, and may be useful for brain-machine interfaces.

INTRODUCTION
Sparse coding was successful in elucidating neural sensory

processing, serving as a normative theory and also as a data
analysis tool, but it has rarely been applied to motor areas.
For data analysis, sparse coding principles have induced
various algorithms that decompose complex spatio-temporal
patterns into ’components’ that can be physically mean-
ingful. This offers alternatives to the dominant method for
decomposing spatio-temporal patterns of neural activity from
motor cortex, PCA. PCA yields low-dimensional state-space
descriptions that represent a large fraction of the variance
in the neural measurements, but the state-space dimensions
do not correspond to behaviorally meaningful quantities,
hindering understanding. For example, our previous analysis
of ECoG signals from vSMC with PCA [1], failed to extract
components that were associated with individual speech
articulators, thereby obscuring their interpretation.

Independent components analysis (ICA) [2] and sparse
coding (SC) [3], [4] are related techniques that isolate signal
components by imposing sparsity constraints. While PCA
operates solely on the second-order covariance structure of
the data, ICA and SC are able to leverage higher-order
structure, perhaps more directly correlated with behavior. In
fact, ICA and SC have already been applied to extract be-
haviorally relevant components from hippocampal local field

1Lawrence-Berkeley National Laboratory, Berkeley
2Helen Wills Neuroscience Institute, UC Berkeley
3Redwood Center for Theoretical Neuroscience, UC Berkeley
4UCSF Epilepsy Center, UC San Francisco
? Corresponding Author

potentials ([5]). Here, we demonstrate for the first time that
ICA and SC can extract individual components from human
ECoG that correspond to individual vocal tract articulators
engaged in speech production. We propose the identification
of distinct motor-control signals that can independently be
assigned to individual articulators may be useful for future
brain-machine interfaces.

METHODS

Subjects and task

The experimental protocol was approved by the Human
Research Protection Program at the University of California,
San Francisco. Three native English speaking human subjects
underwent chronic implantation of a high-density, subdural
electrocortigraphic (ECoG) array over the language dominant
hemisphere as part of their clinical treatment of epilepsy.
Subjects gave their written informed consent before the day
of surgery. Data from two of these subjects have been used
in previous studies (e.g.,[1])

Each subject read aloud consonant-vowel syllables (CVs)
composed of 19 consonants followed by one of three vowels
(/a/, /i/ or /u/). Each CV was produced between 15 and 100
times total.

256 channel high-density electrocorticography

We used electrocorticography (ECoG) arrays (4mm pitcth,
16x16 electrodes) implanted subdurally to record cortical
field potentials (FPs) directly from the surface of the brain.
FPs were recorded with a multi-channel amplifier optically
connected to a digital signal processor [3052 Hz] (Tucker-
Davis Technologies [TDT], Alachua, FL). The spoken syl-
lables were recorded with a microphone, digitally ampli-
fied, and recorded inline with the ECoG data [acquired at
22kHz]. The time series from each channel was inspected
for artifacts or 60 Hz line noise, and these channels were
excluded from all subsequent analysis. The raw recorded
voltage signal of the remaining channels were common
average referenced and used for spectro-temporal analysis.
For each (usable) channel, the time-varying analytic am-
plitude was extracted from eight bandpass filters (Gaussian
filters, logarithmically increasing center frequencies [70-150
Hz] and semi-logarithmically increasing band-widths) with
the Hilbert transform. The high-gamma(Hg) activity was
calculated by averaging the analytic amplitude across these
eight bands. This signal was down-sampled to 200 Hz and
z-scored relative to baseline activity for each channel.
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Independent components analysis

Independent components analysis (ICA) is a technique to
identify the non-Gaussian and mutually independent sources
that produced a signal [2]. In ICA models, each data sample
x is expressed as a weighted linear combination of a set of
basis vectors A with the weights s:

x(i) = As(i), (1)

where x is an n-dimensional signal vector, A 2Rn⇥k is a set
of k basis vectors embedded in the n-dimensional space, also
known as the mixing matrix, and s is k-dimensional vector of
coefficients or source values. When k = n, the exact recovery
of s is possible since the mixing matrix can be inverted. The
goal of ICA is to find the unmixing matrix W such that s
can be recovered: s = Wx with W = A�1. An estimate of the
unmixing matrix W can be obtained by solving the following
constrained optimization problem:

argmin
W

1
m

m
Â
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||s(i)j ||1

s.t. WW T = I (2)

where I is the identity matrix. The constraint WW T = I
prevents the vector solutions from co-aligning, i.e., becoming
identical, and limits the solution to the space of orthonormal
matrices.

Sparse coding and convolutional sparse coding

Similar to ICA, sparse coding (SC) seeks to represent a
dataset as a linear combination of a number of features or
basis functions [3]. Contrary to ICA, in which the sparse
code is generated by applying a linear transformation to the
data, in SC the values of the coefficients s are obtained
through inference. Since SC is not restricted to a linear
transformation of the data, the prior belief on the distribution
(i.e., sparsity) of the latent variables can be enforced more
strictly. The SC models were generated by solving the
following optimization problem:

argmin
A,s
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s.t. ||A j||2 = 1 8 j = 1, . . . ,k. (3)

Here, l controls the degree of sparsity and was determined
by cross-validation (80:10:10, train-validate-test).

In convolutional sparse coding (CSC), a similar technique
to SC, the data is expressed as a temporal convolution
between a spatio-temporal basis A and a sparse code s,

i.e.,
k
Â
j

a j ⇤ s(i)j . Due to the presence of the convolution

operation in the objective, CSC models are able to learn
spatio-temporal features that have translation invariance in
the time dimension. This is potentially useful, as it can
account for differences in the temporal alignment between
neural signals and behavioral outputs. The dimensionality of
the CSC model was chosen to be 150 (which corresponds
to representation that is approximately 1.75 times overcom-
plete) by using a ten-fold cross-validation procedure.

Classification analysis using SVMs

Using the sparse codes obtained with CSC, we trained lin-
ear support vector machines (SVMs) [6] to classify syllables
in different speech related classification tasks.

The classification with multiple labels was implemented
using a one-against-rest scheme. Classifiers were trained
solving the following optimization problem:

argmin
q

1
2
||q ||2 +

C
m

m

Â
i=1

H[y(i)(qx(i) + b)] (4)

where q are the parameters of the classifier, b is the bias
term, x(i) are the sparse code vectors, y(i) are the class labels,
H(z) = max(0,1 � z)2 is the squared hinge-loss and C is
a weight on the error penalty. The hyper-parameter C was
determined by cross-validation (80:10:10, train-validate-test).

Algorithm implementation

For ICA, we used the FastICA package in MATLAB,
which implements the fast fixed-point algorithm for indepen-
dent component analysis and projection pursuit (Homepage:
http://www.cis.hut.fi/projects/ica/fastica/index.shtml).

For the CSC and SC analysis, we used the algorithm
introduced in [4]. This implementation uses the orthant-wise
l-BFGS method [7] for the inference of the coefficients and
truncated projected gradient descent for the learning of the
basis.

RESULTS

ICA extracts components that are reliably activated on
single-trials

It is unknown whether sparse coding methods are suited to
identify individual speech control signals from ECoG record-
ings of sensorimotor cortex. To investigate this possibility, we
trained ICA and CSC models using ECoG recordings from
vSMC that were collected while subjects uttered consonant-
vowel (CV) syllables (see Methods).

Figures 1 and 2 show the magnitude of the sparse coeffi-
cients associated with three different ICA and CSC features
(figure rows) across 40 trials of utterances /gi/, /fi/, and /zi/
(figure columns). The consonant production in each of these
utterances is dominated by a different articulator: the lips
are the predominant articulator during the production of /f/,
and the coronal and dorsal parts of the tongue are the most
dominant articulators involved in the generation of /z/ and
/g/ respectively.

Each of the features shown in the Figures 1 and 2
has large coefficients in association with only one of the
utterances, which suggests that these features are encoding
signals controlling individual articulators.The presence of
large coefficients is largely consistent across trials. Similar
features can be found both in ICA and CSC models, as can be
observed by visually comparing both figures. The coefficients
associated with the CSC components are more sparse (have
more values set to exactly zero), which is a non-linear effect
induced by the regularization term which is part of the CSC
objective (see Methods).
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Fig. 1: Trial-by-trial activation patterns of three independent
components during the production of syllables /gi/, /fi/ and
/zi/.

Fig. 2: Trial-by-trial activation patterns of three CSC com-
ponents during the production of syllables /gi/, /fi/ and /zi/.

The evolution of the coefficients over time provides infor-
mation about the temporal dynamics of the speech signals.
In Figures 1 and 2, the coefficients are shown as a function
of time (indicated in the x-axis) from 500 ms before the
consonant-vowel transition (dashed line) to 500 ms after.
Although there is some expected trial-by-trial variability, the
timing of the increase in the magnitude of the coefficients is
remarkably preserved across repetitions of the same utterance
(y-axis).

Figure 3 shows the evolution of the coefficients over time
(color saturation) during all CV utterances (derived from ICA
on mean activity across trials) in the subspace spanned by
the three independent components which showed the highest
correlation with the dominant consonantal articulators, i.e.,
the lips, and the dorsal and coronal regions of the tongue
(color coded). These trajectories are clearly dominated by
one of the components. These results are inline with analysis
of PCA components, but in contrast to those previous anal-
yses, here the functional interpretation of each component is
layed bare by the algorithm.

Fig. 3: Individual CV trajectories in the subspace spanned by
the three independent components which showed the highest
correlation with the dominant consonantal articulators (lips,
dorsal tongue, and coronal tongue).

Speech control signals are associated with spatially sparse
activation patterns

We next examined the spatial structure of the speech
production signals extracted using ICA and CSC. Figure
4 shows four example activation patterns or features (these
activation patterns correspond to the rows of the unmixing
matrix W ) learned using ICA. The color saturation indicates
the degree to which the activity of the electrode contributes
to that specific feature. The color itself indicates the sign of
the feature element, which in ICA can be positive (black)
or negative (red). The sign is relative to the sign of the
coefficients and cannot be interpreted without taking into
account the information contained in the coefficients. In these
examples, three features correspond to activation patterns
involving mostly one electrode and therefore are very spatiall
sparse. Similar spatial stucture was observed with CSC basis,
but space-time basis are more challenging to visualize.

Our results show that the structure of the learned features
is in good agreement with the known functional anatomy
of the sensorimotor cortex [1]. For instance, features whose
coefficients are highly correlated with the production of
labial utterances (e.g., /ba/, /fi/, etc) show high values in
electrodes that are located in the anatomical regions of
vSMC known to play an important role in the control of the
lips. In summary the learned features using ICA (and CSC)
correspond to electrode activation patterns that are spatially
sparse and in good agreement with the functional anatomy
of vSMC.

CSC components can be used to classify produced speech

In the field of computer vision, it has been shown that ob-
ject classification algorithms can improve performance when
trained using sparse high-dimensional feature representations
of the data [8], [9]. To test whether classification of ECoG
signals might also benefit from using high-dimensional and
sparse representations, we trained linear Support Vector
Machines (SVMs; see Methods) to classify sparse codes
(generated with overcomplete k > n CSC; see table I), in
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Fig. 4: Spatial filters learned with ICA. Colored circles
indicate the location of the electrodes in the vSMC area.

four different classification tasks: (1) to identify the uttered
syllable, (2) to identify the uttered consonant, and to identify
the major oral articulator (e.g.: lips, tongue, etc) engaged
during the production of (3) the consonant or (4) the vowel.

TABLE I: CSC-SVM classification accuracy.
Task S1 S2 S3 Chance

Syllable 0.06 0.20 0.11 0.018
Consonant 0.14 0.34 0.24 0.053

Vowel 0.51 0.68 0.44 0.33
Articulator 0.58 0.80 0.62 0.33

Table I summarizes the results obtained for different
classification tasks for three subjects (S1, S2, S3), as well
as the chance levels for the tasks. For all subjects and tasks,
classificaiton performance from SVMs trained on CSC were
well above chance levels. While lower in absolute value, the
syllable classificaiton task, which had 58 possible classes,
had the best performance relative to chance (3.3-11.1x over
chance) for all subjects. In contrast, the vowel classificaiton
task was the most difficult, with performance ranging from
1.3x to 2.1x over chance performance. Overall, these classi-
ficatin results are in agreement with previous results showing
that both the volume of the vowel state-space, and the state-
space distances between vowels, is small compared to the
major oral articulators involved in consonant production [1].
However, it is important to note that our previous results
were derived from mean activity over trials. Furthermore, the
improved performance of classifying syllables compated to
the phoneme constiuents (relative to chance levels) suggests
that the syllable is the more ’atomic unit’, likely due to co-
articulation [10].

CONCLUSIONS

Our results indicate that ICA or CSC are well suited to
identify speech control signals in ECoG recordings from

sensorimotor cortex. These methods offer an advantage over
feature learning methods such as PCA in that they learn
features that are not mixtures of different speech signals,
and are hence easier to interpret. We find that the activation
patterns associated with the features that are relevant for
speech production are spatially sparse. Finally, the classi-
fication performance when using linear decoders was well
above chance for all of the tasks and subjects examined here,
and suggest that syllables may be a better targer for BMI
applications. We further note that our classificaiton results
could likely be improved by increaseing the sample size of
the data set relative to the number of classes (which, because
of the nature of collecting human data, is relatively modest).
This improvement could be realized as enhanced perfor-
mance in the convolutional sparse coding reconstructions and
with the subsequent SVM classifications. We propose that the
sparse/unmixed features learned by sparse coding methods
may be beneficial to learning brain-machine interfaces by
providing a more natural bases. Furthermore, sparse signals
are more compressible, allowing for reduced overhead on
data I/O and calculation.
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