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Summary: ​Lateral and feedback connections abound in biological neural networks [1], but are absent from               
the feedforward, convolutional architectures popular in artificial neural networks. Artificial neural networks            
also exhibit adversarial examples [2]: small perturbations to the input can produce large changes to the                
output. Recent work [3] has identified adversarial examples that transfer to human observers, but only when                
those observers are time-limited. This suggests that the slower lateral and feedback computations help              
protect biological neural networks from adversarial examples. In this work, we demonstrate that a classifier               
with lateral connectivity in its hidden layer is more robust to adversarial examples than a feedforward                
classifier, requiring larger input perturbations to achieve the same change in output. The hidden layer uses                
the Locally-Competitive Algorithm (LCA) [4], a leaky integrator network implementation of sparse coding             
[5]. We hypothesize that the curved geometry of neuron responses with population nonlinearities (via              
lateral connections) [6] improves selectivity and provides this protection. We analyze this geometry in the               
context of adversarial examples. 
Additional Details: Pointwise nonlinearities are a function of only a single neuron within a layer and                
include rectification and sigmoid. Population nonlinearities represent an alternative class, where the            
nonlinear output is a function of multiple neurons in a set. Examples include softmax, divisive               
normalization [7,8], and the network nonlinearity present in sparse coding [4,5]. Biological neurons are              
highly interconnected and exhibit strong population nonlinear effects, but nearly all work in neuron              
modeling uses pointwise nonlinearities due to the ease in interpretation and implementation. However,             
population nonlinearities have been used to great effect to explain non-classical visual receptive fields,              
which are nonlinear neuron response properties that cannot be explained by thresholding or saturation alone               
[5,7,8,9]. 
To better understand the difference between these classes of nonlinearity, we visualize the input-output              
maps of model neurons in the form of iso-response contours (Figs 1,2). The iso-response contours of linear                 
neurons are linear: any input perturbation that is orthogonal to the weight vector will result in equal                 
activation. For pointwise nonlinearities, this remains true: because the nonlinearity is performed after a              
linear projection, the output must also produce straight iso-response contours. For a population nonlinearity,              
the gradient of the activation function with respect to the a small perturbation in the input is a function of all                     
other neurons. Thus, for a perturbation that is orthogonal to a target neuron, it is highly likely that an                   
alternative neuron will have a non-orthogonal weight vector, which will result in a net change in all neuron                  
outputs. 
Adversarial examples are closely tied to neuron iso-response contours. While an iso-response contour             
represents a perturbation direction in stimulus space that produces no change in the output, an adversarial                
example is a perturbation direction that produces a maximal change in the output, which will be orthogonal                 
to the iso-response surface. To test how population nonlinearities affect a network’s susceptibility to              
adversarial attacks, we trained three networks on the MNIST classification dataset. The first network is an                
MLP that has one hidden layer with 768 rectified linear units. The next network is a combination of LCA                   
with 768 outputs and a single layer perceptron (SLP) classifier. LCA is a recurrent network of                
leaky-integrator neurons that converges to minimize the sparse coding objective function [4] and is trained               
without supervised labels. The final network is LISTA [10] and an SLP. LISTA is a pointwise nonlinear                 
feedforward network with 768 outputs that is trained to produce a code with a small L​2 distance to that                   
produced by LCA. The SLPs and MLP were all trained with a supervised cross-entropy loss. We then                 
produced adversarial attacks following the method in [2]. We show that for a fixed adversarial confidence,                
the attacks on the LCA+SLP network are 1) larger and 2) closer to the space of possible MNIST digits than                    
for the other two networks (Fig 3). 



 
Figure 1: Pointwise nonlinear neurons always produce straight iso-response contours. Here our neuron’s             
output (contour colors), , is computed by applying a pointwise nonlinear function, , to a linear   ak          (.)g     
projection, , where is a neuron’s weight vector (red arrow) and is the input image. The white SΦk   Φk         S       
arrow indicates a comparison neuron that has an inner product within this stimulus space and therefore                
would also respond to inputs. The 2D plot represents a plane of points that live in the 256D image space. 

 
Figure 2: Population nonlinear neurons can have bent iso-response contours. Here we use LCA to               
demonstrate that population nonlinearities can produce curved iso-response contours. The left plot is             
constructed as in Fig 1. The middle plot shows the activation for 768 planes, where each is chosen with                   
respect to a different comparison neuron. The right plot is a histogram of second order polynomial fit                 
coefficients for the curves in the middle plot. Nearly all of the contours are flat (coefficient=0) or have                  
exo-origin curvature (coefficient<0), indicating that this neuron has a high degree of selectivity for many               
orthogonal directions. 

 
Figure 3: LCA+SLP is more protected against adversarial attacks. We trained a classifier on MNIST digits                
and show that using LCA as a preprocessing step protects the classifier against adversarial attacks. All                
models were trained to approximately equal test accuracy (98.2%, 97.15%, 97.76% for MLP, LISTA, LCA).               
All attacks were controlled for equal adversarial confidence across models. Error bars indicate standard              
deviation for 100 example inputs. 
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