
ar
X

iv
:1

90
1.

10
60

3v
1 

 [
cs

.L
G

] 
 2

9 
Ja

n 
20

19

Numerically Recovering the Critical Points of a Deep Linear Autoencoder

Charles G. Frye 1 2 Neha S. Wadia 1 3 Michael R. DeWeese 1 2 3 4 Kristofer E. Bouchard 1 2 5 6

Abstract

Numerically locating the critical points of non-

convex surfaces is a long-standing problem cen-

tral to many fields. Recently, the loss surfaces of

deep neural networks have been explored to gain

insight into outstanding questions in optimiza-

tion, generalization, and network architecture de-

sign. However, the degree to which recently-

proposed methods for numerically recovering

critical points actually do so has not been thor-

oughly evaluated. In this paper, we examine

this issue in a case for which the ground truth is

known: the deep linear autoencoder. We investi-

gate two sub-problems associated with numerical

critical point identification: first, because of large

parameter counts, it is infeasible to find all of the

critical points for contemporary neural networks,

necessitating sampling approaches whose charac-

teristics are poorly understood; second, the nu-

merical tolerance for accurately identifying a crit-

ical point is unknown, and conservative toler-

ances are difficult to satisfy. We first identify con-

nections between recently-proposed methods and

well-understood methods in other fields, includ-

ing chemical physics, economics, and algebraic

geometry. We find that several methods work

well at recovering certain information about loss

surfaces, but fail to take an unbiased sample of

critical points. Furthermore, numerical tolerance

must be very strict to ensure that numerically-

identified critical points have similar properties

to true analytical critical points. We also iden-

tify a recently-published Newton method for op-

timization that outperforms previous methods as

1Redwood Center for Theoretical Neuroscience, University of
California, Berkeley, CA, USA 2Helen Wills Neuroscience Insti-
tute, University of California, Berkeley, CA, USA 3Biophysics
Graduate Group, University of California, Berkeley, CA, USA
4Department of Physics, University of California, Berkeley, CA,
USA 5Biological Systems and Engineering Division, Lawrence
Berkeley National Lab, Berkeley, CA, USA 6Computational
Research Division, Lawrence Berkeley National Lab, Berke-
ley, CA, USA. Correspondence to: Charles Frye <charles-
frye@berkeley.edu>.

a critical point-finding algorithm. We expect our

results will guide future attempts to numerically

study critical points in large nonlinear neural net-

works.

1. Introduction

Neural networks have pushed forward the state of the

art in a variety of machine learning tasks (Schmidhuber,

2014; LeCun et al., 2015), but little is known about

precisely how they work or why they can be effec-

tively optimized to solutions with good test set perfor-

mance. In particular, it is not known why the non-

convex training problem of a neural network is soluble

using popular local methods such as stochastic gradient

descent. One approach to answering this question in-

volves direct numerical interrogation of the loss surfaces

of neural networks. Efforts in this vein (Pascanu et al.,

2014; Dauphin et al., 2014; Choromanska et al., 2014;

Pennington & Bahri, 2017) have demonstrated cases in

which these loss surfaces enjoy a favorable “no bad local

minima” property (that is, all minima are located at low

values of the loss), and contain a proliferation of saddles in-

stead, which was believed to be problematic for first-order

methods. Later theoretical work in non-convex optimiza-

tion then showed that some stochastic first-order methods

avoid saddle points of the training loss (Lee et al., 2016;

Jin et al., 2017) and converge to minima that generalize to

the test loss (Jin et al., 2018). Taken together, these claims

would do much to explain the trainability of neural net-

works.

However, a thorough understanding of the trainability of

neural networks remains to be achieved. In particular,

much is unknown regarding the properties of the loss sur-

face, on which we focus in this paper. The theoretical re-

sults cited above concerning the shape of the loss surface

are asymptotic and apply to simplified, approximate mod-

els (Choromanska et al., 2014; Pennington & Bahri, 2017).

The rates at which these asymptotic results apply and the

degree to which these approximations break down as prop-

erties of the data and architecture are varied are unknown.

Furthermore, recent theoretical results (Liang et al., 2018)

have indicated that the loss surfaces for some common

neural network architectures, e.g. those with ReLUs and

http://arxiv.org/abs/1901.10603v1


Numerically Recovering Critical Points

without skip connections, suffer from poor local minima

even for linearly separable data. Lastly, there is debate in

the field on whether minima with different generalization

performance exist and are characterized by their curvature

properties (Hochreiter & Schmidhuber, 1997; Dinh et al.,

2017; Yao et al., 2018). Taken together, all these results

underscore the need for further study of the shape of the

loss surface.

One way to determine to what extent and why neural net-

work loss surfaces can suffer from bad local minima, and

what effect the distribution of minima, maxima, and sad-

dle points (generically, points with zero gradient norm, or

critical points) have on optimization and generalization, is

to perform a thorough empirical examination of the inter-

play between architecture, data, and initialization strategy

as they affect the loss surface. In order to do so, robust

numerical methods for finding critical points are needed.

Unfortunately, the problem of finding all of the critical

points of a neural network loss surface is non-trivial. First,

the rapid scaling of the number of critical points with input

dimension (Baldi & Hornik, 1989; Auer et al., 1996), ig-

noring continuous equivalences (Freeman & Bruna, 2016),

is such that finding all of them can be impossible for any but

the smallest of architectures. This necessitates a sampling-

based method, but the potential biases of such sampling

methods are unknown and hard to quantify in the absence

of ground truth. Second, numerically finding points with

gradient exactly equal to zero is unlikely with finite preci-

sion, necessitating the setting of a tolerance for the norm

of the gradient. This tolerance can be analytically deter-

mined for functions with Lipschitz conditions on the oper-

ator norm of the Hessian and on the norm of the gradient,

but these values are poorly controlled for common neural

networks (Gouk et al., 2018) and worst-case upper bounds

might be overly pessimistic in the typical case. In the ab-

sence of ground truth, it is impossible to evaluate the ef-

ficacy of critical point-finding algorithms in solving these

two problems. Here we make progress in this direction by

making a thorough study of three critical point-finding algo-

rithms on a model where ground truth is available, thereby

clarifying algorithmic choices that may yield accurate re-

sults in more complicated cases.

The problem of finding the critical points of neural net-

work loss surfaces is actually a specific instance of an old,

general problem in disguise: the problem of finding the

zeros, or roots, of a function. Here, that function is the

gradient field of the loss surface. In multiple other areas,

e.g. chemical physics (Wales, 2004; Ballard et al., 2017),

numerical algebraic geometry (Sommese et al., 2005), and

economics (Kehoe, 1987), work extending back decades

has identified algorithms for this task with varying conver-

gence properties, domains of application, caveats, and scal-

abilities.

In Sec. 2.2, we review methods used in previous papers that

found the critical points of neural network loss surfaces in

the context of this literature. We also introduce a new algo-

rithm, originally invented for another purpose, as a critical

point-finding algorithm for neural networks. We then ap-

ply these methods on a neural network loss surface where

the ground truth identities of the critical points are known,

that of a deep linear autoencoder (Baldi & Hornik, 1989),

which minimizes the same loss over the same class of func-

tions as does Principal Components Analysis (PCA), but

in a different parameterization. Though linear networks

do not have the same representational capacity as nonlin-

ear networks, their training exhibits many of the properties

of nonlinear network training (Saxe et al., 2013), and they

provide a reasonably close test problem for algorithms of

unknown efficacy.

We find that, while all the algorithms we study are capable

of finding critical points (Fig. 1), strict cutoffs are necessary

to ensure accuracy (Fig. 2), and all methods provide biased

samples of the set of critical points (Figs. 3 & 4). We iden-

tify algorithmic choices that can improve performance and

reduce this bias.

2. Methods for Sampling Critical Points

The problem of sampling the critical points of a loss surface

requires two pieces to solve: first, an algorithm capable of

finding a single critical point; second, a method for initializ-

ing this algorithm repeatedly in such a way that its outputs

are a representative, ideally unbiased, sample of the true

critical points.

2.1. Preliminaries

The loss surface L is a scalar function of the N parameters

θ of the neural network, We wish to understand the distri-

bution of points θ∗ where the gradient of the loss is zero

by numerical means. Formally, we define these, the critical

points (CPs) of L, as the set

Θ = {θ∗ : ∇L (θ∗) = 0}.

A CP θ∗ can be classified by means of its (fractional) index

α(θ∗), defined as the fractional number of negative eigen-

values λ of the Hessian ∇2L(θ∗) at that point: α(θ∗) =
index(θ∗) =

∑

λ
1(λ < 0)/N . Note that when the Hes-

sian is negative semidefinite α = 1 indicates a potential lo-

cal maximum, 0 < α < 1 always indicates a saddle point,

and when the Hessian is positive semidefinite α = 0 indi-

cates a potential local minimum.

In practice, it is not possible to numerically locate points

on L where ∇L is identically zero. Hence we introduce a



Numerically Recovering Critical Points

relaxed definition of a CP, an ε-CP, defined as the set

Θε = {θ∗ : ‖∇L(θ∗)‖
2
< ε}.

We will discuss in detail the effects of different choices of

ε on the results of running critical point-finding algorithms,

shown in Fig. 2.

In the context of neural network loss surfaces, an often-

studied property of Θ is the relationship of the indices of

its members to their heights on the surface. (Dauphin et al.,

2014) and (Pennington & Bahri, 2017) proposed models of

Θ and numerically found subsets of Θε with the same loss-

index relationship. In this paper, we identify algorithmic

choices that lead to recovery of a subset of Θε with ap-

proximately the same loss-index relationship as Θ in a case

where Θ is known.

2.2. Finding a Single Critical Point

2.2.1. GRADIENT NORM MINIMIZATION

Given the problem of finding points that approximately sat-

isfy a certain criterion, the natural optimization approach

is to convert that criterion into a differentiable loss func-

tion and minimize it by local methods. For the problem

of finding points with small gradient norm, the result is an

auxiliary loss function

G(θ) =
1

2
‖∇L(θ)‖

2
. (1)

An instance of this class of methods was independently pro-

posed for the problem of critical point-finding in neural net-

works in (Pennington & Bahri, 2017) for the first time, but

in fact they have a long history in chemical physics, dating

back to the 1970s under the name “gradient norm minimiza-

tion” (GNM) (McIver & Komornicki, 1972), and being si-

multaneously and independently rediscovered thirty years

later (Angelani et al., 2000; Broderix et al., 2000).

There are two major concerns with this class of meth-

ods. First, the problem is approximately quadrat-

ically worse-conditioned than the original prob-

lem (McIver & Komornicki, 1972), and neural network

losses are already poorly-conditioned (Sagun et al., 2017),

resulting in very slow convergence for first-order methods.

Second, the loss surface of GNM, ironically, can suffer

from a bad local minima property of its own, which is to

say that it contains local minima that are not true critical

points of the original loss surface. These arise anywhere

that the gradient lies in the nullspace of the Hessian. It has

been shown in the chemical physics literature that on some

surfaces these spurious local minima dominate the global

minima (Doye & Wales, 2002).

2.2.2. NEWTON METHODS

Other approaches to finding points with zero gradient

norm are better understood and have better convergence

properties. In particular, the zeros of the gradient

field are solutions to a nonlinear system of equations,

∇L(θ) = 0, and can be found using root-finding tech-

niques. The classic root-finding algorithm is Newton-

Raphson (Izmailov & Solodov, 2014), which computes an

update ∆θ by solving the following linear system of equa-

tions:

0 = ∇2L(θ)∆θ +∇L(θ). (2)

Though this algorithm enjoys rapid local conver-

gence (Boyd & Vandenberghe, 2004), it has no global

convergence guarantees on non-smooth functions, and the

radius of local convergence can be zero if the Hessian is sin-

gular at the solution (Griewank & Osborne, 1983). Indeed,

early work on finding critical points of neural network loss

surfaces found that Newton-Raphson (with a fixed, non-

unit step size) often failed to converge (Coetzee & Stonick,

1997). Newton-Raphson is therefore typically augmented

with additional machinery to guarantee global convergence

on a wider class of functions. We consider two options in

this paper.

The first, which we call Newton-TR, fol-

lows (Dauphin et al., 2014) and uses a Leven-

berg (Levenberg, 1944) scheme, equivalent to a trust

region approach. Instead of solving Eq. 2, the modified

equation

0 =
(

∇2L(θ) + γI
)

∆θ +∇L(θ), (3)

where I denotes the identity matrix, is solved for multiple

fixed values of γ. In an optimization context, the update

that results in the lowest value of L is used. In the context

of root-finding, we instead take the update that results in

the lowest value of ‖∇L‖.

The second is based on the recently proposed Newton-MR

method (Roosta et al., 2018), for “minimum residual”. As

above, Eq. 2 is solved for ∆θ, which is then used as a line

search direction with a novel set of conditions, derived by

applying the Wolfe conditions to the squared gradient norm

(see (Roosta et al., 2018) for details). This method was

proposed as an optimizer for functions with the property

that the gradient is only zero at minimizers and proven to

converge to points with low gradient norm. This makes it

an appealing candidate for root-finding, unlike other New-

ton methods that are designed for more restricted classes of

functions.

2.2.3. OTHER METHODS

Here we review other methods for finding critical points of

neural network loss surfaces and which provide promising

targets for future research.



Numerically Recovering Critical Points

Eigenvector-following methods (Trygubenko & Wales,

2004) are commonly used to find critical points of

a desired index in chemical physics. This is accom-

plished by initializing a quasi-Newton method, such as

L-BFGS (Liu & Nocedal, 1989), at a local minimum and

reversing the sign of the updates of that algorithm in a fixed

set of directions at every step, corresponding to the desired

index of the saddle being searched for. These methods

are primarily used to find low-index saddles, rather than

all critical points, and require prior knowledge of a local

minimum. Eigenvector-following methods were applied to

neural networks in (Ballard et al., 2017) and (Mehta et al.,

2018a).

Homotopy methods comprise another class of approaches

for root-finding, most prominently in numerical algebraic

geometry (Sommese et al., 2005), where the polynomial

form of the nonlinearity can be exploited. Homotopy meth-

ods use continuous transformations to deform solutions of

a problem whose answers are known by construction into

the solutions of a problem of interest (Davidenko, 1953;

Broyden, 1969). They were first applied to neural network

loss surfaces in (Coetzee & Stonick, 1997) and again more

recently to linear network losses by (Mehta et al., 2018b).

The latter took advantage of the polynomial structure of

squared losses applied to linear networks to use advanced

methods from numerical algebraic geometry (Bates et al.,

2013). Outside of the case of polynomials, convergence

guarantees are harder to come by.

2.3. Sampling Multiple Critical Points

Given an algorithm that can find a single critical point, the

next problem is to define a method for initializing this algo-

rithm repeatedly in such a way that the outputs form a rep-

resentative sample of the true critical points. This presumes

that the goal of examining the loss surface is to determine

its mathematical properties, rather than the properties of,

e.g., the parts of the loss surface which typical optimizers

encounter from typical initializations. Two heuristics have

been used in previous work. In both methods, the iterates

of an optimization algorithm applied to the loss surface are

used to propose points. In the first, from (Dauphin et al.,

2014), these points are sampled uniformly from the iterates.

We term this method “uniform iteration”. In the second,

from (Pennington & Bahri, 2017), iterates are sampled uni-

formly according to their height on the loss surface. We

term this method “uniform height”. As the identities of the

critical points sampled by such a method are determined

by the combination of loss surface shape, optimization al-

gorithm behavior, and critical point-finding algorithm be-

havior, there is no guarantee of even sampling. In an at-

tempt to reduce any possible sampling bias, (Dauphin et al.,

2014) perturbed sampled points with additive noise. We

compare the sampling bias of both initialization methods in

their noisy and noiseless versions below (see Figs. 3 & 4).

3. The Deep Linear Autoencoder: A Model

with Ground Truth

Linear deep networks exhibit many of the train-

ing (Saxe et al., 2013) and generalization (Advani & Saxe,

2017) complexities of their nonlinear counterparts while

simultaneously being more amenable to analysis. The

loss surface of a feedforward single-hidden layer lin-

ear network with squared error loss was first studied

in (Baldi & Hornik, 1989), where the authors demonstrated

that there are no non-global minima. Recent work in lin-

ear networks has extended that result to multi-hidden layer

networks (Zhou & Liang, 2017) and to arbitrary differen-

tiable convex losses (Laurent & von Brecht, 2017). Unlike

in nonlinear networks, the identity of every critical point

is known in the single-hidden layer, linear case. This pro-

vides a ground truth against which numerical results can be

compared. Here we study the performance of critical point

finding algorithms on a single-hidden layer deep linear au-

toencoder (DLAE) with sixteen input and output units and

four hidden units, applied to Gaussian data with a diago-

nal covariance matrix and evenly spaced eigenvalues be-

tween 1 and 16. What follows is a description of the set

of critical points Θ of the loss surface of this network, af-

ter (Baldi & Hornik, 1989).

Each critical point of a DLAE with n input units and h
hidden units (h ≤ n) corresponds to a projection of the

data onto a space spanned by some combination of at most

h of the n eigenvectors of the data covariance matrix. In

the network parameterization, this n× n projection matrix

(rank ≤ h) is factored into the h × n and n × h input and

output weight matrices. This factorization is only unique

up to an invertible linear transformation, and so each crit-

ical point is part of a disconnected Lie group of critical

points.1 In the following, we only consider critical points

modulo this equivalence relation, up to which the total num-

ber of critical points is given by the sum of the numbers of

ways to choose from 0 to h elements from an n element

set:
∑h

i=0

(

n

i

)

. The loss surface of the 16× 4 × 16 DLAE

we consider therefore contains a single minimum and 2516
saddles. The minimum corresponds to a solution where the

network has learned to project onto the four eigenvectors

with the largest eigenvalues, and the saddles correspond to

all other projections. Note that the single critical point that

corresponds to learning none of the eigenvectors, resulting

in a parameter vector of all zeros, shall be referred to as the

“critical point at zero” later on.

It is possible to construct the weight matrices for the DLAE

1This situation is also partially shared by ReLU net-
works (Freeman & Bruna, 2016).



Numerically Recovering Critical Points

Figure 1. Newton-MR, Newton-TR, and GNM can recover critical points of a deep linear autoencoder. Top panels show squared

gradient norms across epochs (both in log scale). Black lines correspond to runs that terminated below a criterion value, while orange

lines correspond to runs that terminated above it. Due to the greater density of floating point numbers around zero, trajectories converging

to the critical point at zero can achieve much lower squared gradient norms (as low as 1e-253); the y-axis is cut off at 1e-40 to focus on

the other critical points. Right panels show the loss and index for critical points found using numerical algorithms (in green) overlaid

on the true values (in gray). Each method was executed a total of 150 times: 10 optimization trajectories (each with a different random

initialization) were used as seeds, with 15 initial points for each critical point-finding algorithm chosen at random from each trajectory.

so as to initialize it to a particular critical point: the input-

to-hidden weight matrix is constructed by placing the eigen-

vectors represented at that critical point in its columns,

while the hidden-to-output weight matrix is its transpose.

This allows us to compute every element of Θ, up to equiv-

alence, and then compute the true values of, e.g. the loss

and index. These values can then be compared to those

computed from a subset of Θε, i.e. critical points obtained

via numerical methods.

4. Results

To find critical points, we first computed optimization tra-

jectories by training a 16× 4× 16 linear network on Gaus-

sian data with the squared error loss. These optimization

trajectories were then used to generate initial points for crit-

ical point-finding algorithms. Unless otherwise stated, ini-

tial points were selected uniformly with respect to height on

the loss surface. Critical point-finding algorithms were ter-

minated either when no proposed step size met acceptance

criteria or when a maximum number of epochs was reached.

Returned points were accepted as numerical critical points

if their squared gradient norm was less than 1e-10.

To optimize the gradient norm objective (Eq. 1), we use

batch gradient descent with back-tracking line search using

the Wolfe conditions (Wolfe, 1971). We use fast Hessian-

vector products (Pearlmutter, 1994) to compute our updates

with the AutoGrad (Maclaurin, 2016) Python package.

For both Newton methods, we use the robust linear solver

MR-QLP (Choi et al., 2011). See (Roosta et al., 2018) for a

succinct explanation of the benefits of this solver for poorly-

conditioned, indefinite problems. This solver is also accel-

erated by the use of fast Hessian-vector products.

See Supplementary Materials for further details and hyper-

parameter values.



Numerically Recovering Critical Points

4.1. Newton Methods Outperform Gradient Norm

Minimization

ε-CPs found by all three numerical methods can have the

same qualitative and quantitative loss and index values as

do true CPs, but the methods have varying efficiencies

(Fig. 1). With the selected convergence criteria (see cap-

tion), none of the methods find ε-CPs in regions of the

loss-index plane where there are no true CPs (e.g. bad local

minima, in the top left quadrant, or low-lying saddles, in

the bottom right quadrant). All methods also find subsets

of Θε that span the same values of loss and index as does

Θ.

Newton-MR (Fig. 1, left column) terminates in fewer itera-

tions than does Newton-TR (Fig. 1, middle column; medi-

ans 221 and 430; Mann-Whitney U = 4768.5, p ≪ 0.01).

Newton-TR furthermore requires multiple calls to MR-QLP

per iteration (one for each choice of trust region size), and

so Newton-MR terminates more quickly (26.5 s per 100 it-

erations for Newton-MR vs 1 min 39 s for NewtonTR, on

commodity hardware). A more sophisticated mechanism

for determining trust region size, rather than simply select-

ing the best choice from a pre-defined set, might narrow

this performance gap.

Gradient norm minimization (GNM; Fig. 1, right column)

is less efficient in two ways. First, successful runs of GNM

take on the order of one hundred times as many epochs to

reach the same value of the gradient norm as do the New-

ton methods. Each iteration only requires a single Hessian-

vector multiply, unlike the Newton methods, whose calls to

MR-QLP require several Hessian-vector multiplies, but the

difference in wall time is still more than an order of mag-

nitude (6.8 s per 100 iterations for GNM). Furthermore, as

discussed above in Section 2, GNM tends to get stuck in

local minima of its objective function, as evidenced by the

numerous short orange traces which terminate without the

gradient norm going below ε =1e-10 (62.7% of runs). Be-

cause of this, even though the same number of runs and

more compute were given to GNM, the number of ε-CPs re-

covered is far smaller (cf. Fig. 1, bottom-right and bottom-

left panels). Note that local minima of the gradient norm

objective do not correspond to local minima, or critical

points at all, of the original problem. Thus we conclude

that Newton methods in general, and Newton-MR in partic-

ular, are a better choice of critical point-finding algorithm

for neural network loss surfaces.

4.2. Strict Cutoffs are Necessary to Accurately Recover

Critical Points

Here and in previous work, the final output of a critical

point-finding algorithm was accepted if the squared gradi-

ent norm on termination was below some cutoff value ε
(here, 1e-10). However, at termination, many points may

Figure 2. Cutoffs above 1e-10 are insufficient to guarantee ac-

curate loss and index recovery. As in Fig. 1, ε-CPs are plotted

in green over true CPs in gray. For each panel, points are selected

by taking the 150 runs of Newton-MR in Fig. 1 and taking the

first point whose squared gradient norm is below the cutoff value,

ε, in the top-left corner. For the bottom-right panel, we choose

ε = inf, which corresponds to accepting the initial point as an

ε-CP.

be far below this cutoff. In fact, the vast majority of runs

terminate with squared gradient norm close to 1e-30, and

so the results in Fig. 1 do not demonstrate that simply hav-

ing squared gradient norm at the cutoff 1e-10 is sufficient

to guarantee a match between the loss and index values of

elements of Θε and of Θ. If a sufficient cutoff could be

identified, then much iteration time could be saved by ter-

minating runs as soon as the squared gradient norm went

below that value.

We found that, while having squared gradient norm equal

to our cutoff was sufficient to guarantee accurate recov-

ery of loss and index values, for the cutoff values used

in (Dauphin et al., 2014) and (Pennington & Bahri, 2017),

it was not (Fig. 2). The error is larger for lower values

of the loss. Note, however, that the overall shape of the

loss-index relationship is largely preserved for these looser

cutoffs. Interestingly, we find that simply computing the

loss and index of points along the optimization trajectory

results in the same concave-up shape reported in previ-

ous work (Dauphin et al., 2014; Pennington & Bahri, 2017)

(Fig. 2, bottom-right panel), underscoring the need for care

in the selection of convergence criteria.



Numerically Recovering Critical Points

Figure 3. Additive noise with the correct magnitude reduces sampling bias. Top left panel: number of times an ε-CP that performed

projection onto a given eigenvector was found. Colors differentiate runs seeded from different optimization trajectories. Eigenvectors

are numbered in order of increasing eigenvalue. Bars outlined in black indicate number times the critical point at zero was found. Top

right panel: entropy of distribution of eigenvector IDs (as in top left panel) for ε-CPs found by adding Gaussian noise with variance

σ
2 to points sampled from optimization trajectories prior to executing a critical point-finding algorithm (here, Newton-MR). Error bars

indicate standard deviation, computed from bootstrapped samples (N = 100). Bottom row: loss and index values recovered when

adding noise as in top right panel, along with log-scaled histograms of index values. The values found by executing the same algorithm

from the same trajectory without noise are indicated with empty black circles.

4.3. Adding Noise Reduces Sampling Bias

As discussed above, neither sampling uniformly from the

trajectory nor from height on the loss surface guarantee an

unbiased sample of the set Θε. Indeed, the sample of crit-

ical points found using a single optimization trajectory as

a seed using a Newton method is heavily biased (Fig. 3,

top left panel). First, samples from all trajectories evinced

a bias towards critical points that perform projection onto

eigenvectors with large eigenvalue. Second, individual tra-

jectories are similarly biased towards a few other, seem-

ingly random eigenvectors (e.g. 10 and 12 for the trajec-

tory in green; 9 for the trajectory in orange). We quantified

this bias by taking the distribution of targeted eigenvectors

(plotted as histograms in Fig. 3, top left panel) and comput-

ing the entropy (Fig. 3, top right panel).

To reduce this sampling bias, (Dauphin et al., 2014) pro-

posed adding noise to the values sampled from the trajec-

tory. We investigated whether this approach worked with

Gaussian noise. All results presented in this section were

obtained using Newton-MR. Results for Newton-TR were

qualitatively similar. We found that bias was partially re-

duced for appropriate choices of noise variance σ2 (Fig. 3,

top right panel and bottom row). For noise with low vari-

ance (Fig. 3, bottom-left-most panel), there was no sub-

stantial change in the either the entropy or the identity of

the recovered critical points. For noise with high variance

(Fig. 3, bottom-right-most panel), adding noise did not in-

crease the entropy and amplified the bias towards critical

points projecting onto eigenvectors with large eigenvalues.

This result is somewhat curious, since the loss values of

the noise-corrupted points are higher, not lower, than the

originals. It indicates that Newton methods do not always

converge to points nearby in loss value. For intermedi-

ate values of noise variance (Fig. 3, bottom-center panel),

adding noise reduced the bias, as quantified by the entropy

(bootstrap (N = 100) means 3.05 bits, no noise, and 3.34

bits, σ = 0.01; compared with Student’s t: t = −31.2,



Numerically Recovering Critical Points

p ≪ 1e − 4), and resulted in a closer match between the

distributions of the indices of the true and computed CPs

(see histograms in Fig. 3, bottom row). This value of σ2

corresponded to a signal-to-noise ratio of 2.8 dB, compared

to SNRs of 6.8 dB and 0.8 dB in the other cases. This sug-

gests that, to optimally reduce bias, added noise must be

of sufficient magnitude to perturb the parameters but not of

lower magnitude than the parameters themselves.

4.4. Sampling Bias is Worse when Initializing

Uniformly Across Iterations

Previous work sampled initial points for critical point-

finding algorithms from optimization trajectories either uni-

formly across iterations (Dauphin et al., 2014) or uniformly

in height on the loss surface (Pennington & Bahri, 2017).

Note that all results reported above used the latter method.

We compared these two methods and found that sampling

uniformly across iterations resulted in a heavy bias to-

wards critical points projecting onto dominant eigenvectors

(Fig. 4, top left and bottom left panels). We quantified this

with the entropy of the distribution of eigenvectors onto

which critical points projected, as above, and found that the

entropy was significantly lower when sampling uniformly

across iterations (Fig. 4, top right panel). Adding Gaussian

noise to the sampled values had no effect for small values

and did not fully counteract the reduction in entropy for in-

termediate values (Fig. 4, bottom row; uniform height vs

uniform trajectory: means 3.05 bits, 2.22 bits, t = 94.9,

p ≪ 1e−4; uniform height vs uniform trajectory, σ = 0.01:

means 3.05 bits, 2.50 bits, t = 68.8, p ≪ 1e− 4).

5. Discussion

We examined the performance of three methods to numeri-

cally find the critical points of neural network loss surfaces

on a test problem for which the ground truth critical points

are known. In the absence of this ground truth and in the

presence of numerical and convergence concerns, the fi-

delity of reported critical points to true critical points is

unknown. We found that, while all three methods are ca-

pable of finding the critical points of a deep linear autoen-

coder, the Newton method-based algorithms outperform di-

rect gradient norm minimization (GNM). As predicted by

theory, GNM frequently (on 62.7% of runs) gets stuck in

local minima and requires two orders of magnitude more

iterations to converge, likely due to extremely poor condi-

tioning.

We identified a recently-proposed Newton method,

Newton-MR, as a promising candidate algorithm and

found that it produced solutions with fewer iterations and

in less wall time than the trust region Newton method used

in (Dauphin et al., 2014). The possible applicability of

quasi-Newton methods (Liu & Nocedal, 1989) for large

problems remains unexplored and is left to future inves-

tigation. Newton-based homotopy methods (Mehta et al.,

2015) are another promising future direction, based on

preliminary results in (Coetzee & Stonick, 1997).

Numerically-recovered critical points rarely have gradient

norm exactly zero, and the appropriate cutoff value for

faithfully representing the loss and index values of the true

critical points of a neural network is unknown. Our results

suggest that for precise recovery of loss and index values,

this cutoff in the squared norm should be stricter (1e-10)

than previously reported (1e-06 in (Pennington & Bahri,

2017), unreported in (Dauphin et al., 2014)), presuming

that the relevant Lipschitz constants for nonlinear networks

are at least as large as those for linear networks.

Given the infeasibility of calculating all of the critical

points of the loss surface, the goal of critical point-finding

methods should be to produce an unbiased picture of the

true critical points. We find that previously reported sam-

pling methods based on optimization trajectories are bi-

ased towards critical points at low values of the loss and

towards a random other subset of critical points, possibly

determined by which critical points were closest to the op-

timization trajectory. Adding noise was insufficient to re-

move this bias, but did mitigate it slightly. Interestingly,

we found that adding larger amounts of noise actually in-

creased the bias towards critical points at low values of the

loss. Further work is needed to explain this phenomenon.

Taken together, our findings suggest that numerically recov-

ering the critical points of nonlinear neural networks with

high accuracy is possible, even if the problem of obtain-

ing an even sample is still unsolved. For questions regard-

ing just the parts of the loss surface that a typical training

trajectory passes through, relevant for answering questions

about optimization, the latter is not such a serious problem.

However, it remains problematic for questions about the

mathematical properties of the ensemble of critical points.

Answering these questions for a wide variety of neural net-

works can provide insight into which properties of the loss

surface are most relevant for neural network training and

generalization and by which mechanisms they arise.

Acknowledgements

The authors would like to thank Jesse Livezey, Shariq

Mobin, Jascha Sohl-Dickstein, Max Simchowitz, Levent

Sagun, Yasaman Bahri, and Jeffrey Pennington for useful

discussions. Author CF was supported by the National Sci-

ence Foundation Graduate Research Fellowship Program

under Grant No. DGE 1752814. Authors CF & KB were

funded by a DOE/LBNL LDRD, Deep Learning for Sci-

ence, (PI, Prabhat). NW was supported by the Google PhD

Fellowship. MRD was supported in part by the U. S. Army



Numerically Recovering Critical Points

Figure 4. Uniformly sampling across iterates increases the sampling bias of critical point-finding methods. Top left panel: as in

Fig. 3, but for critical point-finding algorithms initialized from uniformly chosen iterates of the seed optimization trajectory. Top right

panel: as in Fig. 3, comparing entropy across noiseless and noise-added versions of both forms of initial point sampling. Bottom row:

as in Fig. 3.

Research Laboratory and the U. S. Army Research Office

under contract W911NF-13-1-0390.



Numerically Recovering Critical Points

References

Advani, M. S. and Saxe, A. M. High-dimensional dynamics

of generalization error in neural networks. arXiv preprint

arXiv:1710.03667, 2017.

Angelani, L., Leonardo, R. D., Ruocco, G., Scala, A., and

Sciortino, F. Saddles in the energy landscape probed

by supercooled liquids. Physical Review Letters, 85(25):

5356–5359, 2000.

Auer, P., Herbster, M., and Warmuth, M. K. Exponentially

many local minima for single neurons. In Touretzky,

D. S., Mozer, M. C., and Hasselmo, M. E. (eds.), Ad-

vances in Neural Information Processing Systems 8, pp.

316–322. MIT Press, 1996.

Baldi, P. and Hornik, K. Neural networks and principal

component analysis: Learning from examples without

local minima. Neural Networks, 2(1):53 – 58, 1989.

Ballard, A. J., Das, R., Martiniani, S., Mehta, D., Sagun, L.,

Stevenson, J. D., and Wales, D. J. Energy landscapes for

machine learning. Phys. Chem. Chem. Phys., 19:12585–

12603, 2017.

Bates, D. J., Haunstein, J. D., Sommese, A. J., and

Wampler, C. W. Numerically Solving Polynomial Sys-

tems with Bertini (Software, Environments and Tools).

Society for Industrial and Applied Mathematics, 2013.

ISBN 1611972698.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-

bridge University Press, New York, NY, USA, 2004.

ISBN 0521833787.

Broderix, K., Bhattacharya, K. K., Cavagna, A., Zippelius,

A., and Giardina, I. Energy landscape of a Lennard-

Jones liquid: statistics of stationary points. Physical Re-

view Letters, 85(25):5360–5363, 2000.

Broyden, C. G. A new method of solving nonlinear simul-

taneous equations. The Computer Journal, 12(1):94–99,

1969.

Choi, S.-C. T., Paige, C. C., and Saunders, M. A. MINRES-

QLP: A Krylov subspace method for indefinite or singu-

lar symmetric systems. SIAM Journal on Scientific Com-

puting, 33(4):1810–1836, 2011.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,

and LeCun, Y. The loss surface of multilayer networks.

CoRR, abs/1412.0233, 2014.

Coetzee, F. and Stonick, V. L. 488 solutions to the XOR

problem. In Mozer, M. C., Jordan, M. I., and Petsche, T.

(eds.), Advances in Neural Information Processing Sys-

tems 9, pp. 410–416. MIT Press, 1997.

Dauphin, Y., Pascanu, R., Gülçehre, Ç., Cho, K., Ganguli,

S., and Bengio, Y. Identifying and attacking the saddle

point problem in high-dimensional non-convex optimiza-

tion. CoRR, abs/1406.2572, 2014.

Davidenko, D. F. On a new method of numerical solution of

systems of nonlinear equations. Dokl. Akad. Nauk SSSR,

88:601–602, 1953.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y.

Sharp minima can generalize for deep nets. CoRR,

abs/1703.04933, 2017.

Doye, J. P. K. and Wales, D. J. Saddle points and dynamics

of Lennard-Jones clusters, solids, and supercooled liq-

uids. The Journal of Chemical Physics, 116(9):3777–

3788, 2002.

Freeman, C. D. and Bruna, J. Topology and geometry

of half-rectified network optimization. arXiv preprint

arXiv:1611.01540, 2016.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regular-

isation of neural networks by enforcing Lipschitz conti-

nuity. arXiv preprint arXiv:1804.04368, 2018.

Griewank, A. and Osborne, M. R. Analysis of New-

ton’s method at irregular singularities. SIAM Journal

on Numerical Analysis, 20(4):747–773, 1983. ISSN

00361429.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural

Computation, 9(1):1–42, 1997.

Izmailov, A. F. and Solodov, M. V. Newton-Type

Methods for Optimization and Variational Problems.

Springer International Publishing, 2014. doi: 10.1007/

978-3-319-04247-3.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,

M. I. How to escape saddle points efficiently. CoRR,

abs/1703.00887, 2017.

Jin, C., Liu, L. T., Ge, R., and Jordan, M. I. Minimiz-

ing nonconvex population risk from rough empirical risk.

CoRR, abs/1803.09357, 2018.

Kehoe, T. J. Computation and multiplicity of economic

equilibria. The Economy as an Evolving Complex Sys-

tem, pp. 147–167, 1987.

Laurent, T. and von Brecht, J. Deep linear neural networks

with arbitrary loss: all local minima are global. CoRR,

abs/1712.01473, 2017.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-

ture, 521:436 – 444, 2015.



Numerically Recovering Critical Points

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.

Gradient descent only converges to minimizers. In Feld-

man, V., Rakhlin, A., and Shamir, O. (eds.), 29th An-

nual Conference on Learning Theory, volume 49 of Pro-

ceedings of Machine Learning Research, pp. 1246–1257,

Columbia University, New York, New York, USA, 2016.

PMLR.

Levenberg, K. A method for the solution of certain non-

linear problems in least squares. Quarterly of Applied

Mathematics, 2(2):164–168, 1944.

Liang, S., Sun, R., Li, Y., and Srikant, R. Understanding the

loss surface of neural networks for binary classification.

CoRR, abs/1803.00909, 2018.

Liu, D. C. and Nocedal, J. On the limited memory BFGS

method for large scale optimization. Mathematical Pro-

gramming, 45(1-3):503–528, 1989.

Maclaurin, D. Modeling, Inference and Optimization with

Composable Differentiable Procedures. PhD thesis, Har-

vard University, April 2016.

McIver, J. W. and Komornicki, A. Structure of transition

states in organic reactions. general theory and an applica-

tion to the cyclobutene-butadiene isomerization using a

semiempirical molecular orbital method. Journal of the

American Chemical Society, 94(8):2625–2633, 1972.

Mehta, D., Chen, T., Morgan, J. W. R., and Wales, D. J. Ex-

ploring the potential energy landscape of the Thomson

problem via Newton homotopies. The Journal of Chem-

ical Physics, 142(19):194113, 2015.

Mehta, D., Chen, T., Tang, T., and Hauenstein, J. D. The

loss surface of deep linear networks viewed through the

algebraic geometry lens, 2018a.

Mehta, D., Zhao, X., Bernal, E. A., and Wales, D. J. Loss

surface of XOR artificial neural networks. Physical Re-

view E, 97(5), 2018b.

Pascanu, R., Dauphin, Y. N., Ganguli, S., and Bengio, Y.

On the saddle point problem for non-convex optimiza-

tion. CoRR, abs/1405.4604, 2014.

Pearlmutter, B. A. Fast exact multiplication by the Hessian.

Neural Computation, 6:147–160, 1994.

Pennington, J. and Bahri, Y. Geometry of neural network

loss surfaces via random matrix theory. In International

Conference on Learning Representations (ICLR), 2017.

Roosta, F., Liu, Y., Xu, P., and Mahoney, M. W. Newton-

MR: Newton’s method without smoothness or convexity.

arXiv preprint arXiv:1810.00303, 2018.

Sagun, L., Evci, U., Güney, V. U., Dauphin, Y., and

Bottou, L. Empirical analysis of the Hessian of over-

parametrized neural networks. CoRR, abs/1706.04454,

2017.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact

solutions to the nonlinear dynamics of learning in deep

linear neural networks. CoRR, abs/1312.6120, 2013.

Schmidhuber, J. Deep learning in neural networks: An

overview. CoRR, abs/1404.7828, 2014.

Sommese, A. J., Verschelde, J., and Wampler, C. W. In-

troduction to numerical algebraic geometry. In Solving

polynomial equations, pp. 301–337. Springer, 2005.

Trygubenko, S. A. and Wales, D. J. A doubly nudged elas-

tic band method for finding transition states. The Journal

of Chemical Physics, 120(5):2082–2094, 2004.

Wales, D. Energy Landscapes: Applications to Clusters,

Biomolecules and Glasses. Cambridge University Press,

2004.

Wolfe, P. Convergence conditions for ascent methods. II:

Some corrections. SIAM Review, 13(2):185–188, 1971.

Yao, Z., Gholami, A., Lei, Q., Keutzer, K., and Mahoney,

M. W. Hessian-based analysis of large batch training and

robustness to adversaries. CoRR, abs/1802.08241, 2018.

Zhou, Y. and Liang, Y. Critical points of neural net-

works: analytical forms and landscape properties. arXiv

preprint arXiv:1710.11205v1, 2017.



Numerically Recovering Critical Points

6. Supplementary Material

6.1. Detailed Methods

6.2. Data

The input data to the network was a 10,000 element sample from a 16-dimensional Gaussian with mean zero and diagonal

covariance matrix with entries 1 . . . 16. Because the analytical results (Baldi & Hornik, 1989) were derived for centered

data, the data was then zero-centered to floating precision by subtracting the sample mean.

6.3. Network and Training

The linear autoencoder network had 16 input units, 4 hidden units, and 16 output units. Initial parameter values were

sampled from a Gaussian with variance equal to the inverse of the number of weights in each weight matrix. The network

was then trained for 10,000 epochs of full-batch gradient descent with a fixed learning rate of 0.01. Final parameter values

had losses within 5e-6 of the loss of the global minimizer (starting from losses above it by order 1).

6.4. Back-Tracking Line Search

The step sizes for minimizing the gradient norm objective G (Equation 1) and along the Newton-MR search direction were

computed using back-tracking line search. The initial step size was 0.1 and the step size was multiplied by 0.5 when a

proposed update failed to meet the update criteria (Wolfe conditions for GNM (Wolfe, 1971), criteria from (Roosta et al.,

2018) for Newton-MR). In both cases, the free parameter for the Armijo-type condition was set to 1e-04. In the former, the

free parameter for the curvature-type condition was set to 0.9. After a step was accepted, step size was multiplied by 2 and

used as the initial step size for the next step. Line search was terminated when multiplying the proposed step size by 0.5

resulted in no change in the value of the step size, in the number type in use. All of our experiments used double-precision

floats.

6.5. Newton-TR

For the Newton-TR update (Equation 3), we used 5 evenly log-spaced values of γ from 1 to 1e-04. We found that smaller

ranges reduced convergence. We used a step size of 0.1.

6.6. Calculating Index and Identifying Critical Points

To calculate index numerically, a minimum negative eigenvalue tolerance must be set. We chose 1e-05, the square root of

our criterion for the squared gradient norm.

Critical points were identified as follows. First the un-factorized linear map that the network applies was calculated by

multiplying together the input and output weights. Near a critical point, this map should be strongly diagonally dominant,

thanks to the diagonal structure of the data’s true covariance matrix. We found that simply identifying which diagonal

elements were above 0.9 was sufficient to determine critical point identity: doing so did not result in identifying putative

critical points that performed projection onto more than 4 eigenvectors.


