
Language Geometry using Random Indexing

Aditya Joshi1, Johan T. Halseth2, and Pentti Kanerva3

1 Department of Mathematics, University of California–Berkeley
2 Department of Computer Science, University of California–Berkeley

3 Redwood Center for Theoretical Neuroscience

Abstract. Random Indexing is a simple implementation of Random
Projections with a wide range of applications. It can solve a variety of
problems with good accuracy without introducing much complexity. Here
we demonstrate its use for identifying the language of text samples, based
on a novel method of encoding letter N -grams into high-dimensional
Language Vectors. Further, we show that the method is easily imple-
mented and requires little computational power and space. As proof
of the method’s statistical validity, we show its success in a language-
recognition task. On a di�cult data set of 21,000 short sentences from
21 di↵erent languages, we achieve 97.4% accuracy, comparable to state-
of-the-art methods.
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1 Introduction

As humans who communicate through language, we have the fascinating ability
to recognize unknown languages in spoken or written form, using simple cues
to distinguish one language from another. Some unfamiliar languages, of course,
might sound very similar, especially if they come from the same language family,
but we are often able to identify the language in question with very high accuracy.
This is because embedded within each language are certain features that clearly
distinguish one from another, whether it be accent, rhythm, or pitch patterns.
The same can be said for written languages, as they all have features that are
distinctive. Recognizing the language of a given text is the first step in all sorts of
language processing, such as text analysis, categorization, translation and much
more.

As popularized by Shannon ([1]), most language models use distributional
statistics to explain structural similarities in various specified languages. The
traditional method of identifying languages in the absence of dictionaries con-
sists of counting individual letters, letter bigrams, trigrams, tetragrams, etc., and
comparing the frequency profiles of di↵erent text samples. As a general princi-
ple, the more accurate you want your detection method to be, the more data
you have to store about the various languages. For example, Google’s recently
open-sourced program called Chromium Compact Language Detector uses large

In J. A. de Barros, B. Coecke & E. Pothos (eds.)  Quantum Interaction, 10th International Conference,
QI 2016 (July 20-22, San Francisco), pp. 265-274. Springer, 2017.











language profiles built from enormous corpora of data. As a result, the accuracy
of their detection, as seen through large-scale testing and in practice, is near
perfect ([2]).

High-dimensional vector models are popular in natural-language processing
and are used to capture word meaning from word-use statistics. The vectors are
called semantic vectors or context vectors. Ideally, words with a similar meaning
are represented by semantic vectors that are close to each other in the vector
space, while dissimilar meanings are represented by semantic vectors far from
each other. Latent Semantic Analysis is a well-known model that is explained in
detail in [3]. It produces 300-dimensional (more or less) semantic vectors from a
singular value decomposition (SVD) of a matrix of word frequencies in a large
collection of documents.

An alternative to SVD, based on Random Projections, was proposed by Pa-
padimitriou ([4]) and Kaski ([5]). Random Indexing ([6, 7]) is a simple and
e↵ective implementation of the idea. It has been used in ways similar to Mikolov
et al.’s Continuous Bag-of-Words Model (KBOW; [8]) and has features similar
to Locality-Sensitive Hashing (LSH) but di↵ers from them in its use of high di-
mensionality and randomness. With the dimensionality in the thousands (e.g., D
= 10,000)—referred to as “hyperdimensional”—it is possible to calculate useful
representations in a single pass over the dataset with very little computing.

In this paper, we will present a way of doing language detection using Random
Indexing, which is fast, highly scalable, and space e�cient. We will also present
some results regarding the accuracy of the method, even though this will not be
the main goal of this paper and should be investigated further.

2 Random Indexing

Random Indexing represents information by projecting data onto vectors in a
high-dimensional space. There exist a huge number of di↵erent, nearly orthog-
onal vectors in such a space [9, p. 19]. This lets us combine two such vectors
into a new vector using well-defined vector-space operations, while keeping the
information of the two with high probability. In our implementation of Ran-
dom Indexing, we use a variant of the MAP (Multiply, Add, Permute) coding
described in [10] to define the vector space. Vectors are initially taken from a
D-dimensional space (with D = 10,000) and have an equal number of randomly
placed 1s and �1s. Such vectors are used to represent the basic elements of
the system, which in our case are the 26 letters of the Latin alphabet and the
(ASCII) Space. These vectors for letters are sometimes referred to as their Ran-
dom Labels.

The binary operations on such vectors are defined as follows. Elementwise
addition of two vectors A and B, is denoted by A + B. Similar, elementwise
multiplication is denoted by A ⇤ B. A vector A will be its own multiplicative
inverse, A ⇤ A = 1, where 1 is the D-dimensional identity vector consisting of
only 1s. The cosine is used to measure the similarity of two vectors. It is defined



as cos(A,B) = |A0 ⇤ B0|, where A0 and B0 are the normalized vectors of A and
B, respectively, and |C| denotes the sum of the elements in C.

Information from a pair of vectors A and B is stored and utilized in a single
vector by exploiting the summation operation. That is, the sum of two separate
vectors naturally preserves unique information from each vector because of the
mathematical properties of the space. To see this, note that cos(A,A) = 1, while
for all B 6= A, cos(A,B) < 1. The cosine of two random, unrelated vectors tends
to be close to 0. Because of this, the vector B can easily be found in the vector
A+B: cos(B,A+B) di↵ers significantly from 0.

For encoding a sequence of vectors, we use a random (but fixed throughout
all our computations) permutation operation ⇢ of the vector coordinates. Hence,
the sequence A-B-C is encoded as the D-dimensional vector ABC by permuting
the first vector twice, permuting the second vector once, taking the third vector
as is, and by multiplying the tree: ABC = ⇢(⇢(A)) ⇤ ⇢(B) ⇤C = ⇢⇢A ⇤ ⇢B ⇤C =
⇢2A⇤⇢B ⇤C. This e�ciently distinguishes the sequence A-B-C from, say, A-C-B.
This can be seen from looking at their cosine (here c is the normalization factor):
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= c · |1 ⇤ ⇢(B ⇤ C) ⇤ (B ⇤ C))|
⇡ c · 0

since a random permutation ⇢V of a random vector V is uncorrelated to V .

2.1 Making and Comparing of Text Vectors

We use the properties of high-dimensional vectors to extract certain properties
of text into a single vector. [11] shows how Random Indexing can be used for
representing the contexts in which a word appears in a text, into that word’s
context vector. We show here how to use a similar strategy for recognizing a
text’s language by creating and comparing Text Vectors : the Text Vector of an
unknown text sample is compared for similarity to precomputed Text Vectors of
known language samples—the latter are referred to as Language Vectors.

Simple language recognition can be done by comparing letter frequencies
of a given text to known letter frequencies of languages. Given enough text, a
text’s letter distribution will approach the letter distribution of the language in
which the text was written. The phenomenon is called an “ergodic” process in
[1], as borrowed from similar ideas in physics and thermodynamics. This can
be generalized to using letter blocks of di↵erent sizes. By a block of size N , we
mean N consecutive letters in the text so that a text of length M would have
M �N +3 blocks. When the letters are taken in the order in which they appear
in the text, they are referred to as a sequences (of length N) or as N -grams.



As an example, the text “a book” gives rise to the trigrams “a b”, “ bo”,
“boo”, and “ook” (here “ ” stands for Space). The frequencies of such letter
blocks can be found for a text and compared to known frequencies for di↵erent
languages. For texts in languages using the Latin alphabet of 26 letters (plus
Space), like English, this would lead to keeping track of 273 = 19,683 di↵erent
trigram frequencies. For arbitrary alphabets of L letters, there would be (L+1)N

N -grams to keep track of. These numbers grow quickly as the block size N
increases, yet Random Indexing encodes all N -gram frequencies into a single
10,000-dimensional Text Vector.

The Random Indexing approach for doing language recognition is similar.
A text’s Text Vector is first calculated by running over all the blocks of size
N within the text and creating an N -gram Vector for each. An N -gram Vector
is created for the sequence of letters as described earlier. As an example, if
we encounter the block “rab”, its trigram vector is calculated by performing
⇢⇢R ⇤ ⇢A ⇤ B, where R, A and B are the Random Labels for r, a, and b—they
are random D-dimensional vector with half 1s and half �1s, and the same ones
are used with all languages and text samples.

A text’s Text Vector is now obtained from summing the N -gram Vectors
for all the blocks in the text. This is still an D-dimensional vector and can be
stored e�ciently. Language Vectors are made in exactly the same way, by making
Text Vectors from samples of a known language and adding them into a single
vector. Determining the language of an unknown text is done by comparing its
Text Vector to all the Language Vectors. More precisely, the cosine measure d

cos

between a language vector X and an unknown text vector V is defined as follows:

d
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If the cosine is high (close to 1), the trigram frequencies of the text are similar
to the trigram frequencies of that language and thus, the text is likely to be
written in the same language. Hence, the language that yields the highest cosine
is chosen as the system’s prediction/guess.

2.2 Complexity

The outlined algorithm for Text Vector generation can be implemented e�-
ciently. For generating a vector for an N -gram, N � 1 vector permutations and
multiplications are performed. This takes time O(N · D). Looping over a text
of M letters, O(M) N -gram Vectors must be created and added together. This
clearly implies an O(N ·D·M) implementation. This can be improved to O(D·M)
by noting that most of the information needed for creating the N -gram Vector
for the next block is already contained in the previous N -gram Vector, and can
be retrieved by removing the contribution from the letter that is now no longer
in the block.

Say we have the N -gram Vector A = ⇢N�1V
1

⇤ ⇢N�2V
2

⇤ . . . ⇤ ⇢VN�1

⇤VN for
block number i, and now want to find the N -gram Vector B for block i+ 1. We



remove from A the vector ⇢N�1V
1

by multiplying with its inverse (which is the
vector itself), which we can do in O(D) time since ⇢N�1 is just another (pre-
calculated) permutation. Then we permute the result once using ⇢ and multiply
that with the Letter Vector VN+1

for the new letter in the block. This gives us
the new N -gram Vector

B = ⇢(⇢N�1V
1

⇤A) ⇤ VN+1

= ⇢(⇢N�2V
2

⇤ . . . ⇤ ⇢VN�1

⇤ VN ) ⇤ VN+1

= ⇢N�1V
2

⇤ . . . ⇤ ⇢2VN�1

⇤ ⇢VN ⇤ VN+1

and so we can create N -gram Vectors for arbitrary size blocks without adding
complexity.

Figure 1: 10,000-dimensional Language Vectors for 21 languages roughly cluster
based on the known relations between the languages. The Language Vectors were
based on letter trigrams and were projected onto a plane using t-SNE ([12]).

3 Experimental Results

The algorithm outlined above was used to create Language Vectors for 21 lan-
guages. Texts for the Language Vectors were taken from the Wortschatz Cor-
pora ([13]) where large numbers of sentences in selected languages can be easily
downloaded. Each Language Vector was based on about a million bytes of text.
Computing of the Language Vectors corresponds to training the system.

Intuitively, Language Vectors within a language family should be closer to
each other than vectors for unrelated languages. Indeed, the hyperdimensional
Language Vectors roughly cluster in this manner, as seen in Figure 1.



To get an idea of how well the actual detection algorithm works, we tested
the Language Vectors’ ability to identify text samples from the Europarl Parallel
Corpus, described in [14]. This corpus includes 21 languages with 1,000 samples
of each, and each sample is a single sentence.

Table 1 shows the result for N -gram sizes from 1 to 5 (N = 1 is the equivalent
of comparing letter histograms). With tetragrams we were able to guess the
correct language with 97.8% accuracy. Even when incorrect, the system usually
chose a language from the same family, as seen from Table 2.

N Detection success
1 74.9
2 94,0
3 97.3
4 97.8
5 97.3

Table 1: Percentage of sentences correctly identified as a function of N -gram
size.

It is worth noting that 10,000 small integers keep track of 14,348,907 possible
pentagrams just as easily as 19,683 trigrams. The method should be explored
further, as explained in the Future Work section.

The arithmetic (algebra) of the operations with which Text Vectors are
made—i.e., permutation, multiplication, and addition, and how they work to-
gether—make it possible to analyze the Language Vectors and find out, for
example, what letters are most likely to follow “th”. In English it would be “e”,
but what is the next most likely? In Table 3, we answer this question using a
learnt Language Vector for English.

4 Details of Implementation

The 21 Language Vectors were “trained” with text from the Leipzig Corpora
Collection (website http://corpora.uni-leipzig.de/download.html). The file for
each language is about a million bytes and contains 10,000 sentences of news
material. Letters outside the 26 in the Latin alphabet were replaced by their
Latin equivalents by hand-coding and using the Unidecode 0.04.17 package
(https://pypi.python.org/pypi/Unidecode), and sequences of nonletters were
treated as a single space. The 21,000 test sentences (1,000 per language) came
from the European Parliament Proceedings Parallel Corpus 1996–2011 (http://
www.statmt.org/europarl/) and were preprocessed the same way as the training
corpus.

The “random,” fixed permutation ⇢ was implemented as a rotate by one
coordinate position. This is safe because the vectors themselves are random,



ell eng ita ces est spa nld por lav lit ron pol fra bul deu dan fin hun swe slk slv

ell 987 1 . . . . 3 3 . . . 1 . 4 . . 1 . . . .
eng 2 982 . 4 . . 1 . 2 . . . 6 . . 1 . 2 . . .
ita . . 992 . 1 2 . . . . 2 3 . . . . . . . . .
ces 1 1 . 940 1 . . . 1 1 1 1 . 5 1 . . . . 35 12
est 1 . . 1 983 . . . 3 . . . 3 . 1 1 5 1 1 . .
spa . . 6 . . 946 2 30 8 1 2 . 5 . . . . . . . .
nld . 1 . . . . 980 1 . . 2 1 . . 5 9 . . 1 . .
por . 1 2 . . 1 1 991 . . . . 3 1 . . . . . . .
lav 2 . . 1 . . . 2 963 26 . 2 . 2 . 1 . . . 1 .
lit 2 . 1 2 1 1 . 2 18 969 . . 1 . . . . . . 1 2
ron . . 1 . . 1 . 2 . 1 987 2 4 2 . . . . . . .
pol 2 1 . 3 1 . . . . . . 984 . 4 . . . . . 4 1
fra 3 . 2 . . 4 2 1 1 2 1 . 982 . . 1 . . . 1 .
bul 1 . . 7 . . 4 . . . . . . 984 . . . . . 3 1
deu . 2 1 1 . . 3 . . . . . 3 . 985 4 . . 1 . .
dan . 2 . . . . 9 . . . . . 2 . . 974 . . 13 . .
fin . . . . 4 . 2 . 1 . . . . . . . 993 . . . .
hun . . . . . . 6 1 1 1 . . . . . 2 . 989 . . .
swe . 1 . . . 1 5 . . . 4 . 1 . 4 10 . . 974 . .
slk 2 . . 72 . . 1 . 2 1 4 18 . 6 1 . . . . 881 12
slv 1 . . 5 2 . . 1 . . 1 . . 6 1 1 . . . . 982

LEGEND: bul = Bulgarian, ces = Czech, dan = Danish, deu = German, ell = Greek,
eng = English, est = Estonian, fin = Finnish, fra = French, hun = Hungarian, ita =
Italian, lav = Latvian, lit = Lithuanian, nld = Dutch, pol = Polish, por = Portuguese,
ron = Romanian, slk = Slovak, slv = Slovene, spa = Spanish, swe = Swedish.

Table 2: The confusion matrix of language detection using 10,000-dimensional
Language Vectors based on letter trigrams. Each row corresponds to the correct
label and each column is the predicted label for the Europarl corpus detection
test. The entry (i, j) is the number of sentences (out of a 1,000) that language j
was guessed for language i. A high value diagonal shows the very high accuracy.

only one permutation is needed, and the permutation is iterated a few times at
most (much fewer than 10,000).

The experiment was programmed in Python and run on a laptop computer.
The following run-time statistics are from a 64-bit, 2.70GHz (100MHz clock)
Intel processor, 4 cores and 32GB of 1600 MHz memory (total). Computing
a 10,000-dimensional Language Vector from a million bytes of text takes 14.5
seconds. Computing the 10,000-dimensional Text Vectors for the 21,000 test
sentences and comparing them to the 21 Language Vectors, to make the confusion
matrix, takes 2 minutes. The run time for a round of experiments to make Table
starting with a random seed is just over 7 minutes.



Letter Distance
e 0.31

0.063
a 0.049
i 0.024
r 0.024
o 0.018

Table 3: Using the vector operations of multiplication and inverse permutations,
and noting that the multiplicative inverse of a random vector with only 1s and
�1s is itself, we find the most likely letter to follow the bigram “th”, knowing
the answer is encoded in an English Vector. As expected intuitively, the result
shows that “e” is the most likely letter. Additionally, we have easily accessible
information about the second most likely and so on. We show the top 6. (Note
that is (ASCII) space.)

5 Discussion

Computing with high-dimensional random vectors is the larger issue addressed
by this paper: what are the operations on the vectors, what is their algebra, and
what kinds of algorithms the algebra favors? Language identification provides
us with an easily understood example of the concepts involved.

The addition and multiplication operations on the vectors form an algebraic
structure that approximates a field, which is further complemented by a permu-
tation operation that distributes over both addition and multiplication. These
operations constitute a kind of Multiply–Add–Permute (MAP) algebra ([15])
that seems particularly suited for modeling human cognition and language.

This style of computing goes back to Hinton’s Reduced Representation which
emphasizes the need to represent sets and their elements with vectors of equal
width ([16]), and to Smolensky’s Tensor Product Variable Binding which allows
a set of variable–value pairs to be encoded and superposed in a higher-order
tensor from which the individual constituents can be extracted ([17]). These
two ideas are brought together in Plate’s Holographic Reduced Representation
(HRR; [18, 19]), of which the present system is a special case. The idea is to
work in a closed system—namely, that the outputs of addition, multiplication
and permutation have the same dimensionality (and statistical distribution) as
the inputs. The term Vector Symbolic Architecture (VSA; [20]) refers to systems
of this kind.

VSA systems use either multiplication or permutation for variable binding
because they are invertible and they distributes over addition. Here we have en-
coded N -grams using both. First the letters are bound to their positions within
anN -gram with permutations and then the position-encoded letters are “bound”
to each other with multiplication—this latter “binding” is a more general map-
ping because it is not between variables and their values. When the N -gram
Vectors for a given text are superposed with vector addition, we get an N -grams



profile that can be compared to profiles of other text samples (see Fig. 1 and
Table 2).

The example of Table 3 is more subtle, where we query a Language Vector for
the letter that appeared most often after “th”. The solution can be understood
in terms of the vector algebra that makes use of both the inverse permutation
and the inverse multiplication. This kind of representation vaguely resembles
quantum superposition that allows all the superposed vectors to be operated on
in parallel and the results to be extracted with appropriate inverse operations.
The simplicity of the algorithm is worth pointing out.

6 Future Work

Many adjustments can be made to improve the e�cacy of Random Indexing on
language detection. The results of this paper are based mainly on letter trigrams.
However, it is a simple matter to add into the Text Vectors single-letter frequen-
cies and bigrams, for example. Also, the vector dimensionality can be reduced
to several thousands without markedly a↵ecting the results. Early experiments
suggest that this method works well with encoding language information in mul-
tilingual texts, which is often much more di�cult to do.

Because of the generality of Random Indexing on texts, any time series with
a well-defined “alphabet” can be encoded using this scheme. In this way, we
propose that our method can be used to do language detection in speech data,
addressing our original problem.

7 Conclusion

We have described the use of Random Indexing to language identification. Ran-
dom Indexing has been used in the study of semantic vectors since 2000 ([6, 7]),
and for encoding problems in graph theory ([10]), but only now for identifying
source materials. It is based on simple operations on high-dimensional random
vectors: on Random Labels with 0-mean components that allow weak signals to
rise above noise as the data accumulate. The algorithm works in a single pass,
in linear time, with limited memory, and thus is inherently scalable, and it pro-
duces vectors that are amenable to further analysis. The experiments reported
in this paper were an easy task for a laptop computer.
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