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Abstract

We present a method for recovering the shape
selectivity of complex cells (or other invariant
neurons) via reverse correlation in the bispec-
tral domain. Invariant representations of stimuli,
such as the Fourier power spectrum, have been of
great importance in the analysis of natural signals.
However, the power spectrum has fundamental
limitations, which we explicate here. We empha-
size the need for a complete set of invariants, for
which all points in a transformation orbit map to
the same invariants, and distinct orbits map to
distinct points. We advocate determining a com-
plete sets of invariants with the machinery of the
bispectrum, which can be effectively computed
and inverted using the concrete representation the-
ory of the underlying transformation group. As a
proof-of-concept for the approach, we present a
method for inferring invariant stimulus features
for the special case of two-dimensional transla-
tion, demonstrating the potential of the 2D bispec-
trum for understanding the response properties of
complex cells in visual cortex.

1. Introduction

Translation invariant features are critical components of
stable representations of the visual world. This point was
first noted theoretically in the works of (Poincaré, 1898)
and (Pitts & McCulloch, 1947), observed empirically in
visual cortex in the recordings of (Hubel & Wiesel, 1962),
and most recently validated synthetically, with the success
of convolutional neural networks at learning features that
enable object recognition (Krizhevsky et al., 2012).

Complex cells are distinguished from simple cells by the
complexity of the features they respond to and their invari-
ance to slight shifts in the position of preferred features. The
Fourier power spectrum has been used to capture some of
these properties, e.g. (David & Gallant, 2005). However,
complex cells show considerable sensitivity to the phase
components of natural signals (Felsen et al., 2005), which
cannot be captured by the phase invariant power spectrum.
A translation invariant feature space that retains phase struc-
ture is thus highly desirable for the analysis and prediction
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of complex cell responses.

We further the exploration of invariants for the neural pro-
cessing of natural signals by investigating the bispectrum,
a general construction of features that do not change when
data are acted upon by a transformation group. A direct
application of the bispectrum concept first appears in work
by statistician John Tukey to define higher-moments of time-
series that can detect non-Gaussian phenomena (Tukey,
1953). We became aware of them from Kondor’s appli-
cations to machine learning (Kondor, 2008), which, in turn,
were inspired by papers of Kakarala (Kakarala, 1992). In
fact, several researchers continually rediscover this circle of
ideas (Gourd et al., 1989), even today (Cohen et al., 2018).
More remarkably, however, already in 1947, considerations
from neuroscience theory—predating evidence of “complex
cells” from recordings in visual cortex—lead researchers to
the idea of bispectra for canonical representations (“univer-
sality”) in sensory coding (Pitts & McCulloch, 1947).

2. Bispectra for 2D Translation

Commonly, the Fourier power spectrum is used to determine
features in stimuli that are invariant to translation. Although
a powerful set of invariants for such purposes, the power
spectrum is not a complete invariant—that is, a continuous
map to a metric space with the following two properties:
(1) all points in a transformation orbit map to the same
invariants, and (2) distinct orbits are mapped differently. A
simple demonstration of this fact can be seen in Figure 1,
where it is shown that two very different stimuli have the
exact same power spectrum. It follows that these features
are insufficient to account for the ambiguities in stimuli
up to 2D translation. On the other hand, bispectra form a
complete representation up to the full transformation group.

a)

Figure 1. Fourier power is an insufficient invariant. a) Hobbes,
b) Calvin, c¢) Calvin’s 2D Fourier amplitudes with Hobbes’ phases.
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Figure 2. Simulated translation invariant neuron. a) Raster plot
for a simulated Poisson neuron responding to presentations of
MNIST digit stimuli. Simulated presentation occurred for 1000 ms.
This example neuron was selective for ”2”’s. Thus, its firing rate
significantly increased for trials 15 - 20, where 2s were presented.
b) 25 MNIST digit stimuli. Each digit has been randomly translated
and corrupted with Gaussian noise. ¢) Recovered stimulus from
inverted reverse correlated bispectra.

In words, the 2D bispectrum is the Fourier transformation
of the triple autocorrelation. Mathematically, this translates
to the following formula. Given a 2D image x € R™*"
and its corresponding Fourier transform f € C™*™ (f is the
complex conjugate), the bispectrum § € C™X"*mx" jg:

Bi (%) = £i T 1Fi ik (mod m), 541 (mod n)-

Although these bispectra form a complete set of invariants
for 2D translation, only a small subset is required:

Bii11; Binei, t=1...,m

Brjiz, j=1....m
51JJJ7i ::2...,Wl,j =:2...,n.

In total, these number mn -+ 2, which is commensurate with
the original data size and significantly easier to work with.

3. Methods & Results

We present a method for recovering the shape selectivity
of complex cells via reverse correlation in the bispectral
domain. As a proof of concept, we examine the perfor-
mance of the bispectrum in decoding the responses of an
artificial Poison neuron designed as a noisy translation in-
variant complex pattern detector (Figure 2). Each artificial

neuron was presented fifteen noisy, translated MNIST digits
from different classes. To generate a reconstructed preferred
stimulus for each neuron, we invert the weighted mean of
the bispectrum of each image presented to the neuron, with
weights supplied by the neuron’s responses to each image
during the 1000 ms interval. Results for one neuron are
shown in Figure 2, though reconstructions for all tested
neurons show similar quality. Note that this method repro-
duces the neurons desired stimulus despite the presence
of noisy neural responses to other digits and limited size
dataset—and additionally removes the noise present in the
original stimuli—suggesting a powerful tool for identifying
translationally invariant neural representations.
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